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SUMMARY 

 

The increasing worldwide contamination of freshwater ecosystems with 

thousands of chemical compounds is one of the key environmental problems facing 

humanity. While concentrations of so-called Persistent Organic Pollutants (POPs) and 

Priority Pollutants are declining, numerous emerging substances, such as 

pharmaceuticals, personal care and house cleaning products amongst others, are 

commonly detected in the aquatic environment as complex mixtures. Aquatic toxicity of 

two mixtures of emerging substances with inherent antimicrobial properties (personal 

care product preservatives and antibiotics) were assessed on indigenous biological 

communities of the aquatic compartments (activated sludge microorganisms and 

natural limnic biofilms) in order to provide ecologically a more realistic data and to 

improve the knowledge about their environmental risk. The results showed that the 

preservative mixture (iodopropynyl butylcarbamate, bronopol, diazolidinyl urea, 

benzalkonium chloride, zinc pyrithione, propylparaben, triclosan and a mixture of 

methylchloroisothiazolinone and methylisothiazolinone) displayed a potential risk to the 

microorganisms present in an STP aeration tank and consequently, to the process 

performance of activated sludge. Among them, benzalkonium chloride is the most 

problematic of the studied preservatives as is the risk driver of the mixture. The result 

from a screening level risk assessment of antibiotics (doxycycline, erythromycin, 

ofloxacin, sulfamethoxazole and trimethoprim) towards bacterial periphytic 

communities showed potential risk to the aquatic ecosystem for the mixture under a 

Spanish STP scenario and for single ofloxacin, the risk-driver of the mixture toxicity. 

Emerging pollutants enter the aquatic environment mainly through conventional 

STP, where most of them are not efficiently removed. One way of minimizing the input 

of these micropollutants into surface waters is to integrate an additional treatment step 

at STPs such as ozonation. In the present study, continuous ozonation is shown as a 

suitable technology for upgrading conventional STPs both as a pre-treatment stage and 

a polishing step of activated sludge process. Ozonation effectively removed compounds 

that pose environmental risk (benzalkonium chloride, ofloxacin and six-antibiotic 
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mixture) in synthetic water and real wastewater as a result of the combined attack of 

molecular ozone and hydroxyl radicals, being the optimum ozone dose strongly water 

matrix-dependent. Ozonation did not lead to a complete mineralization of the organic 

compounds with the consequent accumulation of transformation products (TPs), which 

were identified using mass spectrometry coupled to liquid chromatography (LC-ESI-

MS(TOF), LC-ESI-MS(QTOF)). The further oxidation of TPs gave rise to low molecular 

weight by-products such as carboxylic acids. These ozone refractory compounds are 

easily assimilable and consequently, constitute a special concern for the proliferation of 

microbes downstream of an ozonated-wastewater discharge point. The current study 

demonstrated that copper-catalysed continuous ozonation, in both synthetic and real 

wastewater, significantly improves organic acid mineralization, which is mainly due to its 

high performance in oxalic acid depletion. Nonetheless, the water matrix has a notable 

influence on the optimum catalyst dose necessary to achieve a given degree of 

mineralization. 

In addition to the chemical analysis, aquatic toxicity of ozone treated waters 

should also be taken into account to assess ozonation in a comprehensive manner. 

Ecotoxicity assessment was conducted combining different levels of biological 

complexity with the aim of providing an accurate indication of the toxic effects of 

ozonated wastewaters on exposure biological systems: bioassay batteries of single 

species belonging to different trophic levels (the bacteria Vibrio fischeri and 

Pseudomonas putida, the protozoan Tetrahymena thermophila, the alga 

Pseudokirchneriella subcapitata and the crustacean Daphnia magna) and indigenous 

biological communities (microorganisms from an STP aeration tank and natural limnic 

biofilms). The results indicated that during ozonation, the aquatic toxicity of wastewater 

decreases in proportion to the disappearance of the studied emerging pollutants. It can 

be assumed that toxicity is dominated by the parent compounds, and the TPs were not 

relevant for the aquatic hazard assessment. However, the degradation of emerging 

substances that interacts with nanoparticles, such as benzalkonium chloride, caused an 

increase in toxic-metal leaching from the nanomaterial and consequently, led to a 

toxicity enhancement of treated wastewater. 
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RESUMEN 

 

El incremento de la contaminación en los ecosistemas acuáticos de todo el 

mundo, con miles de compuestos químicos, es uno de los mayores problemas 

ambientales a los que se enfrenta la humanidad. Mientras que la concentración de los 

llamados contaminantes orgánicos persistentes (COPs) y los contaminantes prioritarios 

está disminuyendo, numerosos compuestos emergentes tales como medicamentos, 

productos de cuidado personal y limpieza entre otros, son habitualmente detectados en 

el medio acuático como mezclas complejas. La toxicidad acuática de dos mezclas de 

contaminantes emergentes con inherentes propiedades antimicrobianas (conservantes 

de productos de cuidado personal y antibióticos) ha sido evaluada mediante 

comunidades biológicas autóctonas de los potenciales compartimentos acuáticos 

receptores (fango activo y bio-películas bentónicas de aguas continentales). El objetivo 

es proporcionar datos más realistas desde un punto de vista ecológico e incrementar el 

conocimiento sobre los riesgos ambientales que pueden presentar. Los resultados 

mostraron que la mezcla de conservantes (butilcarbamato de iodopropinilo, bronopol, 

diazolidinil urea, cloruro de benzalconio, piritionato de cinc, propilparabeno, triclosan y 

una mezcla comercial de metilcloroisotiazolinona y metilisotiazolinona) presenta un 

riesgo para los microorganismos presentes en un tanque de aireación de una estación 

de depuración de aguas residuales (EDAR) y por lo tanto, para el correcto 

funcionamiento del proceso de fango activo. Entre todos ellos, el cloruro de benzalconio 

es el conservante más peligroso al ser considerado el principal causante del riesgo que 

presenta la toxicidad de la mezcla. La evaluación de riesgos de los antibióticos 

(doxiciclina, eritromicina, ofloxacina, sulfametoxazol y trimetoprima) demostró que 

tanto su mezcla de acuerdo a las concentraciones presentes en una EDAR española 

como de manera individual ofloxacino (principal responsable de la toxicidad de la 

mezcla) muestran un potencial peligro sobre la biota presente en los ecosistemas 

acuáticos continentales. 

Los contaminantes emergentes entran en el medio acuático principalmente a 

través de los efluentes de las EDAR convencionales, en las que muchos de ellos no se 
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eliminan eficazmente. Una alternativa para solucionar este hecho es integrar una etapa 

adicional como la ozonización en la línea de flujo de las EDAR. En este estudio, la 

ozonización en continuo se mostró como una tecnología óptima para mejorar el 

rendimiento de la degradación de contaminantes emergentes de las EDAR 

convencionales como pre- o como post-tratamiento del fango activo. La ozonización 

eliminó eficazmente los micro-contaminantes que presentan riesgos ambientales 

(cloruro de benzalconio, ofloxacino y la mezcla de los seis antibióticos) como resultado 

del ataque combinado de la molécula de ozono y los radicales hidroxilos. Degradaciones 

totales fueron alcanzadas tanto en aguas residuales sintéticas como en reales, si bien, la 

dosis óptima de ozono estuvo fuertemente influenciada por la matriz del agua. A pesar 

de ello, la ozonización no logró mineralizar los compuestos orgánicos, con la 

consiguiente acumulación de productos de transformación, muchos de los cuales fueros 

identificados mediante cromatografía líquida acoplada a espectrometría de masas (LC-

ESI-MS(TOF), LC-ESI-MS(QTOF)). La mayor oxidación de estos productos de 

transformación dio lugar a sub-productos de reacción de bajo peso molecular como 

ácidos carboxílicos. Estos compuestos refractarios a la ozonización son fácilmente 

asimilables por lo que constituyen una especial preocupación por la proliferación 

microbiana aguas abajo del punto de descarga de las aguas ozonizadas. El presente 

estudio demostró que la ozonización catalítica en continuo basada en cobre, mejora 

significativamente la mineralización de los ácidos orgánicos debido a su alto rendimiento 

en la degradación de oxalato. A pesar de que este hecho tiene lugar tanto en agua 

residual sintética como real, la dosis óptima del catalizador para alcanzar un 

determinado grado de mineralización estuvo fuertemente influenciada por el tipo de 

matriz. 

Se ha tenido en cuenta también la toxicidad acuática de las aguas tratadas, con el 

objetivo de optimizar el tratamiento de ozonización. La evaluación de la toxicidad se 

llevó a cabo con organismos pertenecientes a diferentes niveles de complejidad 

biológica, con el fin de proporcionar una indicación precisa sobre los efectos causados 

en los sistemas biológicos expuestos: baterías de bioensayos uni-especie que forman 

parte   de   diferentes   niveles   de   la   cadena   trófica   (las   bacterias   Vibrio  fischeri  y  
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Pseudomonas putida, el protozoo Tetrahymena thermophila, el alga Pseudokirchneriella 

subcapitata y el crustáceo Daphnia magna) así como comunidades autóctonas (fango 

activo y bio-películas bentónicas de aguas continentales). Los resultados indicaron que 

durante la ozonización, el potencial tóxico de las aguas residuales causado por los 

compuestos emergentes disminuye en proporción a la disminución de su concentración. 

Puede ser asumido entonces que la toxicidad de las aguas ozonizadas está dominada por 

los compuestos iniciales, y que, en estos casos, los productos de transformación no han 

sido relevantes para la evaluación de los riesgos sobre el medio acuático. Sin embargo, 

la degradación de contaminantes emergentes que interaccionan con nanomateriales, 

como cloruro de benzalcónico, causó un aumento en los lixiviados de metales tóxicos 

procedentes de la nanopartícula, provocando de manera indirecta un aumento de la 

toxicidad de las aguas residuales tratadas. 
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Chapter 1 

 

INTRODUCTION 
 

1.1. Background 

1.1.1. Chemical pollution: Emerging pollutants 

Thousands of chemicals play an important role in our daily activities (Fig. 1.1). 

They allow new technologies to be developed and help us to maintain our health and 

improve our quality of life. As a result of their widespread use, these substances enter 

the natural environment which causes the increasing worldwide contamination of 

aquatic ecosystems with thousands of industrial and everyday chemicals 

(Schwarzenbach et al., 2006). As the global population increases and economies in many 

regions grow considerably (UNESCO, 2014), production of chemicals is also predicted to 

increase. Currently, more than 70 new chemicals are registered every hour by the 

American Chemical Society (McKinney et al., 2012), many of which may get transported 

into water bodies at some stage in their lifecycle (Eggen et al., 2014). 

 

Fig. 1.1 The roughly 350 000 substances listed or regulated are only the tip of the iceberg. CAS: 
Chemical Abstracts Service. 
 

For this transfer of chemicals to water bodies, several routes need to be 

considered (Fig. 1.2). In developed countries with existing sewer systems, wastewater 

from households and industry is a major source of chemicals entering the aquatic 

environment despite the treatment processes taking place in the sewage treatment 
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plants (STPs). Pharmaceuticals, personal care products, biocides, industrial chemicals 

and/or detergents are found most often in municipal STP effluents (Kasprzyk-Hordern et 

al., 2009). However, chemicals do not only enter surface water via point sources, such as 

STPs, but rather via diverse diffuse entry paths. Such entries stem from agricultural 

fields, traffic lanes or infrastructure issues because of rain, and consequently pollute 

surface waters with compounds such as plant protection products and biocides (Metz 

and Ingold, 2014). 

 

Fig. 1.2 Sources and routes of micropollutants in the aquatic environment. Red line represents point 
source entry paths. Adapted with permission from Eggen et al., 2014. Copyright (2015) American 
Chemical Society. 
 

As consequence of these varied sources and pathways, numerous compounds 

can be detected, mostly at trace concentrations in the µg·L−1 to ng·L−1 range, in 

freshwaters (Segura et al., 2009, Loss et al., 2009 and Herrera-López et al., 2014) 

particularly in densely populated regions (Martínez-Bueno et al., 2010 and Heeb et al., 

2012). Even at low concentrations, micropollutants can have adverse effects on aquatic 

life or affect drinking water resources (Eggen et al., 2014). The widespread knowledge of 

these facts inevitably means that micropollutants are increasingly becoming a target for 

regulation. 

discharge of STPdrainage

industry

contaminated site
activities in and around the water

atmospheric deposition

combined sewer

combined
wastewater
overflow

storm water
sewer

agriculture

rail wastewater

road wastewater

9 



 

Chapter 1 

 

At international level, the Stockholm Convention on Persistent Organic Pollutants 

(POPs), promoted by the United Nations Environmental Programme (UNEP), aims to 

reduce POPs worldwide by listing substances related to its persistence, bioaccumulation, 

potential for long-range environmental transport and toxicity. The initial list of 12 POPs 

has been amended in the last number of years, incorporating 11 new chemicals along 

with proposing new candidates for further research. Currently, it covers a series of 

pesticides, industrial chemicals and unintentionally produced chemicals such as 

polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (Stockholm 

Convention, 2015). 

Considering environmental perspective with the aquatic environment focus, the 

big upturn was made in the European Union (EU) by establishing the Water Framework 

Directive 2000/60/EC, which aims to achieve a good ecological and chemical status of 

European water bodies and to prevent their further deterioration. In 2008, a list of 

33 priority substances was established at Union level by the Directive 2008/105/EC. 

Environmental quality standards (EQS) were defined for these priority substances and 

for another 8 pollutants regulated by previous legislation, these being expressed as an 

annual average value and/or maximum allowable concentrations (Directive 

2008/105/EC). Moreover, this list is reviewed and updated every 4 years and so recently 

it launched the Directive 2013/39/EU that updates the water framework policy. The 

Directive 2013/39/EU includes 12 new priority substances, three compounds included in 

the recommendation for the first watch list of substances as well as EQS for newly 

identified substances and revised EQS for substances already identified. Nowadays, the 

list of priority substances mainly covers pesticides, polyaromatic hydrocarbon, industrial 

compounds, solvents and metals. Nevertheless, there is a group of substances currently 

not included in routine monitoring programs at EU level, despite their presence in the 

environment, and they are obvious candidates for future regulations as long as research 

proves their toxic effects and/or their widespread occurrence. These substances 

compose a class of micropollutants denominated as emerging pollutants (Slobodnik and 

Dulio, 2008), which include pharmaceuticals and personal care products, surfactants, 

and biocides, amongst others. 
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1.1.2. Aquatic toxicity assessment 

The scientific community has been worried about the fate and toxicity of 

emerging substances because they are pseudo-persistent compounds (i.e., their high 

transformation/removal rates are compensated by their continuous entry into 

environment), multiple stressors (i.e., these occur in mixture) and the fact that many of 

them (such as biocides or pharmaceuticals) are biologically active compounds 

(Daugthon, 2002 and Barceló and Petrović, 2007). Therefore, evaluation of the toxicity 

of these potentially harmful compounds is crucial in hazard assessment. In spite the fact 

that establishing cause-ecotoxicological effect relationships of these micropollutants in 

the environment is extremely challenging, there are some studies reporting worrisome 

number of environmental impacts. Ramirez et al. (2009) describe the accumulation of 

pharmaceuticals and personal care products such as galaxolide, tonalide, 

diphenhydramine, fluoxentine or carbamazepine in fish residing in STP effluent-

dominated water bodies. This fact suggests a special human health concern as a 

consequence of the potential for bioaccumulation and biomagnifications of these 

micropollutants through the food chain. Emerging pollutants can also generate 

endocrine disruption by disturbing reproduction, stimulating hormones or causing 

feminisation in fish, among others (Bolong et al., 2009). For instance, Alsev et al. (2005) 

demonstrated that the preservative butylparaben when tested on juvenile rainbow trout 

shows an estrogenic activity. Other scientists have described that antidepressants like 

fluoxentine may disrupt frog maturation (Foster et al., 2010). However, one of the well-

known effects in the aquatic environment is antibiotic resistance (Marti and Balcázar, 

2013). Antibiotic resistance has become an increasing concern with reports of high 

antibiotic resistance frequencies and detection of antibiotic resistance genes in aquatic 

environment, especially in STP effluent (Schwartz et al., 2003, Rizzo et al., 2014 and 

Rodríguez-Mozaz et al., 2015). In fact, antibiotic resistance is one of the most critical 

human healthcare challenges, as the selection of resistance strains eventually 

compromises the effectiveness of antimicrobial therapy (Rodríguez-Rojas et al., 2012 

and Ashbolt et al., 2013) and influences the ecological function of water ecosystem 

(Bouki et al., 2013). 

11 



 

Chapter 1 

 

Although in specific cases even single emerging substances have been proven to 

cause environmental harm, several reviews have concluded that clear toxic effects of 

studied micropollutants are only to be expected at concentrations above 

environmentally realistic levels (Santos et al., 2010, Brausch and Rand, 2011, Brausch et 

al., 2012 and Vasquez et al., 2014). Nonetheless, most of the available studies have been 

based on laboratory exposures that estimate the toxicity of a single compound on a 

single species by measuring the response as physiological or population-based 

parameters (Geiszinger et al., 2009). 

Single-species tests are effective tools that facilitate reproducible toxicity testing 

with high precision and throughput, but they cannot reflect the interactions between 

species (Geiszinger et al., 2009). Such interactions can only be included in toxicity 

estimates when biological communities composed of many different species are used. 

The use of natural microbial communities, directly collected from the water body of 

concern and exposed to emerging substances under controlled conditions, has improved 

the ecological relevance of laboratory toxicity tests (Sabater et al., 2007 and Proia et al., 

2013). On the other hand, aquatic ecosystems are exposed to various multi-component 

mixtures, whose joint toxicity is typically higher than each its component alone 

(Kortenkamp et al., 2009). The focus on a substance-by-substance assessment in most 

studies for aquatic toxicity evaluation therefore runs the risk of underestimating the 

actual toxic pressure that an ecosystem is exposed to. And even though the 

concentrations of individual pollutants might be low, combined effects have been shown 

to occur even when the compounds are present in concentrations below their respective 

toxicity threshold (Backhaus et al., 2000a,b and Fent et al., 2006) (Fig. 1.3). 

Mixture toxicity assessments can either be retrospective or prospective, i.e. 

either the hazard of a current exposure situation is determined or the effect of an 

expected exposure is predicted. Different approaches are employed depending on the 

aims of the study, commonly there are divided into whole mixture or component-based 

approaches (Backhaus et al., 2008). Whole mixture approach directly tests the mixture 

of interest in order to provide an experimental estimation of its level of hazard. Since it 

would   be   an   endless   task   to   experimentally   determine   the   toxicity   of   all   relevant  
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Fig. 1.3 Observed and predicted mixture toxicity of a ten-component mixture of quinolone antibiotics in 
a chronic bioluminescence-inhibition assay with the bacterium Vibrio fischeri. Whole mixture approach 
is represented by observed mixture and component-based approach is represented by predicted 
mixture using the concepts of Concentration Action (CA) and Independent Action (IA). Adopted with 
permission from Backhaus et al. 2000a. Copyright (2015) Elsevier. 
 

mixtures, predictive approaches have been proposed instead. The mathematical 

concepts of Concentration Addition (CA) and Independent Action (IA) predict the toxicity 

of a mixture based on the individual toxicities of the mixture components (Backhaus et 

al., 2003, Altenburger et al., 2004 and Kortenkamp et al., 2009), describing two mutually 

exclusive reference situations of additivity. CA is based on the assumption that all 

components in the mixture behave as if they are simple dilutions of one another (Loewe 

and Muischnek, 1926 and Loewe, 1953), which is often taken to means that CA describes 

the joint action of compounds with an identical mechanism of action (Backhaus et al., 

2000a and Fent et al., 2006). In contrast to CA, the alternative concept of IA assumes 

that the resulting combined effect can be calculated from the effects caused by the 

individual mixture components (Bliss, 1939), which is often taken to mean that IA 

describes the joint action of compounds with a dissimilar mechanism of action 

(Backhaus et al., 2000b and Faust et al., 2003). Table 1.1 summarizes the principal 

features and equations of CA and IA models, together with other commonly used 

models to analyze mixture toxicity in ecotoxicology (Fernández-Piñas et al., 2014). It is 

important to point out that a prerequisite for the predictive concepts to be valid is that 
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the mixture components do not interact. The consequence of such interactions can 

either be an increase in toxicity (usually referred to as synergism) or a decrease 

(antagonism). Although real mixtures cannot be expected to be composed of either only 

similarly or dissimilarly acting compounds, reviews of data have shown that the toxicity 

of mixtures can usually be predicted by the CA model and that antagonistic and 

synergistic interactions only occur in a few cases (Belden et al., 2007, Kortenkamp et al., 

2009, Cedergreen, 2014 and Backhaus, 2014). 

 

Table 1.1 Mainly used models to analyze mixture toxicity in ecotoxicology (based on Fernández-Piñas et 
al., 2014). 

Model Additivity definition Generalized equation References 

 

CAa 
 

Loewe 
 

�
𝑐𝑖
𝐸𝐶𝑥𝑖

= 1
𝑛

𝑖=1
 

𝐸𝐶𝑥𝑚𝑖𝑥 = ��
𝑝𝑖
𝐸𝐶𝑥𝑖

𝑛

𝑖=1
�
−1

 

 

Backhaus et al. (2000a) 
Fent et al. (2006) 

CIb Loewe �
𝐷𝑖
𝐷𝑥𝑖

= 𝐶𝐼𝑥
𝑛

𝑖=1
 

𝐸𝐶𝑥𝑚𝑖𝑥 = ��
𝑝𝑖

𝐸𝐶𝑥𝑖  ∙  𝐶𝐼𝑥

𝑛

𝑖=1
�
−1

 

Chou (2006) 
González-Pleiter et al. (2013) 

TUsc Loewe 𝑇𝑈𝑚𝑖𝑥 = � 𝑇𝑈𝑖
𝑛

𝑖=1
 Junghans et al. (2006) 

Backhaus and Karlsson ( 2014) 

IAd Bliss 𝐸(𝑐𝑚𝑖𝑥) = 1 −� [1 − 𝐸(𝑐𝑖)]
𝑛

𝑖=1
 Backhaus et al. (2000b) 

Faust et al. (2003) 

 

a Concentration Addition. In the generalized equation 𝑐𝑖  is the concentration of the 𝑖th component in a 
mixture that is expected to cause 𝑥% effect, and 𝐸𝐶𝑥𝑖  gives the concentration at which the compound 𝑖 
alone causes the same 𝑥% effect. From a mathematical perspective CA hence simply represents the 
weighted harmonic mean of the individual 𝐸𝐶𝑥𝑖  values, with the weights just being the fraction 𝑝𝑖  of 
the mixture components. 
 
b Combination Index. In the generalized equation 𝐷𝑖  is the dose [concentration] of compound 𝑖 in a 
mixture that is expected to cause 𝑥% effect and 𝐷𝑥𝑖  gives the dose [concentration] at which the 
compound 𝑖 alone causes the same 𝑥% effect. 𝐶𝐼 is the Combination Index, where 𝐶𝐼 <1 indicates 
synergism, 𝐶𝐼 = 1 indicates additivity, and 𝐶𝐼 >1 indicates antagonism. As can be seen 𝐶𝐼 model is 
equivalent to CA model, in fact a simplification of the 𝐶𝐼 model where 𝐶𝐼 is fixed as 𝐶𝐼 = 1 (additivity). 
 
c Toxic Units. In the generalized equation 𝑇𝑈𝑖 = (𝑐𝑖 𝐸𝐶𝑥𝑖)⁄ . This approximation is equivalent to that of 
CA. 
 
d Independent Action. In the generalized equation 𝐸(𝑐𝑖) is the effect of compound 𝑖 if applied alone at 
concentration 𝑐𝑖, the concentration at which it is present in the mixture. 
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1.1.3. Environmental risk assessment 

The assessment of whether or not a particular emerging substance poses a 

potential environmental risk is performed by comparing the predicted (𝑃𝐸𝐶 ) or 

measured environmental concentration ( 𝑀𝐸𝐶 ) with the predicted no effect 

concentration (𝑃𝑁𝐸𝐶), which is derived from effect data (𝑁𝑂𝐸𝐶 and/or 𝐸𝐶50) obtained 

in the most sensitive test available (van Leeuwen and Vermeire, 2007). As a result of the 

knowledge on mixture toxicity obtained from studies over the years (Altenburger and 

Greco, 2009, Kortenkamp et al., 2009, ECETOC, 2011 and SCHER, 2011), a conceptual 

framework for the environmental risk assessment of chemical mixtures has been 

proposed by Backhaus and Faust (2012). The approach is based on an approximation of 

the CA concept. In the first step, a risk quotient is based on the sum of (𝑃𝐸𝐶 or 

𝑀𝐸𝐶)/ 𝑃𝑁𝐸𝐶  ratios of the detected compounds (RQMEC/PNEC), as was suggested by 

Calamari and Vighi (1992). RQMEC/PNEC is a pragmatic first approach as existing 𝑃𝑁𝐸𝐶 

values, which have already undergone regulatory assessment, can be used directly, 

without the need to go back to the underlying studies with the various organisms 

(Peterssen et al., 2015). The shortcoming of this approach is that 𝑃𝑁𝐸𝐶𝑠  for the 

different compounds might be derived by different taxa. Despite the fact that RQMEC/PNEC 

violates a fundamental assumption of CA (i.e., all individual toxicity data refer to the 

same biological endpoint and organism), it might serve as a justifiable first-tier 

approximation of a conceptually more sound CA-based mixture toxicity assessment 

(Backhaus and Faust, 2012). If the resulting RQMEC/PNEC is equal to or above 1, there is 

considered to be a potential risk and the mixture toxicity should then be assessed 

separately for each taxa or species group. In a second step, sum of toxic units for each 

organism group (𝑆𝑇𝑈 = ∑(𝑀𝐸𝐶/𝐸𝐶𝑥) results in taxa-specific risk quotients. Following 

the standard environmental risk assessment practice the overall risk for the 

environment is then based on the most sensitive taxa, termed RQSTU (𝑅𝑄𝑆𝑇𝑈 =  𝑆𝑇𝑈 ∙

𝐴𝐹, in which AF is the assessment factor) (Backhaus and Faust, 2012). As a risk to the 

environment is indicated if the RQSTU is equal or above 1, the assignment of an 

appropriate AF may be crucial for the final assessment of cumulative risk (Petersen et 

al., 2015). 
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Despite the presence of hundreds of emerging substances in environmental 

mixtures, experimental findings suggest that the overall risk may often be governed by 

just a few compounds (Price et al., 2012 and Backhaus and Karlsson, 2014). The EU 

therefore considers the development of methodologies for the identification of such 

“drivers of mixture toxicity” as a research priority (European Commission, 2012). 

Backhaus and Karlsson (2014) have proposed the analysis of the toxic unit distribution of 

the compounds in a mixture as a tool to prioritise and rank the ecotoxicological 

importance of emerging substances in a complex mixture. Fig. 1.4 shows the results of 

RQSTU distribution of emerging substances detected in the STP effluent of Ryaverket 

(Gothenburg, Sweden) (Backhaus and Karlsson, 2014). It can be clearly seen that 

ofloxacin alone is responsible for more than 50% of the expectable joint toxicity towards 

algae and that the first five compounds, four of them antibiotics, explain more than 90% 

of RQSTU. The contribution of more than half the detected emerging substances is 

negligible for all intents and purposes, even under the assumption of concentration-

additive mixture behaviour. The “top 𝑛” approach is useful for subsequent steps of the 

assessment process, especially if appropriate risk management or mitigation measures 

need to be identified (Backhaus and Faust, 2012 and Altenburger et al., 2015). 

Finally, it is important to take into account that, in order to ensure adequate 

protection of the whole aquatic ecosystem, the validity of the additivity principle should 

be confirmed for levels of biological organisation higher than populations, such as 

communities (SCHER, 2011). Ecotoxicological risk assessment is routinely conducted 

with data from single-species tests using organisms from major trophic levels. It is 

assumed that by protecting the most sensitive trophic level all other organism groups 

are protected as well and that protecting the structure of an ecosystem also protects 

ecosystem functions (van Leeuwen and Vermeire, 2007). Different considerations must 

be made for the effects at community level that depend on the complex interactions 

amongst different populations and can hardly be predicted only on the basis of single-

species tests as it has been described above. Risk assessment analysis of emerging 

substance mixtures should be extended from single species testing to higher levels of 

biological complexity, such as communities, in order to provide ecologically more 
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realistic data as well as to fill gaps in knowledge about their level of environmental 

hazard. 

 

Fig. 1.4 Distribution of Risk Quotients based on the sum of toxic units (RQSTU) for algal toxicity in a mixture 
of emerging pollutants (𝑛 = 25) monitored in Ryaverket STP effluent (Gothenburg, Sweden) For further 
details see Backhaus and Karlsson (2014). 

 

1.1.4. Removal of emerging substances in conventional STPs 

The presence of emerging pollutants in the aquatic environment and by 

consequence, their related environmental risk is mainly a consequence of their limited 

removal in conventional STPs (Schwarzenbach et al., 2006). Existing treatment plants 

were not designed to eliminate substances of this kind, but to reduce the input of solids, 

organic matter and nutrients. Despite the fact that there are substantial differences in 

the technologies used for wastewater treatment and in the level of treatment achieved 

in different countries and even within a single country, wastewater treatment has a 

common set of objectives (Eggen et al., 2014): 

• to improve the water quality within the receiving water (i.e., removing 

degradable organic compounds in order to minimize oxygen depletion in 

receiving waters), 

• to remove the nutrients nitrogen and phosphorus that are responsible for the 

eutrophication of aquatic ecosystems and 

• to improve the hygienic conditions of receiving waters by functioning as a barrier 

for fecal bacteria and pathogens. 
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By achieving these objectives, STPs have been adapted in a step-up-step approach in 

response to tightening of the discharge quality regulations such as Directive 91/271/EEC. 

Fig. 1.5 describes these changes by showing the most common types of activated sludge 

(Ternes et al., 2004). As a result, conventional treatment plants are protective of 

recreational and bathing water, tackle major threats to aquatic biodiversity and to 

ecosystem function by preventing for example oxygen depletion, and, furthermore, 

reduce the requirements for drinking water treatment when water supply intakes are 

downstream of STPs (Eggen et al., 2014). Nevertheless, the increasing use of chemicals 

along with growing populations and increasing urbanization pose new challenges to 

wastewater treatment that are not able to be remedied by conventional STPs. 

Indeed, raw STP influents are usually a mixture of domestic and industrial 

discharges, in which pollutants subject to be removed include not only organic 

compounds   such   as   lipids,   proteins,   and   carbohydrates,   which   occur   at   order   of  

 

Fig. 1.5 Schematic presentation of historical development of activated sludge treatment in Europe. 
Adopted with permission from Ternes et al. 2004. Copyright (2015) American Chemical Society. 
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mg·L−1, but also micropollutants, which occur at a concentration in the range of 0.001–

100 µg·L−1 (Verlicchi et al., 2012). In spite of this, observed removal efficiency of 

emerging pollutants vary widely for the different compounds, as well as for the same 

substance, due both to the different chemical and physical characteristics of 

contaminants and to the operational conditions of the STP (Buttiglieri and Knepper, 

2008 and Verlicchi et al., 2013); approximately half of micropollutants load is eliminated 

either by sorption to sludge or by degradation (Lou et al., 2014). In fact, Rosal et al. 

(2010) showed that the removal of emerging pollutants in STP correlates well with their 

hydrophobicity when measured in terms of logarithm of apparent octanol-water 

partition coefficient (Fig. 1.6). 

 

Fig. 1.6 Mean removal efficiencies from the liquid phase for the selected compounds in conventional 
STPs. Main plot: Error bars represent the standard deviations of the data. Inset plot: (1) paraxanthine, 
(2) caffeine, (3) acetaminophen, (4) nicotine, (5) ibuprofen, (6) ketorolac, (7) clofibric acid, (8) 
furosemide, (9) ciprofloxacin, (10) fluoxethine, (11) ofloxacin, (12) naproxen, (13) hydrochlorothiazide, 
(14) 4-amino-antipyrine, (15) metronidazole, (16) N-acetyl-4-amino-antipiryne, (17) codeine, (18) N-
formyl-4-amino-antipiryne, (19) 4-methylaminoantipyrine, (20) ranitidine, (21) antipyrine, (22) 
gemfibrozil, (23) benzophenone-3, (24) triclosan, (25) tonalide, (26) galaxolide, (27) atenolol, (28) 
sulfamethoxazole, (29) fenofibric acid, (30) metoprolol, (31) bezafibrate, (32) ketoprofen, (33) 
trimethoprim, (34) diclofenac, (35) indomethacine, (36) propanolol, (37) mefenamic acid, (38) 
omeprazole, (39) carbamazepine, (40) erythromycin. Adopted with permission from Rosal et al. 2010. 
Copyright (2015) Elsevier. 
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The amount of compounds that are not sorbed to the sludge and persist over the 

retention time in the plant still remain in the effluent and are continuously discharged to 

the receiving water bodies. In general, the occurrence of emerging substances in STP 

effluents were a one to two order of magnitude lower than those in influent, ranging 

from 0.001 to 1 µg·L−1 (Clara et al., 2007, Kasprzyk-Hordern et al., 2009, Rosal et al., 

2010, Verlicchi et al., 2012, Lou et al., 2014 and Lazareva and Keller, 2014). However, 

scientific literature has reported that some compounds are discharged at relatively high 

concentrations. For instance, four analgesics (tramadol, dipyrone, ibuprofen and 

naproxen), a contrast media (iopromide), a beta-blocker (atenolol), a diuretic 

(hydrochlorothiazide), a lipid regulator (fenofibric acid), three psychiatric drugs 

(diazepam, gabapentin and carbamazepine), a receptor antagonistic (cimetidine), a 

synthetic musk (galaxolide), an antimicrobial agent (triclosan), and a stimulant (caffeine) 

were detected in the highest average concentrations higher than 1 µg·L−1 in biologically 

treated effluent (Deblonde et al., 2011, Verlicchi et al., 2012 and Lou et al., 2014). 

 

1.1.5. Ozonation for upgrading conventional STPs 

As a consequence of the fact that the current STPs are unable to act as a reliable 

barrier towards some emerging substances, discussion has focused on upgrading the 

overall treatment process with additional treatment steps in order to enhance the 

removal efficiencies of micropollutants and mitigate the potential risks associated with 

their continuous release into the environment (Jones et al., 2007 and Joss et al., 2008). 

Several advanced treatment technologies have been evaluated for this purpose in recent 

years, including membrane filtration such as nanofiltration and reverse osmosis (Snyder 

et al., 2007 and Yoon et al., 2007), powdered activated carbon adsorption (PAC) 

(Westerhoff et al., 2005 and Nowotny et al., 2007) and chemical oxidation using ozone 

or advanced oxidation processes (Huber et al., 2005, Kim et al., 2007, Esplugas et al., 

2007 and Zimmerman et al., 2011). Nowadays, two main technologies with the potential 

for large-scale applications in terms of efficiency, cost and energy requirements have 

been identified: adsorption of micropollutant onto PAC or oxidation with ozone 

(Table 1.2) (Joss et al., 2008 and Margot et al., 2013). 
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Table 1.2 Cost and energy needs for construction and operation of wastewater tertiary treatments 
(including post sand filtration) for an average removal of 80% of 65 micropollutants according to 
Margot et al., 2013. 
Process Ozonation PAC 
Dosage 5.7 mg O3·L−1 15 mg PAC·L−1 

Capacity (average flow) [L·s−1] 60 15 
Electricity consumption [KWh·m−3] 0.117 0.080 
Operating costs [€·m−3] 0.043 0.054 
Investment costs [€·m−3] 0.133 0.107 
Total costs (excluding VAT) [€·m−3] 0.176 0.161 

 

PAC allows removal via adsorption to its high specific surface area for a broad 

spectrum of micropollutants, especially hydrophobic and positively charged compounds 

whereas, highly polar contaminants need higher doses or can only be removed partly 

(Snyder et al., 2007, Nowonty et al., 2007 and Margot et al., 2013). Moreover, as the 

organic matter present in wastewater can compete for adsorption sites, larger amounts 

of activated carbon are required (Bolong et al., 2009 and Margot et al., 2013). On the 

other hand, ozonation is considered to be an attractive technology because it has been 

demonstrated to be efficient for the degradation of a broad range of micropollutants at 

a rate of over 80%, many of which have potential environmental and public health risks 

(Huber et al., 2005, Hollender et al., 2009, Zimmerman et al., 2011 and Michael et al., 

2013a). A further advantage of the ozonation is the disinfection potential, which is able 

to deactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), 

preventing the dissemination of antibiotic resistance (Dodd, 2012). 

Nonetheless, the integration of the ozonation process as an additional treatment 

step at conventional STPs cannot only be performed as tertiary treatment with the aim 

of degrading biological persistent compounds from secondary effluent. As shown in 

Fig. 1.7, there are two potential points for applying ozonation process to upgrade 

conventional STPs in order to enhance the removal efficiencies of emerging pollutants: 

pre- and post-biological treatment (Ikehata et al., 2006 and Ried et al., 2009). The 

predominant aim of ozonation pre-treatment stage is the partial oxidation of toxic 

and/or non-biodegradable emerging pollutants in order to be able to then use the 

conventional biological treatment process for the reduction of biodegradable oxidation 

products (Oller et al., 2011 and Guieysse and Norvill, 2014). 
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Fig. 1.7 Possible points for applying ozonation in a conventional STP in order to increase removal 
efficiencies of emerging substances. Ozonation as pre-treatment stage (A) and polishing step (B) of 
activated sludge process. 

 

During ozonation process, organic compounds either directly react with ozone in 

specific reactions, or they are decomposed by hydroxyl radical-mediated reactions. The 

ozone molecule, consisting of three oxygen atoms, exists as a hybrid of four possible 

resonance structures (Fig. 1.8), which is attributed its high reactivity (Beltrán, 2004). 

Ozone reacts readily with electron-rich functional groups, such as olefins, aliphatic 

amines, activated aromatic systems and sulfur-containing compounds by electrophilic 

addition reactions leading to mainly oxygen atom transfer and electron transfer (Hübner 

et al., 2015), but not towards aromatic rings with amide or carboxyl groups (Demeestere 

et al., 2014). Due to its selectivity second-order rate constants for the reaction of 

organic compounds with ozone cover a range of more than nine orders of magnitude 

(von Sonntag and von Gunten, 2012). In aqueous solution, the ozone molecule is 

unstable, and decomposes into secondary oxidant species such as hydroxyl radicals 

through several initiation reactions via an autocatalytic chain reaction (Beltrán, 2004). 

Hydroxyl radical is the strongest oxidant that can be applied in water and in contrast to 

ozone, it acts less selectively. Second-order rate constants for hydroxyl radicals are 

hence generally higher and cover a range of only about three orders of magnitude (von 

Sonntag and von Gunten, 2012). The decomposition of ozone in wastewater is enhanced 

compared to its rate in pure water as a consequence of the direct reactions of ozone 
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with specific reactive moieties of dissolved organic matter (DOM) (Buffle et al., 2006). 

An increasing ozone decomposition rate was observed with an increasing pH level (von 

Sonntag and von Gunten, 2012). 

 
Fig. 1.8 Hybrid resonance structures for the molecule of ozone in aqueous solution. 
 

Altogether, the efficiency of an ozonation process with regard to emerging 

pollutant oxidation widely depends on several issues. These are the ozone dose, the 

ozone stability, the hydroxyl radical yield and the second-order rate constants for the 

reaction of target compounds with ozone and hydroxyl radicals (Nöthe et al., 2009, 

Katsoyiannis et al., 2011 and Antoniou et al., 2013). Type and concentration of DOM, pH 

and alkalinity in turn influence the ozone stability considerably. Ozone is more stable at 

lower DOM concentrations, at lower pH values (protonated DOM slows down ozone 

decay) and at a higher alkalinity (carbonate is a hydroxyl radical scavenger and inhibits 

ozone decomposition) (von Sonntag and von Gunten, 2012). The amount of ozone 

required in the process depends on various parameters and since approximately 70% of 

the total energy costs in ozone process are for ozone generation (Gottschalk et al., 

2010), improving our understanding and level of control over the reaction system should 

be priority. It is should be meticulously studied in order to optimize ozone usage and 

consequently, the cost efficiency of the process. 

1.1.6. Transformation products and aquatic toxicity 

Despite the combined action of molecular ozone and hydroxyl radicals leading to 

a significant oxidation of emerging pollutants both with and without functional groups 

reactive towards ozone, the disappearance of the original parent compounds does not 

imply that the treatment was suitable (Radjenović et al., 2009). Indeed, oxidation does 

not usually lead to a full mineralization but to the transformation of micropollutants, 

resulting in the formation of transformation products (TPs) (von Sonntag and von 
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Gunten, 2012 and Lee et al., 2014). There is a growing concern on whether TPs retains or 

drop the biological effects of the parent compounds (Lee et al., 2008, Dodd et al., 2009 

and Mestankova et al., 2012), or whether or not new and undesired biological effects 

are developed (Li et al., 2008, Dodd et al., 2010 and Gómez-Ramos, et al., 2011). In 

addition to the formation of TPs, other organic by-products such as carboxylic acids, 

aldehydes or ketones are formed from the oxidative breakdown of complex DOM and 

emerging substances. These compounds are usually readily biodegradable and 

constitute a considerable fraction of assimilable organic carbon (AOC) (Hammes et al., 

2006), which causes a proliferation of microbes. This proliferation then decreases the 

river water quality downstream from the discharge point of ozonated wastewater 

(Zimmermman et al., 2011). 

Given the limited extent that mineralization of emerging pollutants occurs during 

ozonation along with the potential environmental hazard of TPs, their identification and 

quantification, as well as elucidation of their main degradation pathways, are necessary 

for the safe application of such process for wastewater treatment (Radjenović et al., 

2009). The identification of unknown TPs is not an easy task and very often requires the 

combined use of several analytical techniques and strategies such as mass spectrometry 

(MS) coupled with either liquid or gas chromatography (LC or GC) (Fatta-Kassinos et al., 

2011). The use of LC-MS, combined with a new generation of MS systems, has great 

advantages for the analysis of polar compounds (Petrović et al., 2010). They allow for a 

more sensitive analysis and provide abundant structural information for elucidating 

unknown structures. Triple quadruple (QqQ) or linear ion trap (QqLIT) analysers involve 

TPs elucidation on the basis of structural information gained in tandem MS/MS 

experiments, whereas the measurement of an accurate mass and the subsequent 

determination of the empirical formula provided by time-of-flight (TOF) or quadrupole 

time-of-flight (QqTOF) instruments are a very valuable information source when 

assigning structures (Gros et al., 2012). All these techniques have been widely applied to 

the identification of metabolites and TPs generated by different water treatments 

(Radjenović et al., 2009, Fatta-Kassinos et al., 2011 and Haddad et al., 2015). 
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However, specific analytical determination may confront certain limitations; TPs 

detection is laborious and difficult to accomplish (Aguayo et al., 2004 and Lee et al., 

2014) and in addition, potential interaction effects between the components of a 

mixture (i.e., synergistic or antagonistic) and the bioavailability of the compounds 

cannot be predicted by the performance of single chemical measurements. Thus, 

extensive aquatic toxicity evaluations are required to provide a holistic direct estimation 

of the hazard of a given ozonated wastewater, which is essential for the optimization of 

ozonation process (Petala et al., 2008 and Escher and Fenner, 2011). 

The selection of the appropriate bioassays is crucial for the success of hazard 

assessment (Fig. 1.9). In many cases toxicity evaluation has been exclusively based on 

single-species tests, which are performed using a select species according to 

international standard protocols produced by the Organisation for Economic 

Cooperation and Development (OECD) and the International Organisation for 

Standardisation (ISO) (Dantas et al., 2007, Li et al., 2008, Dantas et al., 2008, Beltrán et 

al., 2008, Khan et al., 2010 and El Najjar et al., 2013). Nevertheless, due to the different 

compounds that might be present in any complex water sample a battery of 

complementary standardized biotests that cover different molecular receptors, 

physiological pathways, organism groups and levels of biological complexity might be 

the best option for any hazard assessment (Escher and Fenner, 2011). Moreover, the 

selected bioassays should represent the main organism groups presented in the system 

whose aim is protect it. For instance, a biotest battery could be composed by a 

bacterium (Pseudomonas putida), a protozoan (Tetrahymena thermophila), an alga 

(Pseudokirchneriella subcapitata), a crustacean (Daphnia magna) and a fish (Danio 

rerio), which allows for the combination of prokaryotes and eukaryotes as well as 

representing different functional groups present in the freshwater ecosystem. 

Single-species tests are fast, simple to perform, cost-effective and reliable. 

However, they have significant shortcomings such as not taking into account the 

interaction among species, and they often use genetically homogeneous populations of 

standard species that are not indigenous to the receiving water body and the tests are 

often conducted under experimental conditions very different from the receiving water 
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body of concern. Just as in the case of risk assessment of emerging pollutants, 

ecotoxicological assessment of treated wastewater should also be completed using 

indigenous communities that are present in the receiving water body, in order to 

provide a more realistic indication of the toxic effects of ozonated wastewater on 

exposed biological systems (Selivanovskaya et al., 2004 and Proia et al., 2013). 

 

Fig. 1.9 Overview of possible bioassays used in aquatic toxicity assessment of ozone treated wastewater, 
whose recipient water body is an activated sludge tank of an STP or the freshwater environment. Inset 
plot: Simplified aquatic food chain consisting of primary producers (various species of algae), herbivores 
(daphnids), carnivores (fish) and decomposers (bacteria and fungi). 
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1.2. Aims and outline 

The overarching aim of the present study was to assess the potential 

environmental risks of emerging substances as well as to evaluate the alternatives for 

applying ozonation for upgrading conventional STPs in order to minimize the discharge 

of these micropollutants to the receiving water bodies. While screening for hundreds of 

emerging substances was worthwhile and relevant in the context of this study, it would 

generally be too costly for monitoring purposes. Based on consumption data, occurrence 

in wastewaters and the aquatic environment and their inherent antimicrobial 

properties, two groups of emerging substances were selected for integration into future 

assessment efforts: personal care product preservatives and antibiotics. The main aim 

involved the following specific objectives: 

1. To evaluate the aquatic toxicity of emerging substances towards single species 

and indigenous biological communities of the aquatic compartments. 

2. To assess the potential risk of emerging substances to the process performance 

of activated sludge and to the surface water ecosystem, and to identify the risk 

drivers of the mixture. 

3. To study the efficiency of continuous ozonation in removing the risk drivers’ 

emerging pollutants, evaluating water matrix effects in synthetic and real 

wastewater and determining the optimum ozone dose. 

4. To elucidate the transformation products that result from continuous ozonation 

in order to propose any possible degradation pathways of the risk-drivers’ 

emerging pollutants. 

5. To study the efficiency of continuous catalytic ozonation in the increasing the 

mineralization of emerging pollutants, evaluating water matrix effects in 

synthetic and real wastewater as well as determining the optimum ozone and 

catalyst dose. 

6. To assess the aquatic toxicity of ozone treated wastewater on single species and 

biological communities using indigenous microorganisms of the aquatic 

compartments. 
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These objectives are further developed through chapters 2–7, each of which 

corresponds to a self-standing unit organized in two parts according to the two studied 

groups of emerging substances (personal care product preservatives and antibiotics) and 

the potential points for applying ozonation in a conventional STP (pre-treatment stage 

or polishing step of activated sludge process) in order to minimize their release into the 

aquatic environment (Fig. 1.10). These chapters match with papers published or 

submitted to peer-reviewed journals prior to PhD. defense. 

 

Fig. 1.10 The outline of the current study, which represents the self-standing units around emerging 
pollutants and the potential points for applying ozonation in a conventional STP to their degradation. 
Part I: personal care product preservatives and pre-treatment stage of activated sludge process (chapter 2 
and 3); Part II: antibiotics and polishing step of activated sludge process (chapter 4–7). 
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A brief description of the following chapters is presented: 

Chapter 2 – Personal care product preservatives: Risk assessment and mixture 

toxicities with an industrial wastewater (Water Research 72 (2015) 174–185) – studies 

the aquatic toxicity of eight frequently used preservatives (iodopropynyl 

butylcarbamate, bronopol, diazolidinyl urea, benzalkonium chloride, zinc pyrithione, 

propylparaben, triclosan and a mixture of methylchloroisothiazolinone and 

methylisothiazolinone) using two levels of biological complexity: a biotest battery 

composed of single-species test of bacteria (V. fischeri and P. putida) and protozoan (T. 

thermophila), and a whole biological community assay using activated sludge 

microorganisms. On the basis of this toxicity data it is then assessed whether the tested 

preservatives might pose a risk to activated sludge process, and furthermore the nature 

of interactions between the preservatives and a complex industrial wastewater using CA 

or IA concept is studied. 

Chapter 3 – Ozonation as pre-treatment of activated sludge process of a 

wastewater containing benzalkonium chloride and NiO nanoparticles (accepted in 

Chemical Engineering Journal) – describes the ozonation of benzalkonium chloride and 

NiO nanoparticles in a synthetic water matrix and an STP influent. It includes the 

identification of transformation products and the degradation pathways of 

benzalkonium chloride. Toxicity assessment of treated wastewater are performed with a 

battery of bioassay composed of single-species tests of bacteria (V. fischeri and P. 

putida) and protozoan (T. thermophila), and an activated sludge assay. 

Chapter 4 – Toxicity and environmental risk of antibiotics from STP effluents for 

limnic periphytic bacterial communities (submitted to Environmental Pollution) –

 assesses the chronic toxicities of six antibiotics (doxycycline, erythromycin, 

metronidazole, ofloxacin, sulfamethoxazole and trimethoprim) on natural bacterial 

communities. The joint toxicities of the six antibiotics, mixed in proportion to their 

occurrence in the effluents from two European STPs (Ryaverket STP, Sweden; West-

Alcalá, Spain), are studied in order to determine whether the wastewater effluents 

might impact on the receiving freshwater ecosystem. On basis of toxicity data, it is then 
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assessed whether the single antibiotics and their mixture might pose a risk to the 

aquatic ecosystems, and finally identifies the major driver of the mixture toxicity. 

Chapter 5 – Continuous ozonation treatment of ofloxacin: Transformation 

products, water matrix effect and aquatic toxicity (Journal of Hazardous Materials 292 

(2015) 34–43) – describes the removal of ofloxacin in a synthetic water matrix and an 

STP effluent. It includes the identification of the transformation products and 

degradation pathways of ofloxacin, and an aquatic toxicity assessment of ozone treated 

wastewater is carried out with two antibiotic target- (V. fischeri and P. putida) and two 

antibiotic non-target-organisms(T. thermophila and P. subcapitata). 

Chapter 6 – Comparative toxicity assessment of an ozonated antibiotic mixture 

using single species and natural biofilm communities (submitted to Science of the Total 

Environment) – studies the removal of a mixture of six antibiotics in an STP effluent. A 

study of the aquatic toxicity of ozonated wastewater is performed using two levels of 

biological complexity: single-species tests (P. putida and P. subcapitata) and natural 

biofilm community assay, in which are assessed the effects on heterotrophic and 

phototrophic part of the limnic periphyton. The predictive power of a component-based 

approach, primarily based on the CA concept, is also studied with the aim of providing 

reliable estimates of the aquatic toxicity of treated STP effluents. 

Chapter 7 – Influence of water matrix on copper-catalysed continuous ozonation 

and related ecotoxicity (Applied Catalysis B: Environmental 163 (2015) 233–240) –

 explores the effect of the water matrix using synthetic water and STP effluent on the 

non-catalytic and copper-catalysed continuous ozonation of a mixture of reaction 

intermediates and ozone-refractory compounds: formic, acetic, oxalic and maleic acids. 

The aquatic toxicity of treated wastewater is carried out using a biotest battery 

composed of single species of bacteria (V. fischeri and P. putida), protozoan (T. 

thermophila), alga (P. subcapitata) and crustacean (D. magna). 

In Chapter 8, the general conclusions and outlooks are presented. 
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PERSONAL CARE PRODUCT PRESERVATIVES: RISK ASSESSMENT 

AND MIXTURE TOXICITIES WITH AN INDUSTRIAL WASTEWATER 

 

Abstract 

The aquatic toxicity of eight preservatives frequently used in personal care 

products (PCPs) (iodopropynyl butylcarbamate, bronopol, diazolidinyl urea, 

benzalkonium chloride, zinc pyrithione, propylparaben, triclosan and a mixture of 

methylchloroisothiazolinone and methylisothiazolinone) was assessed by means of two 

different approaches: a battery of bioassays composed of single-species tests of bacteria 

(Vibrio fischeri and Pseudomonas putida) and protozoa (Tetrahymena thermophila), and 

a whole biological community resazurin-based assay using activated sludge. The tested 

preservatives showed considerable toxicity in the studied bioassays, but with a marked 

difference in potency. In fact, all biocides except propylparaben and diazolidinyl urea 

had 𝐸𝐶50 values lower than 1 mg·L−1 in at least one assay. Risk quotients for zinc 

pyrithione, benzalkonium chloride, iodopropynyl butylcarbamate and triclosan as well as 

the mixture of the studied preservatives exceeded 1, indicating a potential risk for the 

process performance and efficiency of municipal sewage treatment plants. These four 

single biocides explained more than 95% of the preservative mixture risk in all bioassays. 

Each individual preservative was also tested in combination with an industrial 

wastewater (IWW) from a cosmetics manufacturing facility. The toxicity assessment was 

performed on binary mixtures (preservative+IWW) and carried out using the median-

effect principle, which is a special case of the concept of Concentration Addition (CA). 

Almost 70% of all experiments resulted in 𝐸𝐶50 values within a factor of 2 of the values 

predicted by the median-effect principle (CI values between 0.5 and 2). The rest of the 

mixtures whose toxicity was mispredicted by CA were assessed with the alternative 

concept of Independent Action (IA), which showed higher predictive power for the 

biological community assay. Therefore, the concept used to accurately predict the 

toxicity of mixtures of a preservative with a complex industrial wastewater depends on 

degree of biological complexity.  
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1. Introduction 

The activated sludge process is widely used in sewage treatment plants (STPs), 

based on the development of a heterogeneous community composed of bacteria, 

protozoa, fungi and rotifers in an aeration tank. The activity and population of these 

organisms are crucial for proper system operation, and the presence of toxic substances 

in the influent may result in the depletion of the biomass activity and a lower 

performance of the STP (Dalzell et al., 2002 and Ricco et al., 2004). 

STPs often receive industrial wastewater discharges, which are partially treated 

or even untreated. In fact, the failure of the effective operation of sewage works is 

usually attributed to the presence of certain pollutants of industrial origin that are toxic 

to the activated sludge organisms (Soupilas et al., 2008). Therefore, the continuous 

monitoring of potential toxic influent is essential in order to ensure effluent quality, 

reduce operating costs and increase reliability. Conventional chemical analyses have 

been found inadequate to ensure that the influent is not negatively influencing STP 

performance (Soupilas et al., 2008). The use of bioassays provides a holistic approach 

that allows the toxicity assessment of all components in any given complex mixture. The 

evaluation of industrial effluent toxicity should include a battery of bioassays composed 

of representative species of different trophic levels present in the activated sludge. 

However, although single-species tests are fast, simple to perform, cost-effective and 

reliable, they have significant shortcomings such as not taking into account the 

interaction among species, the use of species that are not indigenous to the activated 

sludge with genetically homogeneous populations and the fact that tests are usually 

conducted under experimental conditions very different from an aeration tank 

(Selivanovskaya et al., 2004). Thus, toxicity assessment should be monitored using 

indigenous microbial population from an activated sludge process under conditions of 

forced aeration in order to provide a more accurate indication on the effects of STP 

influents on biological systems. These effects can be followed by changes in metabolic 

activity of the activated sludge population using a resazurin-based assay, which has been 

shown to be a reliable and cost-effective manner to monitor the performance of STP 

(McNicholl et al., 2007). 
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An industrial sector of special concern for STP management is the cosmetics 

industry, which generates wastewater with an elevated concentration of biocides 

including many preservatives used in cosmetic formulations to avoid the development of 

microorganisms in the final product (Chapman, 2003 and Russell, 2003). As a 

consequence of their biological activity, preservatives are of particular interest as they 

can potentially affect and harm activated sludge biomass. In addition to industrial 

wastewater, the regular usage of pharmaceuticals and personal care products (PPCPs) 

also contributes to the discharge of large quantities of unalterated preservatives (Ternes 

et al., 2004). Preservatives have been detected in concentrations of up to mg·L−1 and 

μg·L−1 in industrial effluents and STP influents, respectively (Kümmerer et al., 1997, 

Woldegiorgis et al., 2007, Norstrom et al., 2008, Kasprzyk-Hordern et al., 2009, Kumar et 

al., 2010 and Poberznik et al., 2011). However, in comparison with other PPCPs such as 

antibiotics, relatively little is known about occurrence and toxicity of preservatives 

(Brausch and Rand, 2011). Even less attention has been paid to their risk towards 

microorganisms on activated sludge, which determines whether a particular 

preservative or mixture has the potential to cause harmful effects in order to protect the 

process performance and efficiency of an STP (van Leeuwen and Vermeire, 2007). 

The co-occurrence of preservatives with other components of industrial 

wastewater is another case for concern due to the potential interactive effects, such as 

synergistic or antagonistic toxicity, that may occur from complex mixtures (Kolpin et al., 

2002) in the STP influents. Therefore, it is essential to study the interactions of a 

preservative with industrial wastewater in order to determine the hazard that 

preservative spillage in cosmetics industry effluents could cause on activated sludge 

microorganisms. Since it would be an endless task to experimentally determine the 

toxicity of all relevant mixtures, predictive approaches based on the mathematical 

concepts of Concentration Addition (CA) and Independent Action (IA) have been 

proposed (Backhaus et al., 2003, Altenburger et al., 2004 and Kortenkamp et al., 2009). 

Both predict the toxicity of a mixture based on the individual toxicity of the mixture 

components. Several reviews have shown that CA provides a reliable and frequently 
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used tool for predicting and assessing the ecotoxicity of multi-component mixtures 

(Belden et al., 2007, Kortenkamp et al., 2009 and Coors and Frische, 2011). 

The study aims to assess the aquatic toxicities of eight preservatives using two 

different approaches: a battery of bioassays composed of single-species tests of bacteria 

(Vibrio fischeri and Pseudomonas putida) and protozoa (Tetrahymena thermophila), and 

a whole biological community assay from activated sludge process. On the basis of 

toxicity data, it is then assessed whether the tested preservatives might pose a risk to 

activated sludge process, and the nature of interactions between the preservatives and 

a complex industrial wastewater using CA or IA concept is studied. 

 

2. Materials and methods 

2.1. Preservatives 

The preservatives used in this study belong to different classes and were selected 

based on their potential aquatic toxicity, their volume of consumption and their 

occurrence in STP influents (Table 2.1). The following eight compounds were selected: 

iodopropynyl butylcarbamate (IPBC), bronopol (BNP), diazolidinyl urea (DIU), zinc 

pyrithione (ZPT), propylparaben (PPB) and triclosan (TCS) purchased from Sigma-Aldrich; 

benzalkonium chloride (BAC) purchased from Fluka, and a technical mixture of 

methylchloroisothiazolinone and methylisothiazolinone (CMI/MI) from Dow Chemical. 

The purity was IPBC ≥97%, BNP ≥98%, DIU ≥95%, TCS >97%, PPB ≥99%, ZPT ∼95%, BAC 

≥95% (consisting of homologues of different alkyl chain lengths, mainly C12 60% and C14 

40%), and CMI/MI 1.5%, which are the active ingredients of a commercial biocide 

Kathon™ CG (CMI 1.15%, MI 0.35%, magnesium salts 23% and water to 100%). 

The selected preservatives have mechanisms of action belong to the two broad 

categories proposed by Chapman (2003). IPBC, CMI/MI, BNP and DIU are electrophilic 

agents. These biocides react covalently with cellular nucleophiles to inactivate enzymes 

and there is evidence that they initiate the formation of intracellular free radicals which 

contribute  to  their  lethal  action.  BAC,  PPB  and  ZPT  are  membrane  active  preservatives.   
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BAC is a lytic agent that destabilizes membranes leading to rapid cell lysis, whereas PPB 

and ZPT are protonophore causing leakage of intracellular constituents. TCS is also 

membrane-active, but studies have also indicated that its growth-inhibitory properties 

against bacteria arise from its blocking lipid biosynthesis by specially inhibiting NADH-

dependent enoyl-acyl carrier protein reductase, FabI (Russell, 2003). Unlike antibiotics, 

preservatives as biocides are multi-targeted antimicrobial agents. Several of the 

damaging effects reported to occur in the most widely studied organisms, bacteria, may 

also take place to varying degrees in other organisms. Nevertheless, there is 

considerable variation in the response of different microorganisms to biocides (Russell, 

2003). 

The stock solutions and the dilution series of each preservative were freshly 

prepared in ultrapure water obtained from a Millipore Milli-Q with a resistivity of at 

least 18 MΩ·cm at 25ºC. The stability of preservatives under bioassay conditions was 

examined at the beginning and at the end of the exposure time according to OECD 

Guidance (OECD, 2008). The concentrations of CMI/MI, PPB, IPBC, TCS, BAC and ZPT 

remained 80–120% of nominal, therefore, the effect concentrations was expressed 

relative to nominal concentrations in accordance with OECD Guidance. The 

concentrations of DIU and BNP did not remain within 80–120% of nominal as a result of 

their highly instability in aqueous solutions, which together with their low 

biodegradability have been previously reported (Madsen et al., 2001 and ECHA, 2014). 

However, the toxicity of their degradation by-products has been shown to be 

comparable or higher than that of their parent compounds (Madsen et al., 2001 and Cui 

et al., 2011) consequently, nominal concentrations were used in these cases as well. 

 

2.2. Industrial wastewater 

Wastewater was obtained from a cosmetics manufacturing facility located in 

Madrid (Spain) before further treatments. The physico-chemical characteristics of 

untreated IWW are shown in Table 2.2. Analytical determinations were carried out using 

standard methods (APHA et al., 1998). Trace metal concentrations were determined by 

Agilent 7700x ICP-MS. Industrial effluent samples gave high values for COD, total 
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surfactants, total phenols and low for BOD5/COD, indicating that IWW was largely 

loaded by non-biodegradable organic matter. Low concentration of AOX and heavy 

metals, which Zn represents near 95%, were detected. Wastewater samples were 

filtered using 0.45 μm glass-fibre filters and their pH adjusted to 7.0 ± 0.2 before 

conducting toxicity bioassays. 

Table 2.2 Main physico-chemical parameters of the cosmetics industry wastewater. 
pH 4.1  Total surfactants (mg·L−1) 288 
Conductivity (µS·cm−1) 1473 Anionic surfactants (mg·L−1) 179 
TSS (mg·L−1) 167 Cationic surfactants (mg·L−1) 0.32 
COD (mg·L−1) 21 280 Non-ionic surfactants (mg·L−1) 109 
BOD5 (mg·L−1) 77 AOX (mg Cl·L−1) 0.26 
Chloride (mg·L−1) 206 Total phenols (mg·L−1) 13.6 
Fluoride (mg·L−1) ND Arsenic (µg·L−1) 7.93 
Sulphate (mg·L−1) 39.8 Cadmium (µg·L−1) 0.30 
Sulfide (mg·L−1) 0.37 Chromium (µg·L−1) 7.62 
Sodium (mg·L−1) 359 Nickel (µg·L−1) 14.5 
Potassium (mg·L−1) 19.3 Mercury (µg·L−1) 0.16 
Magnesium (mg·L−1) 9.0 Lead (µg·L−1) 14.1 
Calcium (mg·L−1) 66.5 Selenium (µg·L−1) 0.71 
Total phosphorous (mg P·L−1) 4.89 Copper (µg·L−1) 16.8 
Total nitrogen (mg N·L−1) 26.4 Zinc (µg·L−1) 841 
 

ND: not detected 

 

2.3. Procedures for aquatic toxicity tests 

The aquatic toxicities of the aforementioned compounds were assessed using a 

battery of bioassays composed of single-species tests of the two main groups present in 

the activated sludge, namely the bacteria V. fischeri and P. putida and the protozoa T. 

thermophila, as well as an activated sludge biological community assay. 

V. fischeri acute test measures the decrease in bioluminescence induced in cell 

metabolism. The bioassay was carried out according to ISO 11348-3 standard protocol 

(ISO, 2007) using the BioFix®Lumi test (V. fischeri, NRRL-B 11177 from Macherey-Nagel, 

Germany). The test was carried out in 96-well white polypropylene microplate. 100 μL of 

test solution (2% w/v NaCl and pH 7.0 ± 0.5) was transferred into each well, which was 

supplemented with 100 μL of bacterial suspension. Light was measured at 15 ± 1ºC after 

30 min by means of a Fluoroskan Ascent FL microplate luminometer (Thermo Scientific). 
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P. putida test determines the inhibitory effect of a substance on the bacteria (P. putida, 

NCIB 9494 from CECT, Spain) by means of cell growth inhibition. The bioassay was 

performed according to ISO 10712 guideline (ISO, 1995). Bacterial cultures were 

exposed to test solutions at 23 ± 1ºC for 16 h in glass incubation vials which were 

constantly shaken in darkness. The cell growth was determined by optical density 

(λ 600 nm) in 96-well clear microplate (200 μL test suspension per well) using a Rayto 

RT-2100C microplate reader. Growth inhibition assay with the ciliate protozoan T. 

thermophila was performed according to the Standard Operational Procedure Guideline 

of Protoxkit F™ (1998). The test is based on the turnover of substrate into ciliate 

biomass. Substrate was purchased from MicroBioTest Inc. (Belgium) whereas T. 

thermophila (SB 210) was kindly supplied by D. Cassidy-Hanley (Tetrahymena Stock 

Center, Cornell University, USA). Ciliates were incubated with water samples and food 

suspension in test vessels at 30 ± 1ºC for 24 h in darkness. Growth inhibition was 

determined on the basis of turbidity changes (OD at λ 440 nm). ZnSO4·7H2O for V. 

fischeri (𝐸𝐶50 between 17 and 22 mg·L−1), 3,5-dichlorophenol for P. putida (𝐸𝐶50 

between 10 and 30 mg·L−1) and K2Cr2O7 for T. thermophila (𝐸𝐶50 between 15 and 

24 mg·L−1) were used as reference substances in order to check each test procedure. 

Activated sludge bioassay was carried out by evaluating the effect of water 

samples on activated sludge metabolic activity using the resazurin (7-hydroxy-3H-

phenoxazin-3-one-10-oxide) method under the experimental conditions described in 

OECD Method 209 (OECD, 2010). Briefly, resazurin, blue and non-fluorescent in its 

oxidized stated, is reduced by metabolically active microorganisms to a pink fluorescent 

derivative (resorufin) by means of a dehydrogenase enzyme (McNicholl et al., 2007). 

Fresh activated sludge was collected from the aeration tank of an STP located in 

Guadalajara (Spain). Activated sludge was characterized by determining physico-

chemical parameters (Table 2.3). Inoculum (3.0 g·L−1 of MLSS) supplemented with 

synthetic sewage feed was exposed to tested water samples at 20 ± 2ºC for 3 h in glass 

vials which were constantly shaken (200 rpm) in darkness under conditions of forced 

aeration (0.5–1.0 L·min−1) (OECD, 2010). After exposure, biomass metabolic activity was 

measured in 96-well black polypropylene microplate by adding 200 μL test suspension 
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and 20 μL of resazurin (100 mg·L−1) to each well. Resazurin reduction was measured 

after 20 min incubation using a Fluoroskan Ascent FL microplate fluorometer (Excitation 

542 nm, Emission 592 nm). The suitability of each batch of activated sludge biomass was 

determined using CuSO4·5H2O as reference substance (𝐸𝐶50 between 15 and 35 mg·L−1). 

Table 2.3 MLSS of sludge matrix used in 
resazurin-based activated sludge test. 

TSS (mg·L−1) 6 590 
VSS (mg·L−1) 4 710 
VSS/TSS 0.71 
V30 (mL·L−1) 795 
SVI (mL·g−1) 119 
pH 8.27 

 

2.4. Experimental design 

Solutions of preservatives were tested singly and in binary mixtures with the 

industrial wastewater (preservative+IWW). The compounds were mixed relative to their 

potency (according to their 𝐸𝐶50 values). Five to seven dilutions of each toxicant and 

combination, control and a reference substance were tested in three independent 

experiments with duplicate samples as described elsewhere (Rodea-Palomares et al., 

2010). 

 

2.5. Data treatment for determining individual and mixture toxicities 

The description of the concentration-response curve for each substance and 

mixtures were estimated using the median-effect equation based on the mass-action 

law (Chou and Talalay, 1984): 

𝑓𝑎
𝑓𝑢

= �
𝐷
𝐷𝑚

�
𝑚

 (2.1) 

 

where 𝐷 is the dose [concentration], 𝐷𝑚 is the dose [concentration] for 50% (𝐸𝐶50), 𝑓𝑎 is 

the fraction affected by dose [concentration] 𝐷 (e.g., 0.75 if growth is inhibited by 75%), 

𝑓𝑢 is the fraction unaffected (i.e., 𝑓𝑢 = 1 − 𝑓𝑎) and 𝑚 is the coefficient of the 
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sigmoidicity of the concentration-response curve: 𝑚 = 1, >1, and <1 indicate hyperbolic, 

sigmoidal and flat sigmoidal concentration-response curve, respectively (Chou, 2006). 

Therefore, the method takes into account both potency (𝐷𝑚) and shape (𝑚) parameters. 

Eq. (2.1) may be rearranged as follows: 

𝐷 = 𝐷𝑚 �
𝑓𝑎

1 − 𝑓𝑎
�
1 𝑚�

 (2.2) 

 

The 𝐷𝑚  and 𝑚 values for each individual compound or mixture were determined 

by the median-effect plot: 𝑥 = log (𝐷) versus 𝑦 = log (𝑓𝑎/𝑓𝑢) which is based on the 

logarithmic form of Eq. (2.1). In the median-effect plot, 𝑚 is the slope and 𝐷𝑚 =

10−(𝑦−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)/𝑚. The conformity of the data to the median-effect principle can be 

readily assessed by the linear correlation coefficient (𝑟) of the fitting to Eq. (2.2) (Chou, 

2006). 

These parameters were then used to calculate doses [concentrations] of 

individual compounds and their mixtures required to produce various effect levels 

according to Eq. (2.1). For each effect levels, Combination Index (CI) values were then 

calculated according to the general Combination Index equation for 𝑛-chemical 

combination at 𝑥% inhibition (Chou, 2006): 

(𝐶𝐼) 
𝑛

𝑥 = �
(𝐷)𝑗
(𝐷𝑥)𝑗

𝑛

𝑗=1

= �
(𝐷𝑥)1−𝑛 �

[𝐷]𝑗
∑ [𝐷]𝑛
1

�

(𝐷𝑚)𝑗 �
(𝑓𝑎𝑥)𝑗

[1 − (𝑓𝑎𝑥)𝑗]�
1
𝑚𝑗

𝑛

𝑗=1

 (2.3) 

 

where (𝐶𝐼) 
𝑛

𝑥 is the Combination Index for 𝑛 chemicals at 𝑥% inhibition (e.g., growth 

inhibition); (𝐷𝑥)1−𝑛 is the sum of the dose [concentration] of 𝑛 chemicals that exerts 𝑥% 

inhibition in combination, {[𝐷𝑗] ⁄ ∑ [𝐷]𝑛
1 } is the proportionality of the dose 

[concentration] of each 𝑛 chemicals that exerts 𝑥% inhibition in combination, and 

(𝐷𝑗){(𝑓𝑎𝑥)𝑗 ⁄ [1 − (𝑓𝑎𝑥)𝑗]}1 𝑚𝑗⁄ . 
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Combination Index is a special case of the more general concept of 

Concentration Addition (CA) (Backhaus, 2014), which is based on the assumption that all 

components in the mixture behave as if they are simple dilutions of one another, which 

is often taken to mean that CA describes the joint action of compounds with an identical 

mechanism of action (Kortenkamp et al., 2009). For a mixture of 𝑛 components, the CA 

concept can be mathematically expressed as: 

�
𝑐𝑖
𝐸𝐶𝑥𝑖

= 1
𝑛

𝑖=1

 (2.4) 

 

where 𝑐𝑖 denotes the concentration of compound 𝑖 in a mixture that is expected to 

cause 𝑥% effect, and 𝐸𝐶𝑥𝑖  gives the concentration at which the compound 𝑖 alone 

causes the same 𝑥% effect. If a mixture is accurately predicted by CA then the sum of 

fraction 𝑐𝑖/𝐸𝐶𝑥𝑖  equals 1, in the same way as in Combination Index CI = 1. Thus, two-fold 

deviation was applied as a threshold to denote compliance between the observed and 

the predicted mixture toxicity by median-effect principle (i.e., CI values between 0.5 and 

2). Toxicity mixtures mispredicted by CA (i.e., CI values out of range 0.5–2) were 

assessed with the alternative concept of Independent Action (IA). 

IA assumes that the resulting combined effect can be calculated from the effects 

caused by the individual mixture components, which is often taken to mean that IA 

describes the joint action of compounds with a dissimilar mechanism of action 

(Kortenkamp et al., 2009). The expected mixture effect can hence be calculated 

according to the joint probability of statistically independent events as: 

𝐸(𝑐𝑚𝑖𝑥) = 1 −�[1 − 𝐸(𝑐𝑖)]
𝑛

𝑖=1

 (2.5) 

 

where 𝐸(𝑐𝑚𝑖𝑥) is the total expected effect of the mixture, 𝑛 is the number of mixture 

components and 𝐸(𝑐𝑖) is the effect that the 𝑖th component would cause if applied singly 

in concentration 𝑐𝑖. 
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2.6. Risk assessment 

In order to estimate and assess the potential risk that preservatives could cause 

on activated sludge microorganisms, risk quotients (RQs) for microbial activity in 

municipal STP are calculated for the worst case scenario, the maximum preservative 

concentrations measured in STP influents. 

The toxic units (TUs, 𝐸𝑛𝑣𝐶𝑜𝑛𝑐/𝐸𝐶50) of single preservatives were first calculated 

for each bioassay. Multiplying TUs by the assessment factor (AF), 10 for single-species 

tests (highly relevant P. putida and T. thermophila, and with limited relevance for STP 

process V. fischeri) and 100 for the activated sludge bioassay (ECHA, 2008), were 

calculated RQ for each single preservative. On this basis, the expected joint risk of the 

preservative mixture is then estimated using the strategy for the compound-based risk 

assessment of chemical mixtures (Backhaus and Faust, 2012), which is primarily based 

on the mixture toxicity concept of CA. In fact, the sum of toxic units (STU) was calculated 

in a first step for each bioassay. The final RQ for the mixture then equals the STU of the 

most sensitive bioassay (single-species and activated sludge tests) multiplied by the 

corresponding AF (ECHA, 2008). RQ higher than 1 suggests that preservative risk would 

be inadequately controlled for the microorganisms present in an STP. 

The application of CA to the preservative mixtures violates a main assumption: 

similar mode or mechanism of action. Hence, the maximum error that occurs by ignoring 

IA can be estimated as follows (Junghans et al., 2006): 

𝐸𝐶50𝐼𝐴

𝐸𝐶50𝐶𝐴
≤

∑ 𝑐𝑖
𝐸𝐶50𝑖

𝑛
𝑖=1

𝑚𝑎𝑥
𝑖 ∈ (1 …𝑛) �

𝑐𝑖
𝐸𝐶50𝑖

�
 (2.6) 

 

Under these circumstances a maximum possible ratio by which CA may predict a 

higher mixture toxicity than IA equals the number of mixture components (𝑛) (Faust, 

1999). Given the uncertainty of the hazard and exposure estimates of the individual 

preservatives, a possible maximum error of less than 2 might be considered acceptable 

(Backhaus and Karlsson, 2014). 
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3. Results and discussion 

3.1. Toxicity of single preservatives 

All tested preservatives showed considerable toxicity in the studied bioassays, 

but with a marked difference in potency. Table 2.4 provides 𝐸𝐶50 values together with 

the shape parameter 𝑚 used for curve fitting to the observed data by means of the 

median-effect equation. Linear regression correlation coefficients of the median-effect 

plot were >0.95 in all cases (data not shown), indicating the agreement of the 

experimental data with the mass-action law. In order to show the quality of both 

observed data and curve fitting, concentration-response curves for preservatives in the 

studied bioassays are represented in Fig. 2.1. 

The single-species tests were highly sensitive to selected preservatives without 

significant differences to previously published data (Table 2.5). All biocides, except PPB 

and DIU, displayed 𝐸𝐶50 values lower than 1 mg·L−1 in at least one assay. This fact is in 

line with their classification as hazardous to the aquatic environment according to 

Regulation (EC) No. 1272/2008, which harmonises the provisions and criteria for the 

classification and labelling of substances, mixtures and certain specific articles within the 

European Union (EU Parliament and the Council, 2008). In fact, IPBC, CMI/MI, BNP, BAC, 

ZPT and TCS have already been classified into the acute aquatic hazard category as very 

toxic to aquatic life (𝐻400, 𝐸𝐶50 ≤1 mg·L−1 for algae, crustacean or fish), while the 

toxicities of DIU and PPB are characterized as conclusive but not sufficient for 

classification (ECHA, 2014). It should be noticed that ZPT and CMI/MI were the most 

toxic studied preservatives, showing 𝐸𝐶50 values <1 mg·L−1 for the three organisms. The 

data also indicated the relative non-sensitivity of P. putida to preservatives that present 

a phenol moiety: TCS and PPB. High-level intrinsic resistance to TCS and PPB of 

Pseudomonas due to use degradative enzymes has been previously shown by Russell 

(1991) and Schweizer (2001), in agreement with the results presented in this study. 

In general, the same toxicity pattern displayed in single-species tests was 

observed in the activated sludge assay. ZPT, CMI/MI and BAC are powerful biocides as 

demonstrated  by  their  𝐸𝐶50  values  lower  than  4 mg·L−1,  whereas  low  toxicity  values   
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Fig. 2.1 Concentration-response curves of studied preservatives for the bioassays: V. fischeri (●), P. putida 
(■), T. thermophila (▲) and activated sludge test (◊) (mean ± 95% confidence interval). Solid lines give the 
median-effect equation fit. 
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were found for DIU and PPB. It is worth mentioning that the aquatic toxicity of 

preservatives for activated sludge based on oxygen consumption showed 𝐸𝐶50 values in 

line or slightly higher than those obtained in this study despite the different endpoint 

used (Table 2.5). When comparing the toxicity of studied preservatives in biological 

community assay with single-species tests, it becomes evident that the compounds 

show a comparatively lower toxicity towards activated sludge. The higher tolerance 

observed  should  be  expected,  considering  the  heterogeneity  and  more  variable  growth  

Table 2.5 Aquatic toxicity from previously published studies on the selected preservatives to the studied 
bioassays. 
 

Preservative 
 

Bioassay 𝐸𝐶50 (mg·L−1) 
 

Reference 

IPBC Vibrio fischeri 8.5 Zhou et al., 2006 

 Pseudomonas putida 91 ECHA, 2014 

 Activated sludge 44 ECHA, 2014 

CMI/MI Vibrio fischeri 0.072 Williams and Jacobson, 1999 

BNP Vibrio fischeri 19.2 Cui et al., 2011 

 Pseudomonas putida 2.33 ECHA, 2014 

 Activated sludge 43 ECHA, 2014 

DIU Activated sludge 567 ECHA, 2014 

BAC Vibrio fischeri 0.5 Sütterlin et al., 2008 

 Vibrio fischeri 0.24–0.42 Nalecz-Jawecki et al., 2003 

 Vibrio fischeri 0.14–0.27 Tezel, 2009 

 Pseudomonas putida 6.0 Sütterlin et al., 2008 

 Tetrahymena thermophila 4.37–5.30 Nalecz-Jawecki et al., 2003 

 Tetrahymena thermophila 2.94 Kreuzinger et al., 2008 

 Activated sludge 7.75 ECHA, 2014 

 Activated sludge 10 Kümmerer et al., 2004 

 Activated sludge 22 Zhang et al., 2011 

ZPT Vibrio fischeri 0.08 Zhou et al., 2006 

 Pseudomonas putida 0.22 ECHA, 2014 

 Activated sludge 1.84 ECHA, 2014 

 Activated sludge 2.4 ECHA, 2014 

PPB Vibrio fischeri 0.26 Terasaki et al., 2008 

 Vibrio fischeri 2.6 Bazin et al., 2010 

 Pseudomonas ATCC 9027 >180 Eklund, 1980 

 Tetrahymena thermophila 9.7 Bazin et al., 2010 

TCS Vibrio fischeri 0.22 Farré et al., 2008 

 Vibrio fischeri 0.28 Stasinakis et al., 2008 

 Tetrahymena pyriformis 0.58 Rudzok et al., 2011 

 Activated sludge 20 Orvos et al., 2002 
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environment of the microorganisms used (Ricco et al., 2004), as well as the numerous 

mechanisms of resistance to biocides of activated sludge biomass as consequence of floc 

structure (Russell, 2003 and Henriques and Love, 2007). The V. fischeri test was the most 

sensitive bioassay to the studied preservatives in line with previously published results 

from other authors (Dalzell et al., 2002 and Ricco et al., 2004). Nevertheless, the use of 

the V. fischeri test alone to assess effluent discharges to the sewer may lead to an 

overestimation of the toxicity effects on the biomass operating in the STP. 

 

3.2. Preservative risk assessment 

First, the potential risk for activated sludge microorganisms from the individual 

preservatives assuming a worst case scenario for a municipal STP is briefly assessed. 

Table 2.6 shows the maximum preservative concentrations detected in STP influents, 

the toxic units (TUs) calculated from toxicity data for the set of four bioassays (Table 2.4) 

and the risk quotients (RQs). RQs were calculated for each single preservative using the 

TUs and the corresponding assessment factor (10 for single-species tests and 100 for 

activated sludge bioassay according to ECHA, 2008). IPBC, BAC, ZPT and TCS exceed the 

threshold value of 1 for the protection of the activated sludge process. In all cases, RQs 

were based on toxicity data from the most sensitive bioassays: V. fischeri and T. 

thermophila. However, it is worth pointing out that the V. fischeri test has a limited 

relevance for the risk assessment of STP microorganisms (ECHA, 2008). 

The data show that ZPT seems to be a risky preservative for both bacteria and 

ciliate protozoa (RQ >1 in all single-species tests), while IPBC, BAC and TCS might 

suppose a specific risk for one microorganism. Current published literature for STP 

influent concentrations is fairly extensive for some preservatives (i.e., TCS, PPB and BAC) 

but relatively little information is available for others (e.g., ZPT, IPBC, BNP, DIU) (Brausch 

and Rand, 2011). This fact constrains the calculation of their potential risk for activated 

sludge organisms as risk does not exist if exposure to a harmful substance or situation 

does not or will not occur (van Leeuwen and Vermeire, 2007).  
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On the basis of individual preservative, TUs the expected joint risk of their 

mixture is then estimated and assessed, summing up the toxic units (STUs) for each 

bioassay according to the strategy for the compound-based risk assessment of chemical 

mixture proposed by Backhaus and Faust (2012). Thus, using the STUs from the four 

biotests and considering their assessment factor (ECHA, 2008), the results showed final 

RQs for single species of 1.7 for P. putida, 17 for T. thermophila and 18 for V. fischeri , 

and 10 for the activated sludge assay. That is, for all bioassays the preservative mixture 

poses a potential risk for the activated sludge process. However, this strategy is primarily 

based on the concept of Concentration Addition (CA), which can be criticized for 

violating its main assumption when applied to the mixture of preservatives presents in 

this paper: similar mode or mechanism of action of the substances of the mixture. The 

maximum error that occurred by simply ignoring the competing concept of Independent 

Action (IA) was estimated by means of the ratio between the 𝐸𝐶50𝑠 predicted by CA and 

IA as indicated in Eq. (2.6) (Junghans et al., 2006). The results show maximum errors of 

1.6 for V. fischeri, 1.3 for P. putida, 1.5 for T. thermophila and 1.3 for activated sludge; all 

of them lower than 2, the value considered acceptable according to Backhaus and 

Karlsson (2014). This fact shows that CA can predict toxicity mixtures of dissimilarly 

acting substances with reasonable accuracy. Indeed, empirical evidence suggests that CA 

predicts with a tendency to slightly overestimate the mixture toxicity of dissimilarly 

acting compounds (Backhaus et al., 2010). 

The distribution of the relative TUs is shown in Fig. 2.2 for the used bioassays. 

The plot clearly shows the uneven distribution of the toxic units in the mixture. BAC, ZPT 

and TCS contribute more than 95% to the overall STUs in all cases except for T. 

thermophila, for which IPBC explains a 66% of the total mixture toxicity. In fact, these 

four preservatives contribute most to the overall STUs, while the rest of the compounds 

has only a negligible contribution. It is also important to note that the main ecotoxicity 

risk driver depends on the bioassay: IPBC for T. thermophila, ZPT for P. putida and BAC 

for V. fischeri and activated sludge. In the same way, Backhaus and Karlsson (2014) have 

previously shown that the most risky compound for pharmaceuticals in STP effluents 

depends on the species group under consideration. 
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Fig. 2.2 Distribution of Toxic Units of the studied preservatives present in the worst case scenario 
(maximum measured concentration in STP influents) for each bioassay. 

 

3.3. Interaction of preservatives with industrial wastewater 

3.3.1. Toxicity of industrial wastewater 

Industrial wastewater (IWW) is studied by a whole-mixture approach, which is 

based on the direct ecotoxicological assessment of a given effluent (Fig. 2.3). This 

approach allows analyzing the real industrial effluent as if it was a single chemical 

(Backhaus et al., 2010). The tested IWW was highly toxic to V. fischeri and T. thermophila 

with  𝐸𝐶50 of 0.051 and 0.318%, respectively. High toxicity of cosmetics industry 

effluents for single species has been previously reported (Perdigón-Melón et al., 2010, 

Pliego et al., 2012 and de Melo et al., 2013), in which the elevated amount of toxicants 

present (surfactants, phenol derivatives, dyes, preservatives, etc.) and the possible 

mixture effects result in high toxicities. Particularly, de Melo et al. (2013) determined 

that surfactants were the main source of toxicity in a cosmetics industry effluent, whose 

concentrations in the presently studied wastewater were 288 mg·L−1 (Table 2.2). The 
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occurrence of 0.84 mg·L−1 of Zn could also contribute to its toxicity due to the low 𝐸𝐶50 

values reported for this metal: 0.41–4.6 mg·L−1 for V. fischeri (Dalzell et al., 2002 and 

Teodorovic et al., 2009) and 3.6–6.7 mg·L−1 for T. thermophila (Gallego et al., 2007 and 

Mortimer et al., 2010). On the contrary, low toxicity was detected for P. putida 

(𝐸𝐶50 = 64.4%), a fact that may be due to its different metabolic pathways, including the 

ability of this microorganism to degrade organic pollutants and solvents (Hafner, 2004). 

The activated sludge assay was not especially sensitive to the tested IWW either, 

showing a 50% inhibition at 11.8%. 

 
Fig. 2.3 Concentration-response curves of the studied industrial wastewater for the bioassays: V. fischeri 
(●), P. putida (■), T. thermophila (▲) and activated sludge test (◊) (mean ± 95% confidence interval). 
Solid lines give the median-effect equation fit. 

 

3.3.2. Toxicity of binary mixtures: preservative and industrial wastewater 

The 𝐸𝐶50 (𝐷𝑚) and 𝑚 values from IWW and single preservatives, and their binary 

combinations (preservative+IWW) were used to quantify the predictive accuracy of 

median-effect law by Combination Index (CI) equation (Chou, 2006). The ratio between 

observed and predicted mixture toxicities was expressed as CI. A two-fold deviation has 

been applied as a threshold to denote compliance between observed and predicted 

mixture toxicity in the present study in accordance with previous studies (Belden et al., 

2007 and Coors and Frische, 2011). 
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Fig. 2.4 shows 𝑓𝑎-𝐶𝐼 plots of binary mixtures for single-species and activated 

sludge tests. Twenty out of twenty-nine combinations that evaluated the median-effect 

principle observed effective concentration within a factor of 2 of predicted values (CI 

values between 0.5 and 2) on the 𝑓𝑎 = 0.5 (further data Table 2.7), where the inflexibility 

of the median-effect principle matters least (Backhaus, 2014). Hence, the combination 

effects of a given preservative in a complex industrial wastewater for almost 70% of 

mixtures could be approximated well by the median-effect principle, a special case of 

the more general concept of CA (Backhaus, 2014). Specifically, 86% of the studied binary 

combinations could be accurately predicted by CA concept for single-species tests. These 

results are in line with the review on the predictive power of CA for pesticide mixtures 

performed by Belden et al. (2007), which demonstrated that in the majority of 

experiments (80% and more), mixture toxicity predictions based on CA deviated from 

the observed mixture toxicity by less than factor 2. 

Nevertheless, the CA model was not able to correctly describe the mixture 

toxicity of nine of the combinations. In particular, BAC+IWW, ZPT+IWW, PPB+IWW 

toxicities for V. fischeri were overestimated with CI values higher than 2, while binary 

combinations of IPBC, CMI/MI, BNP, BAC, ZPT and PPB with IWW for activated sludge 

were underestimated, yielding CI values between 32 and 0.47 at 𝑓𝑎 = 0.5. Toxicity 

mixtures mispredicted by CA were assessed with the alternative concept of IA. Fig. 2.5 

displays the comparison for V. fischeri and activated sludge assays of CA- and IA-

prediction with experimental data from the previously mentioned binary mixtures. CA 

and IA predict similar toxicities despite their mutually exclusive concepts, especially at 

low effects levels. This finding can be explained as a consequence of the similar shape 

and slope of the concentration-response curves of individual biocides (see Figs. 2.1 and 

2.2) and do not involve any mechanistic implication (Backhaus et al., 2004). 

For V. fischeri test, IA and CA did not differ in predicting mixture toxicities at 𝐸𝐶50 

level, contrary to what is expected in most situations in which CA is considered the 

conservative model (Kortenkamp et al., 2009). This fact is due to the steepness of the 

concentration-response  curves  of  single  substances,  which  is  known  to  be  the  major   
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Fig. 2.4 Combination Index plot (𝑓𝑎-𝐶𝐼 plot) for the used bioassays of binary mixtures (preservative+IWW): 
IPBC+IWW (▼), CMI/MI+IWW (●), BNP+IWW(□), DIU+IWW(■), BAC+IWW( ), ZPT+IWW (○), PPB+IWW 
(▲), TCS+IWW (Δ). 𝐶𝐼 values are plotted as function of the fractional inhibition of 
bioluminescence/growth (𝑓𝑎) by computer simulation (CompuSyn). 𝐶𝐼 between 0.5 and 2 indicate 
compliance between observed and predicted mixture toxicity by median-effect principle with CA. The 
vertical bars indicate 95% confidence intervals for 𝐶𝐼 values based on SDA (Sequential Deletion Analysis) 
(Chou and Martin, 2005) (continued on next page). 
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Fig. 2.4 Combination Index plot (𝑓𝑎-𝐶𝐼 plot) for the used bioassays of binary mixtures (preservative+IWW): 
IPBC+IWW (▼), CMI/MI+IWW (●), BNP+IWW (□), DIU+IWW(■), BAC+IWW( ), ZPT+IWW (○), PPB+IWW 
(▲), TCS+IWW (Δ). 𝐶𝐼 values are plotted as function of the fractional inhibition of 
bioluminescence/growth (𝑓𝑎) by computer simulation (CompuSyn). 𝐶𝐼 between 0.5 and 2 indicate 
compliance between observed and predicted mixture toxicity by median-effect principle with CA. The 
vertical bars indicate 95% confidence intervals for 𝐶𝐼 values based on SDA (Sequential Deletion Analysis) 
(Chou and Martin, 2005). 
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factor determining the relation between the 𝐸𝐶50 values predicted by CA and IA 

(Boedeker et al., 1993 and Drescher and Boedeker, 1995). Backhaus et al. (2004) showed 

that both concepts predict equal mixture toxicity with ratio 𝐸𝐶50/𝐸𝐶05 = 13.5, which 

corresponds to a median-effect parameter 𝑚 = 1.13. If the steepness for the 

concentration-response curve of the mixture components is lower, CA predicts a lower 

𝐸𝐶50 for the mixture than IA and vice versa (Brosche and Backhaus, 2010). Specifically, 

𝑚 values of IWW (1.18), BAC (1.50), ZPT (1.12) and PPB (1.03) were in the interval 1.03–

1.50. Thus, both CA and IA were not able to predict mixture toxicities for the binary 

combinations of BAC, ZPT and PPB with IWW for V. fischeri test. Observed mixture 

toxicities were slightly less toxic than those predicted by both models, displaying an 

antagonistic effect. The antagonism of these mixtures might be explained considering 

that BAC, ZPT and PPB are membrane active agents that can be inactivated by 

surfactants (Rieger and Rhein, 1997). In the case of BAC, whose mechanism of action is 

based on the interaction of bipolar quaternary ammonium compound with the bacterial 

phospholipid bilayer, the occurrence of anionic surfactants in IWW (179 mg·L−1) may 

lead to ion pair formation, losing the bipolar structure and BAC bioactivity. Sütterlin et 

al. (2008) observed the same behaviour for V. fischeri exposed to mixtures of BAC and 

different anionic surfactants. In a similar way, the antagonism between PPB and an 

anionic surfactant (perfluorooctane sulfonic acid) has been reported to Anabaena sp. 

CPB4337 (Rodea-Palomares et al., 2012). PPB can also be inactivated by non-ionic 

surfactants (Denyer, 1995), which were present at a significant concentration in the 

studied IWW (109 mg·L−1). 

For activated sludge, it is interesting to note that IA predicts a higher toxicity than 

CA at 𝐸𝐶50 values (Table 2.7). As it has already explained, this fact is due to the low 

steepness of the concentration-response curves of the single substances. In fact, 𝑚 

values of individual compounds are substantially smaller than the critical threshold of 

1.13 (𝑚 <1.13 equivalent to 𝐸𝐶50/𝐸𝐶05 >13.5, Backhaus et al., 2004). Similar results 

were found for the prediction of mixture toxicity of antibiotic combinations on bacterial 

communities from artificial (STP in Christensen et al., 2006) and natural environment 

(lake   in   Brosche   and   Backhaus,   2010).   In   this   study,   higher   predictive   power   was  
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Fig. 2.5 Predicted and observed concentration-response curve of BAC+IWW (A,B), ZPT+IWW (C,D), 
PPB+IWW (E,F), IPBC+IWW (G), CMI/MI+IWW (H), BNP+IWW (I) and DIU+IWW (J) mixtures. Solid lines 
give CA (blue) and IA (red) prediction and median-effect equation fit (black). Two-fold deviation as a 
threshold to denote compliance between observed and predicted mixture toxicity is represented with a 
grey line (continued on next page). 
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Fig. 2.5 Predicted and observed concentration-response curve of BAC+IWW (A,B), ZPT+IWW (C,D), 
PPB+IWW (E,F), IPBC+IWW (G), CMI/MI+IWW (H), BNP+IWW (I) and DIU+IWW (J) mixtures. Solid lines 
give CA (blue) and IA (red) prediction and median-effect equation fit (black). Two-fold deviation as a 
threshold to denote compliance between observed and predicted mixture toxicity is represented with a 
grey line. 
 

illustrated for IA than CA concept for the combination effects of preservatives in a 

complex industrial wastewater on a biological community. This was the case 

independent of whether or not these mixtures had been well approximated to CA such 

as DIU+IWW (Fig. 2.5J). This fact could be explained by the complexity of IWW on a 

biological community. Activated sludge biomass is composed by flocs that are biological 

aggregates containing several levels of organization and porous structures in which cells 

are embedded in a polymer matrix (Henriques and Love, 2007). Reduced access of 

biocides to microbial cells because of the chemical interactions between extracellular 
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polymeric substances and antimicrobial molecules is one of the proposed resistance 

mechanisms (Russell, 2003 and Henriques and Love, 2007). However, the higher 

concentration of monovalent cations relative to the concentrations of divalent cations 

and the occurrence of poor biodegradable surfactants in the IWW (Table 2.2) could 

cause the disruption of exopolymer bridging thus, microorganisms would not adhere to 

each other and loose one floc resistance mechanism (Jenkins et al., 2003). 

Therefore, the application of CA as the first predictive approach to mixture 

whose toxicity is actually better described by IA would hence lead to a slight 

overestimation of the mixture toxicity, and it was therefore suggested to apply CA as a 

somewhat conservative default approach for the predictive assessment of mixture 

toxicity in general (Backhaus and Faust, 2012). However, the toxicity of preservatives 

with a complex industrial wastewater towards intricate microbial communities might be 

an exception from this pattern, as the vast differences in sensitivity of the involved 

species seems to lead to extraordinary flat concentration-response curves. 

 

4. Conclusions 

The studied preservatives (iodopropynyl butylcarbamate, bronopol, diazolidinyl 

urea, benzalkonium chloride, zinc pyrithione, propylparaben, triclosan and a mixture of 

methylchloroisothiazolinone and methylisothiazolinone) showed considerable aquatic 

toxicity in single-species tests and biological community activated sludge assay, but with 

a marked difference in potency. In fact, benzalkonium chloride, zinc pyrithione, 

iodopropynyl butylcarbamate and triclosan as well as the mixture of the tested 

preservatives displayed a potential risk to municipal STP performance. Among them, 

benzalkonium chloride is shown as the most problematic compound as is the risk driver 

of the mixture of preservatives in the activated sludge assay. 

The degree of biological complexity of the used bioassays influences on the more 

suitable concept to predict the joint toxicity of the tested compounds with a cosmetic 

industry wastewater. In spite of the mixture toxicity in single-species tests can be 

accurately predicted by Concentration Addition (CA), in the biological community 
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activated sludge assay the prediction power is lower, and the alternative concept of 

Independent Action (IA) should be considered. 

These results highlight that the toxic effects of preservatives towards activated 

sludge need to be carefully evaluated and that the potential risk management options 

should be studied. Special attention may be placed on benzalkonium chloride, on which 

should be assessed whether there is a need to perform mitigation measures such as 

source control by targeted restrictions or wastewater pre-treatment before activated 

sludge process. 
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OZONATION AS PRE-TREATMENT OF ACTIVATED SLUDGE PROCESS 

OF WASTEWATER CONTAINING BENZALKONIUM CHLORIDE AND 

NiO NANOPARTICLES 

 

Abstract 

The continuous ozonation of benzalkonium chloride (BAC) and nickel oxide 

nanoparticles (NiO-NPs) has been performed in a synthetic water matrix and in a sewage 

treatment plant influent. This study aims to assess ozonation as pre-treatment of an 

activated sludge process, with emphasis on the toxicity of treated water. BAC was 

completely removed in synthetic matrix independently of the presence of NiO-NPs, 

although the ozone dose was influenced by NPs co-occurrence. The extent of 

mineralization was limited and a number of intermediate transformation products (TPs) 

appeared, twelve of which could be identified. The degradation pathway was shown to 

initiate both on the hydrophobic (alkyl chain) and hydrophilic (benzyl and ammonium 

moiety) region of the surfactant. The reactions on the hydrophilic region were affected 

by the presence of NiO-NPs as a consequence of the adsorption of BAC onto NP surface 

via the aromatic group. Water matrix strongly influenced BAC depletion. The aquatic 

toxicity of treated mixtures was assessed using a battery of bioassays composed of 

single-species tests (the bacteria Vibrio fischeri and Pseudomonas putida and the 

protozoan Tetrahymena thermophila), as well as on activated sludge using a resazurin-

based assay. Although, BAC showed considerable aquatic toxicity in all bioassays, 

ozonation decreased the toxic effects of treated water samples at ozone dosages below 

those required for total BAC depletion. Further treatment would not be justified, neither 

for a significant increase in BAC abatement nor concerning the toxicity of treated 

wastewater, which increased as a result of nickel leaching from the NPs. 

  

86 



 

Ozonation of wastewater containing benzalkonium chloride and NiO nanoparticles 

 

1. Introduction 

Quaternary ammonium compounds (QACs) are an important class of industrial 

chemicals extensively used in domestic and industrial applications such as detergents, 

emulsifiers, fabric softeners, disinfectants, corrosion inhibitors and processing aids 

(Ismail et al., 2010). As a result, about 75% of QAC consumed end up in wastewater 

treatment systems (Zhang et al., 2011). In fact, their concentration in hospital 

wastewater, sewage treatment plant (STP) influents and effluents, and sewage sludge 

has been reported as 0.05–6.03 mg·L−1, 25–300 µg·L−1, 0.3–3.6 µg·L−1 and 22–

103 mg·kg−1, respectively (Kümmerer, 1997, Clara et al., 2007 and Martínez-Carballo et 

al., 2007a,b). Because of their chemical properties, QACs rapidly and strongly sorb on 

suspended solids (Zhang et al., 2011). Sorption on (bio)solids combined with the 

persistence of QAC, result in their accumulation on the biomass and their transfer to 

anaerobic digesters as part of the primary and waste activated sludge. Among QACs, 

benzalkonium chloride (BAC) has been shown to pose a potential risk for the activated 

sludge (Carbajo et al., 2015a). It is toxic to aquatic organisms at environmental relevant 

concentration and is classified as very toxic to aquatic life according to Regulation (EC) 

No. 1272/2008 (ECHA, 2015). Furthermore, it has been reported that the widespread 

use of biocides such as BAC could select for antibiotic-resistant bacteria (Kümmerer, 

2009). 

On the other hand, the increasing use of engineered nanoparticles (NPs) in 

industrial and household applications will very likely lead to the release of such materials 

into sewage collection systems (Nowack and Bucheli, 2007 and Keller and Lazareva, 

2014). Once in the STP, the majority of NPs are captured through adhesion into the 

sludge and removed from the water stream (Limbach et al., 2008, Kiser et al., 2009 and 

Westerhoff et al., 2011). However, the presence of surfactants in STP influents, such as 

QACs, has been shown to hinder the removal of NPs from water as a result of the 

modification of their surface and interfacial properties (Limbach et al., 2008, Brar et al., 

2010 and Kiser et al., 2010). QACs adsorption on NP surfaces reduces the tendency of 

NPs to agglomerate and stick to the sludge. Consequently, QAC+NPs remain suspended 

in the water stream through the STP, are able to affect the microorganisms in secondary 
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treatment processes, increase the turbidity, foul membranes and influence the 

efficiency of tertiary disinfection processes (Brar et al., 2010). Besides, QAC+NP 

eventually may leave STP, with NPs acting as a delivery vehicle for QAC into aquatic 

environments. 

The use of ozonation as chemical pre-treatment followed by a biological process 

has been shown to be a suitable technology for the removal of pollutants which cause 

toxic effects on microorganisms (Ikehata and El-Din, 2004 and Oller et al., 2011). 

Ozonation has several advantages over conventional chemical oxidation processes using 

potassium permanganate or chloride, including higher oxidation potential, absence of 

potentially carcinogenic chlorinated by-products, and short life time of the oxidant, 

which would be toxic to microorganisms in subsequent biological treatments (Beltrán et 

al., 2000 and Guieysse and Norvill, 2014). BAC degradation has not been thoroughly 

studied, with most studies performed in semi-batch conditions and synthetic water 

matrix and focused on the degradation and/or mineralization of the target pollutant 

(Dantas et al., 2009), and not on the biological effects of oxidation by-products. 

Ozonation as chemical pre-treatment should remove toxic pollutants without producing 

transformation products (TPs), which could cause an adverse effect on the 

microorganisms present in the subsequent biological treatment (Oller et al., 2011 and 

Guieysse and Norvill, 2014). Continuous treatment is a closer approximation to full-scale 

systems than batch experiments and allows a better understanding of the fate of 

pollutants under oxidizing conditions, the influence of water matrix and the toxicity of 

treated wastewater (Huber et al., 2005, Nöthe et al., 2009 and Katsoyiannis et al., 2011). 

The study aims to assess the continuous ozonation of a wastewater 

contaminated with BAC and NiO-NPs intended as pre-treatment of an activated sludge 

process. The influence of water matrix was explored using real STP influent. The toxicity 

of ozone treated wastewater was monitored using a battery of bioassays, composed of 

single-species tests (the bacteria Vibrio fischeri and Pseudomonas putida and the 

protozoan Tetrahymena thermophila), and an activated sludge resazurin-based assay. 
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2. Materials and methods 

2.1. Materials 

Benzalkonium chloride (BAC; ≥95%, consisting of homologues of different alkyl 

chain lengths, mainly, ∼60% C12 and ∼40% C14) and nickel (II) oxide nanopowder (NiO-

NPs; ≤50 nm particle size, 99.8% trace metals basis) were purchased from Fluka and 

Sigma-Aldrich, respectively. Raw water was prepared with an initial BAC concentration 

of 10 mg·L−1, with and without the addition of NiO-NPs (20 mg·L−1). A 1 000 mg·L−1 of 

NiO-NPs suspension in water was prepared by sonication for 15 min at 20 KHz and 

200 W·L−1 (BioBlock Scientific, France). 500 mL of the concentrated suspension was 

added to 25 L of the water to be treated in order to achieve 20 mg·L−1. Water was then 

kept under agitation at 400 rpm with a two-arm propeller 3 h prior to the ozonation with 

the aim of reaching the adsorption equilibrium of BAC on NiO-NPs. 

Two different matrices were used: a synthetic water matrix and a municipal STP 

influent. The synthetic matrix was prepared in ultrapure water (resistivity ≥18 MΩ·cm at 

25ºC) with the required amount of sodium bicarbonate to equal the alkalinity and pH 

values of the STP influent. Raw wastewater was collected from the outlet of mechanical 

preliminary treatment and before biological treatment in the Carrión de los Céspedes 

Experimental Plant in Seville (Spain), which treats domestic wastewater and has a 

capacity of 2 500 population equivalent (Fahd et al., 2007). Wastewater was autoclaved 

at 121ºC during 20 min before use. Details on wastewater characterization are shown in 

Table 3.1. 

Table 3.1 Main physico-chemical parameters of STP influent. 
pH 8.3  Na+ (mg·L−1) 110  Cr (µg·L−1) 2.08 
Conductivity (µS·cm−1) 1 234  NH4

+ (mg·L−1) 53.8  Co (µg·L−1) 0.64 
TSS (mg·L−1) 108  K+ (mg·L−1) 26.2  Ni (µg·L−1) 4.04 
VSS (mg·L−1) 93.1  Mg2+ (mg·L−1) 19.3  Cu (µg·L−1) 32.4 
Turbidity (NTU) 145  Ca2+ (mg·L−1) 41.4  Zn (µg·L−1) 88.0 
COD (mg·L−1) 121  Cl− (mg·L−1) 127  As (µg·L−1) 1.66 
DOC (mg·L−1) 61.2  NO2

− (mg·L−1) 0.51  Se (µg·L−1) ND 
BOD5 (mg·L−1) 30  NO3

− (mg·L−1) 0.10  Cd (µg·L−1) 0.13 
SUVA254* (L·mg C−1 m−1) 0.91  PO4

3− (mg·L−1) 14.9  Hg (µg·L−1) ND 
Alkalinity (mg CaCO3·L−1) 372  SO4

2− (mg·L−1) 56.0  Pb (µg·L−1) 3.95 
 

*Specific ultraviolet absorption at 254 nm; ND: not detected 
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2.2. Experimental procedure 

The experiments were carried out in a cylindrical reactor made of Pyrex (internal 

diameter of 6.0 cm and working height of 51 cm) with a total working volume of 1.44 L, 

which operated in continuous co-current mode (Scheme 3.1). Water flow rate was 

142 mL·min−1 (Gilmont rotameter) and gas flow rate was 390 mL·min−1 (Aalborg mass 

flow controller). The mixture of ozone and oxygen was produced by a corona discharge 

ozonator (Anseros ozone generator COM-AD-02) fed by high-purity oxygen. Gas mixture 

was introduced into the reactor by means of a sintered glass plate (porosity no. 3), 

which was used as gas diffuser at the bottom of the column. Inlet and outlet ozone gas 

concentrations (Anseros NDUV ozone GM-PRO analyzer), dissolved ozone (Mettler 

Toledo-Thomton dissolved ozone sensor), pH and temperature (EasyfermPlus VP 120 

Hamilton pH sensor) were continuously monitored (Keithley 2700 Data Acquisition 

System) and recorded in a computer. 
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Scheme 3.1 Experimental set-up. (1) oxygen cylinder, (2) mass flow controller, (3) ozone generator, 
(4) peristaltic pump, (5) bubble column, (6) ozone gas analyzer, (7) dissolved ozone sensor or 
conductometric probe, (8) dissolved ozone or conductivity transmitter, (9) needle valve, 
(10) rotameter, (11) pH sensor, (12) pH transmitter, (13) data acquisition system, (14) computer. Water 
line is represented as solid line, gas line as dashed line and electrical wiring as dotted line. 
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The hydrodynamic behaviour of the ozone reactor was characterized using 

sodium chloride as a non-reactive tracer. A pulse-dose method was used wherein an 

instantaneous dose of concentrated sodium chloride solution (70 g·L−1) was injected at 

the inlet of the reactor. The tracer concentration was determined with a conductometric 

probe (Alpha CON 190, Thermo Scientific) at the outlet of the bubble column and a 

computer recorded the signals from the conductivity after being captured every 

5 seconds by the data acquisition system (Scheme 3.1). 

Table 3.2 shows the results of the hydrodynamic parameters calculated from the 

data obtained in the tracer tests. 

Table 3.2 Summary of tracer test operating conditions and results. 

Mode 
𝑉𝑅  
(L) 

𝜐𝑔 

(L·min−1) 

𝜐𝑙  
(L·min−1) 

𝜏 
(min) 

𝑡̅ 
(min) 

𝑡10 
(min) 

𝑡̅/𝜏 𝑡10/𝜏 𝑛 

Co-current 1.44 0.390 0.142 10.1 10.3 1.26 1.02 0.125 1.13 
 

𝑉𝑅  reactor working volume 
𝜐𝑔 gas flow rate 

𝜐𝑙  liquid flow rate 
𝜏 hydraulic residence time 
𝑡̅ mean residence time 
𝑡10 time for 10% of tracer to exit reactor 
𝑛 equivalent number of continuously stirred tank reactors 

 

Mean residence time (𝑡̅) of the reactor was 10.3 min, which is a value close to the 

theoretical hydraulic residence time (𝜏). This fact indicates that there are no dead zones 

within the bubble column because 𝑡̅/𝜏 was considered as an index reflecting the 

percentage of stagnant space in a reactor (Roustan et al., 1996 and Chiang et al., 1999). 

It has also been suggested that the 𝑡10/ 𝜏 (𝑡10 is the time required for 10% of the total 

tracer mass to leave the reactor) is measurement of the degree of short-circuiting in the 

reactor (Langlais et al., 1991). As seen in Table 3.2, 𝑡10/ 𝜏 value is slightly higher than the 

theoretical value for an ideal mixed flow reactor (𝐹(𝑡) = 0.1; 𝑡10/ 𝜏 = 0.105), which 

indicates that there is no evidence of short-circuiting fluid within the bubble column 

(Chiang et al., 1999). 
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The flow pattern of the ozone reactor was studied using the tanks-in-series 

model (Levenspiel, 1999), which assumes that the flow through the reactor can be 

characterise by a series of 𝑛 equalized continuously stirred tank reactors (𝑛-CSTRs). The 

number of reactors in series (𝑛) calculated according to the procedure described in the 

literature (Burrows et al., 1999 and Levenspiel, 1999) was 1.13. Fig. 3.1 shows CSTR 

theoretical, empirical (𝑛-CSTR in which 𝑛 = 1.13) and experimental 𝐸(𝜃) curves, which 

display marginal differences. The results indicated that the bubble column under the 

operational conditions can be approached to a perfect CSTR. It is generally accepted that 

short columns with intense gas phase hydrodynamics can be assimilated to a CSTR due 

to the bubble back mixing (Asenjo and Merchuck, 1995). 

 
Fig. 3.1 𝐸(𝜃) curve for CSTR theoretical (black line), 1.13-CSTRs (red line) and experimental (blue line). 

 

During the ozonation runs, the inlet ozone dosage was stepwise increased from 5 

to 300 milligrams of ozone per liter of wastewater (mg·L−1). For the different ozone 

dosages, samples were withdrawn for analysis at the column outlet once the stationary 

state was reached. This was ensured by circulating four times the hydraulic retention 

volume after constant ozone concentration was obtained both in the liquid and gas 

phases at the column outlet. Assuming CSTR behaviour, the amount of ozone 

consumption at the stationary state can be obtained from the following mass balance: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑂3 = 𝐹𝑂3
𝑔𝑎𝑠,𝑖𝑛 − 𝐹𝑂3

𝑔𝑎𝑠,𝑜𝑢𝑡 − 𝐹𝑂3
𝑙𝑖𝑞,𝑜𝑢𝑡 (3.1) 
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in which 𝐹𝑂3 is the rate of ozone entering the system in the gas phase (gas, in) or leaving 

it either in the exhaust gases (gas, out) or dissolved in water (liq, out). 

 

2.3. Analytical methods 

BAC in 2.5 mL samples was extracted with a mixture of 1 mL of silver nitrate 

(100 mM), 1.5 mL of acetonitrile and 2.5 mL of ethyl acetate. BAC concentration was 

measured using an Agilent 1100 Series LC unit equipped with a reversed-phase C18 

analytical column (Phenomenex Luna SCX, 250 × 4.6 mm, 5 µm) connected to a time-of-

flight mass spectrometer (TOF/MS, Agilent Technologies). A gradient elution was applied 

using 5% acetonitrile in HPLC-grade water [A] and 5% HPLC-grade water in acetonitrile 

[B], both with 0.1% formic acid, as mobile phases at a flow rate of 1 mL·min−1 (gradient 

curve: 0–5 min, 20% [B]; 5–10 min, linear change from 20 to 40% [B]; 10–15 min, 40% 

[B]; 15–20 min, linear change from 40 to 60% [B]; 20–30 min, 60% [B]; 30–35 min, linear 

change from 60 to 100% [B]; 35–40 min, 100% [B]; post run-time, 40–55 min). The 

column was maintained at 30ºC. MS analysis was conducted by electrospray ionization 

(ESI) in positive mode at 70 eV fragmentation voltage with a mass scan range of m/z 

100–1 000. The drying gas (nitrogen) flow was 13 L·min−1 at 350ºC, the nebulizer 

pressure was 50 psi, and the capillary voltage was 4 000 V. Described analytical method 

was adapted from Tezel (2009). 

Raman spectra of BAC adsorbed onto NiO-NPs were recorded using a Thermo 

Scientific DXRxi Raman imaging microscope (Waltham, MA, USA). Measurements were 

collected using a 532 nm emitting laser, power 0.1 mW, frequency 0.5 Hz and confocal 

pinhole size of 50 µm. The microscope was set to 100x magnification. Spectral 

acquisition times were 2 seconds and 3 scans were averaged in order to improve the 

signal to noise ratio. The wet NiO-NPs collected by centrifuge were placed on quartz 

slides and allowed to dry before measurements. Control experiments were also 

performed using the pure NiO-NPs or background BAC solution deposited onto a quartz 

plate surface. 
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Water samples were analyzed for their nickel oxide and dissolved nickel content 

using an Agilent 7700x ICP-MS operating at 3 MHz in helium cell gas mode. NiO-NPs 

were quantified after digestion to ensure the full dissolution of nanoparticles. 2 mL 

liquid suspension were digested using 8 mL nitric acid (Sigma-Aldrich, suprapur) and 

2 mL hydrogen peroxide heating up to 150ºC for 30 min in a microwave system (Ethos 

One, Milestone) and finally diluted to 25 mL with ultrapure water. To determine 

dissolved nickel, water samples were centrifuged (15 000 g for 30 min in Heraeus-

Multifuge 3L-R centrifuge) and the supernatant was filtered through 0.2 μm filter. The 

size distribution of nanoparticles was obtained using dynamic light scattering (DLS, 

Malvern Zetasizer Nano ZS). ζ-potential was measured via electrophoretic light 

scattering combined with phase analysis light scattering in the same instrument 

equipped with a Malvern autotitrator MPT-2. 

Cationic surfactant concentrations were determined spectrophotometrically with 

bromophenol blue method (Hach-Lange LCK 331). Dissolved Organic Carbon (DOC) 

analyses were performed on a Shimadzu TOC-VCSH TOC analyzer. Carboxylic acids were 

measured by a Dionex DX120 IC. Oxalic acid concentration was determined by IonPac 

AS9-HC analytical column (4 × 250 mm) with ASRS-Ultra suppressor. Acetic and formic 

acids were measured using an IonPacICE analytical column (9 × 250 mm) with AMMS-

ICE II suppressor. Inorganic ions were determined by means of a Metrohm 861 Advance 

Compact IC; Metrosep A Supp 7-250 and Metrosep C3 analytical columns were used in 

anion and cation analysis, respectively. 

 

2.4. Procedures for aquatic toxicity tests 

The aquatic toxicity of water samples was determined using a battery of 

bioassays, composed of single-species tests of two bacteria (V. fischeri and P. putida) 

and one protozoan (T. thermophila), which represent the microorganisms present in 

activated sludge, and a whole biological community assay using activated sludge. 

V. fischeri acute test measures the decrease in bioluminescence induced in the 

cell metabolism. The bioassay was performed according to ISO 11348-3 standard 
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protocol (ISO, 2007) using the commercial BioFix®Lumi test (V. fischeri, NRRL-B 11177 

from Macherey-Nagel, Germany). The test was carried out in 96-well white 

polypropylene microplate. 100 µL of test solution (2% w/v NaCl and pH 7.0 ± 0.5) was 

transferred into each well, which were supplemented with 100 µL of bacterial 

suspension. Light was measured at 15 ± 1ºC after 30 min by means of a Fluoroskan 

Ascent FL microplate luminometer (Thermo Scientific). P. putida test determines the 

inhibitory effect of a water sample on the bacteria (P. putida, NCIB 9494 from CECT, 

Spain) by means of cell growth inhibition. The bioassay was performed according to 

ISO 10712 guideline (ISO, 1995). Bacterial culture was exposed to test solutions at 

23 ± 1ºC for 16 h in glass incubation vials which were constantly shaken in the dark. The 

cell growth was determined by optical density (λ 600 nm) in 96-well clear microplate 

(200 µL test suspension per well) using a Rayto RT-2100C microplate reader. Growth 

inhibition assay with the ciliate protozoa T. thermophila was performed according to the 

Standard Operational Procedure Guideline of Protoxkit FTM (1998). The test is based on 

the turnover of substrate into ciliate biomass. Substrate was purchased from 

MicroBioTest Inc. (Belgium) whereas T. thermophila (SB 210) was kindly supplied by 

D. Cassidy-Hanley (Tetrahymena Stock Center, Cornell University, USA). Ciliates were 

incubated with water samples and food suspension in test vessels at 30 ± 1ºC for 24 h in 

the dark. Growth inhibition was determined on the basis of turbidity changes (OD at 

λ 440 nm). ZnSO4·7H2O for A. fischeri, 3,5-dichlorophenol for P. putida and K2Cr2O7 for T. 

thermophila were used as reference substances in order to check each test procedures. 

The toxicity to activated sludge community was carried out by evaluating the 

effect of water samples on activated sludge metabolic activity using the resazurin (7-

hydroxy-3H-phenoxazin-3one-10-oxide) method under the experimental conditions 

described in OECD Method 209 (OECD, 2010) (Carbajo et al., 2015a). Briefly, resazurin, 

blue and non-fluorescent in its oxidized stated, is reduced in the presence of active 

organism cultures to a pink fluorescent derivative (resorufin) by means of a 

dehydrogenase enzyme. Fresh activated sludge was collected from the aeration tank of 

an STP located in Guadalajara (Spain). Activated sludge was characterized by 

determining physico-chemical parameters (Table 3.3). Inoculum (3.0 g·L−1 of MLSS) 
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supplemented with synthetic sewage feed was exposed to tested water samples at 

20 ± 2ºC for 3 h in glass vials which were constantly shaken (200 rpm) in darkness under 

conditions of forced aeration (0.5–1.0 L·min−1) (OECD, 2010). After exposure, biomass 

metabolic activity was measured in 96-well black polypropylene microplate by adding 

200 µL test suspension and 20 µL of resazurin (100 mg·L−1) to each well. Resazurin 

reduction was measured after 20 min incubation using a Fluoroskan Ascent FL 

microplate fluorometer (Excitation 542 nm, Emission 592 nm). The suitability of each 

batch of activated sludge biomass was determined using CuSO4·5H2O as reference 

substance (𝐸𝐶50 = 26 mg·L−1). 

Table 3.3 MLSS of sludge matrix used in 
resazurin-based activated sludge test 
 

TSS (mg·L−1) 
 

6 590 
VSS (mg·L−1) 4 710 
VSS/TSS 0.71 
V30 (mL·L−1) 795 
SVI (mL·g−1) 119 
pH 8.27 

 

Three independent experiments with duplicate samples were carried out to 

ensure reproducibility. All aquatic toxicity data are expressed as mean ± 95% confidence 

interval and data analysis were performed using a nonlinear-regression sigmoidal dose-

response curve model provided in the GraphPad Prism 6.0 software (GraphPad software 

Inc., San Diego, USA). 

 

2.5. Data treatment for aquatic toxicity assessment 

The toxic-effects obtained were transformed into toxic units (TUs) following the 

procedure described by Persoone et al. (2003). TU is defined as the reciprocal of the 

wastewater dilution (expressed in percentage) need to achieve 50% inhibition (𝐸𝐶50) 

(Sprague and Ramsay, 1965): 

𝑇𝑈 =
100
𝐸𝐶50

  (3.2) 
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TUs of non-diluted samples whose effect percentage observed was higher than 

controls but below 50% (<1 TU) were estimated using the approach proposed in the 

literature (Persoone et al., 2003) (i.e., 𝑇𝑈 = 𝑖𝑛ℎ 50⁄ , in which 𝑖𝑛ℎ is the percentage of 

inhibition). On the basis of TU values, water samples were classified into non-toxic 

(<0.4 TU), slightly toxic (0.4–1 TU), toxic (1–10 TU) and highly toxic (>10 TU). 

 

3. Results and discussion 

3.1. Synthetic water matrix 

The evolution of BAC, DOC, consumed ozone and dissolved ozone as a function of 

the amount of ozone supplied is represented in Fig. 3.2A. Fig. 3.2B shows the 

concentration of cationic surfactants and carboxylic acids (sum of oxalic, acetic and 

formic acids) during ozonation. Based on the evolution of consumed and dissolved 

ozone profiles, three zones can be observed throughout ozone dosages. In all of them, 

dissolved ozone was detected (≥0.01 mg·L−1) due to the fact that ozone mass transfer 

rate was greater than that of ozone consumption. This suggests that BAC ozonation 

reactions are relatively slow (Carbajo et al., 2015b). In zone 1, up to 54 mg·L−1, 

consumed and dissolved ozone linearly increased with ozone dosage. In it, BAC 

decreased steeply with ozone exposure reaching a value as low as 0.4 mg·L−1. Cationic 

surfactants declined in parallel to BAC. However, although the concentration of 

surfactants was significantly reduced, a large organic load remained as shown by DOC 

values, which slightly decreased. A remarkable increase was observed for carboxylic 

acids, whose concentration increased steadily with ozone exposure, which suggests a 

partial oxidation of BAC molecules. In zone 2, ozone consumption steadily increased up 

to a dosage of 168 mg·L−1. This additional ozone input (from 54 to 168 mg·L−1) was 

necessary to attain a final BAC concentration below 0.1 mg·L−1. In this zone, the 

depletion of cationic surfactants continues while DOC stabilized at 6.5 mg·L−1, even 

though the concentration of organic acids rose slightly. The increasing consumption of 

ozone indicated the presence of organic matter oxidized but not mineralized. 

Mineralization is not a single chemical process and represents a series of reactions that 
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are slow for highly oxidized molecules such as carboxylic acids (Petre et al., 2015). The 

contribution of low molecular weight acids to total mineralization is an insignificant 

fraction of the overall rate, which is mainly produced in the ozonation of the high 

molecular weight compounds as in zone 1 (van Geluwe et al., 2011). For dosages above 

168 mg·L−1 (zone 3), ozone consumption remained constant and ozone concentration at 

the reactor outlet (gas and liquid) increased proportionally to ozone input. Extra ozone 

inlet in this zone was not used for reaction and merely increased dissolved ozone and 

exhaust gas ozone concentrations. Under these conditions, the upper operational limit 

of the system, the consumed ozone and the ozone dose were 32 mg·L−1 and 

3.17 mg O3·(mg BAC)−1, respectively. 

It is interesting to emphasize the steep BAC depletion at low ozone dosages 

because ozone reacts slowly with aromatic compounds with electron-withdrawing 

substituent, quaternary amines and aliphatic chains (von Sonntag and von Gunten, 

2012). Hence, the degradation of BAC under the working conditions used in this work 

(pH 8.5), seems to be predominantly driven by the attack of hydroxyl radicals, whose 

rate constants are in the range of 109 to 1010 M−1·s−1 for the moieties present in the BAC 

molecule (Adams and Kuzhikannil, 2000). The prevalence of indirect mechanism was 

confirmed by the strong inhibition of BAC abatement occurring in the run carried out 

using 𝑡-butanol (30 mM) as radical scavenger. Nonetheless, although the radical chain 

mechanism is predominant, the maximum mineralization was low, 12%. A third of the 

remaining DOC is explained by measured carboxylic acids: 1.7 mg·L−1 of oxalic and 

4.4 mg·L−1 of acetic. These results are consistent with previous studies of the 

degradation of other surfactants by means of ozonation processes (Beltrán et al., 2000 

and Ikehata and El-Din, 2004). 

 

3.2. NPs co-occurrence effect 

The influence of NiO-NPs on BAC ozonation was studied using a synthetic water 

matrix. The detailed characterization of BAC and NiO-NPs co-occurrence was performed 

before  ozonation  runs  (Fig. 3.3).  Adsorption  isotherm  (carried  out  by  measuring  BAC   
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Fig. 3.2 Evolution of BAC (□), DOC (■), consumed (●) and dissolved ozone (○) (A) and cationic surfactants 
(▲) and carboxylic acids (sum of oxalic, acetic and formic acids, ♦) (B) for different ozone dosages in 
synthetic water matrix. 

 

concentration without previous extraction) showed that the initial working conditions 

(BAC: 10 mg·L−1; NiO-NPs: 20 mg·L−1) correspond to a concentration of BAC in 

equilibrium of 7.5 mg·L−1 and consequently, 2.5 mg·L−1 were adsorbed onto 20 mg·L−1 of 

NiO-NPs. The high adsorption of BAC is most probably a consequence of the high surface 

area-to-volume ratio (BET specific surface area: 86 m2·g−1) and negative zeta potential (ζ-

potential: -15 mV) of the nanomaterial. The potentiometric titration displayed that 

 

B) 

A) 
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increasing BAC concentration caused a stepwise rise in the ζ-potential of NiO-NPs from 

-15 to +15 mV as a consequence of potential surface charge neutralization by positively 

charged BAC ions and admicelles (Koppal et al., 1995). The hydrodynamic diameter of 

NiO-NPs reflected considerable particle aggregation, but the size of the nanomaterial 

was influenced by BAC concentration. BAC as surfactant has the ability to enhance the 

dispersion of NPs as well as reduce the charge repulsion between NPs in suspension 

(Limbach et al., 2008, Brar et al., 2010 and Kiser et al., 2010). NiO-NPs in the presence 

and absence of BAC were also examined by Raman spectroscopy (Fig. 3.3C), which is a 

sensitive   technique   able   to   provide   direct   evidence   of   molecular   conformation   or  

 

Fig. 3.3 Characterization of the co-occurrence of BAC and NiO-NPs: (A) Adsorption isotherm (numbers 
represent initial BAC concentration and the arrow indicates initial ozonation working conditions: BAC: 
10 mg·L−1, NiO-NPs: 20 mg·L−1). (B) Potentiometric titration ζ-potential (●) and hydrodynamic diameter of 
NiO-NPs (□). (C) Raman spectra (grey lines represent wavenumbers 1 002 and 2 852 cm−1). 
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interactions of adsorbed surfactants (Wang et al., 2004). For the BAC+NiO-NPs mixture, 

signals with characteristic Raman bands such as those related to the alkyl chain (ν(CH2) 

at 3 000–2 800 cm−1 and the δ(CH2) at 1 449 cm−1), to the aromatic group (ν(CH) at 3 100–

3 000 cm−1 and ν(phenyl ring) at ∼1 600, 1 448, 1 002 cm−1) and to quaternary amine 

(ν(CH3) at 2 852 cm−1) were observed. From the comparison between the Raman spectra 

for pure BAC and the mixture of BAC+NiO-NPs, some conclusions about the adsorption 

configuration can be extracted. The change in relative intensity between bands in 

BAC+NiO-NPs mixture (2 852 cm−1/1 002 cm-1 ∼5/5) compared to pure BAC 

(2 852 cm−1/1 002 cm−1 ∼6/5), indicated that there is a preferential orientation of BAC on 

the surface of the NiO-NPs with respect to the random configuration in solution (pure 

BAC spectra). In the absence of specific interaction between BAC and NiO-NPs, the 

relative intensity of BAC bands in both spectra should remain equal. These observations 

suggest that molecules of BAC adsorb on NiO-NP surfaces via head group, aided by 

favourable electrostatic attraction. These data are in line with the conclusions found for 

the adsorption of cationic surfactants onto NPs by other authors (Wang et al., 2004). 

Fig. 3.4A represents the evolution of BAC, DOC and the profiles for consumed 

and dissolved ozone during the ozonation of BAC+NiO-NPs in synthetic water matrix. A 

similar behaviour to ozonation of BAC alone was observed. For lower ozone dosages 

(zone 1), BAC was significantly abated with ozone exposure up to 0.4 mg·L−1, while for 

input levels above 176 mg O3·L−1 (zone 3), almost total BAC depletion was reached and 

ozone consumption remained constant. As shown in Fig. 3.4A and B, the profile for DOC, 

cationic surfactants and carboxylic acids concentration as a function of ozone dosage 

was also similar to that found for BAC alone. The co-occurrence of NiO-NPs and BAC 

caused in general a higher ozone dosage and ozone consumption values than BAC 

ozonation in the absence of NiO-NPs, which suggests that NiO-NPs contribute to ozone 

consumption. The ozonation of NiO-NPs suspensions resulted in an ozone consumption 

of 27 mg·L−1 at the upper operational limit of the system (Fig. 3.5). Nevertheless, ozone 

decomposition by NiO-NPs does not seem to accelerate the production of hydroxyl 

radicals because BAC profile did not display significant differences with respect to BAC 

ozonation without NiO-NPs. 
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Fig. 3.4 Evolution of BAC (□), DOC (■), consumed (●) and dissolved ozone (○) (A) and cationic surfactants 
(▲), carboxylic acids (sum of oxalic, acetic and formic acids, ♦), ζ-potential ( ) and dissolved nickel (◊) 
(B) for different ozone dosages in synthetic water matrix (BAC+NiO-NPs). 

 

The ζ-potential of BAC+NiO-NPs suspension sharply declined in parallel with 

cationic surfactant concentration from +17 mV at ozone dosage of 4.9 mg·L−1 to –17 mV 

at 106 mg O3·L−1 (Fig. 3.4B). These values were similar to those obtained for the 

potentiometric titration of NiO-NPs with BAC (Fig. 3.3B), which is consistent with a total 

depletion of adsorbed BAC. ζ-potential increased slightly for higher ozone dosages 

throughout   zone   2   reaching   about   -8.0   mV   in   zone   3.   A   significant   increment   in  

A) 

B) 
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Fig. 3.5 Evolution of consumed (●) and dissolved ozone (○), ζ-potential ( ) and dissolved nickel (◊) for 
different ozone dosages in synthetic water matrix (NiO-NPs). 

 

the amount of dissolved nickel from 1 to 3 mg·L−1 was also observed while increasing 

ozone exposure. The final nickel concentration was similar to that found in the 

ozonation of NiO-NPs alone (see Fig. 3.5). These facts suggest that adsorbed BAC acted 

as a coating agent, increasing the stability of NiO-NPs dispersion and preventing nickel 

ions passing to the solution (Mirsa et al., 2012 and Garner et al., 2014). Under these 

conditions, the amount of ozone consumed and the ozone dose were 54 mg·L−1 and 

5.35 mg O3·(mg BAC)−1, respectively. The high values for both parameters with respect 

to the ozonation of BAC could be explained by the ozone consumption driven by NiO-

NPs. The amount of ozone consumed by BAC+NiO-NPs at the operational limit was close 

to the sum of the ozone consumed by water matrix, 7 mg·L−1, NiO-NPs, 20 mg·L−1 

(Fig. 3.5), and BAC abatement, 25 mg·L−1 (Fig. 3.2). 

 

3.3. Elucidation of transformation products and degradation pathway 

Twelve compounds were elucidated as TPs formed during the ozonation of BAC. 

Table 3.4 shows accurate mass measurements of BAC and its TPs and structures 

proposed for them. All of them with retention time lower than BAC, which indicates that 

transformation  reactions  lead  to  more  polar  molecules.  The  profile  of  TPs  as  a  function   
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of ozone dosage is shown in Fig. 3.6. The amounts of TPs corresponded to intermediate 

products in series reactions, with their counts initially increasing to reach a maximum 

and then decreasing as a result of their further degradation. The generation pathway of 

these TPs is expected to include multiple routes due to the presence of different 

reactive sites. Despite this complexity, and in view of the information obtained from the 

literature, the results could be interpreted to propose the degradation pathway shown 

in Scheme 3.2 (Kroon et al., 1994 and Patrauchan and Oriel, 2003). The degradation of 

BAC occurred on both its hydrophobic (i.e., alkyl chain) and hydrophilic region (i.e., 

benzyl and ammonium moiety), which explains the occurrence of transformation 

products TP1–TP6 (full symbols in Fig. 3.6) and TP7–TP12 (empty symbols in Fig. 3.6), 

respectively. 

On the hydrophobic region, the initiation step was hydrogen abstraction from 

alkyl chain by means of a hydroxyl radical leading to a carbon centered radical, its 

reaction    with     dissolved    oxygen    to    yield    a     peroxyl     radical     and     the    subsequent  

 
Fig. 3.6 Evolution of TPs of BAC for different ozone dosages in synthetic water matrix. 
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decomposition to carbonyl compounds TP1 and TP2 (van Geluwe et al., 2011). Carbonyl 

moiety may occur at different positions along the alkyl chain resulting in a series of 

isomers with similar counts: nine for TP1 (C21H36NO+, m/z 318.2791) and eight for TP2 

(C23H40NO+, m/z 346.3104). In the same way, the alkyl chains of TP1 and TP2 may suffer 

hydrogen abstraction to yield TP3 (C21H34NO2
+, m/z 332.2584) and TP4 (C23H38NO2

+, m/z 

360.2897), respectively. The occurrence of benzyldimethylamine (TP5, C9H14N+, m/z 

136.1121) suggests a α-hydroxylation of the alkyl moiety followed by a central fission of 

the Calkyl–N bond (dealkylation). Then, benzyldimethylamine can be hydroxylated to TP6 

(C9H14NO+, m/z 152.1070). On the hydrophilic region, the initiation step would be the 

degradation of benzyl group to yield carboxylic acids (von Sonntag and von Gunten, 

2012). These reactions lead to dodecyltrimethylamine (TP7, C14H32N+, m/z 214.2534). The 

degradation of TP7 may give rise to TP8 (C14H32NO+, m/z 230.2478) through the addition 

of a hydroxyl radical. The aliphatic tertiary amine may undergo hydrogen abstraction 

along the aliphatic chain to yield a group of eight positional isomers (TP9, C14H30NO2
+, 

m/z 244.2271). Further hydrogen abstraction reactions on TP9 could give rise to TP10 

(C14H28NO3
+, m/z 258.2064). TP6 could also be oxidized to TP11, a group of seven isomers 

(C14H30NO+, m/z 228.2322), which would be further transformed to TP12 (C14H28NO2
+, m/z 

242.2115). 

BAC degradation pathways on both the hydrophobic and hydrophilic region 

justified the large amount of carboxylic acids detected at the upper operational limit. 

Acetic acid (4.4 mg·L−1) was a clear outcome of the aliphatic chain oxidation, whereas 

oxalic acid (1.7 mg·L−1) seems to be the final product of ring-opening reactions (von 

Sonntag and von Gunten, 2012). Nitrate reached the maximum concentration of 

0.1 mg·L−1 at zone 3 (5% of the total nitrogen content in BAC molecules), indicating 

negligible nitrogen mineralization. These facts suggest that the remaining organic carbon 

contains a high amount of nitrogen in compounds such as amines, whose protonated 

species react slowly with ozone (k <0.1 M−1·s−1, von Sonntag and von Gunten (2012)). 

The accumulation of transformation products such as TP1, TP9 and TP10 could explain the 

incomplete depletion of cationic surfactants (Fig. 3.2B and 3.4B). 
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Scheme 3.2 Proposed degradation pathway during the ozonation of BAC in synthetic water matrix. 
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All TPs aforementioned above were also detected in the presence of NiO-NPs, 

which suggest that the same degradation pathway took place. However, significantly 

lower area counts of TPs from reactions on the hydrophilic part of BAC (TP7–TP12), 

especially in zone 1, were found. This is consistent with the already explained adsorption 

of BAC on NiO-NPs, which should proceed through the benzyl group and prevent it from 

oxidation. 

 

3.4. Matrix effects 

The influence of water matrix on the ozonation of BAC+NiO-NPs was also studied 

in a real STP influent. Non-spiked raw wastewater required an instantaneous ozone 

demand of 77 mg·L−1 (Fig. 3.7A). High values of consumed ozone were also observed at 

the upper operational limit, 87 mg·L−1. Both facts were mainly a result of the oxidation of 

wastewater organic matter, the concentration of which was elevated (DOC0 = 61 mg·L−1). 

A disintegration of suspended solids also took place during ozonation process, leading to 

an increase of inorganic anions such as nitrate, phosphate and sulphate, as well as DOC 

(Fig. 3.7B). In spite of increasing DOC, partial oxidation reactions were revealed by a 

sharp reduction of the specific ultraviolet absorption at 254 nm (SUVA254). 

The evolution of BAC, DOC, dissolved and consumed ozone during the ozonation 

in spiked STP influent is represented in Fig. 3.8A. Important differences were observed 

with regard to the synthetic water matrix. The amount of consumed ozone increased 

with ozone input and no dissolved ozone was detected (<0.01 mg·L−1). The profile of BAC 

depletion was also different. BAC decay in STP influent could be split in two parts. First, 

up to ozone exposures of 18 mg·L−1, BAC concentration decreased sharply (up to 65% 

removal). For higher ozone dosages, BAC concentration declined slowly, probably 

influenced by the elevated amount of DOC in solution. DOC rose from 67 to 80 mg·L−1 

during the first part of the reaction because of the solubilization of suspended solids, 

which increased ozone demand. Under these conditions, an ozone consumption of 

157 mg·L−1 (dosage of 300 mg·L−1) was required to achieve 0.4 mg·L−1 of BAC, a 

concentration that required 54 mg·L−1 of ozone in synthetic water. On the whole, 
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consumed ozone in real wastewater was close to five-fold the corresponding value in 

synthetic water matrix. 

The high ozone demand of wastewater was also related to the lower depletion of 

cationic surfactants (Fig. 3.8B), which followed the same profile as BAC. A significant 

removal of cationic surfactants was reached for ozone dosage of 18 mg·L−1 but their 

concentration stabilized at 4.6 mg·L−1 without further reduction. The evolution of 

carboxylic   acids   followed   a   similar   trend   to   that   observed   in   synthetic   matrix,    but  

 

 

Fig. 3.7 Evolution of consumed (●) and dissolved ozone (○) (A) and DOC (■), SUVA254 (▽), VSS ( ), nitrate 
(▼), sulfate (□) and phosphate (Δ) for different ozone dosages in STP influent. 

B) 

A) 
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displaying higher concentrations as a consequence of the oxidation reactions of 

dissolved organic matter (Zhang et al., 2009 and van Geluwe et al., 2011). Specifically, 

formic, acetic and oxalic acid achieved values of 14, 36 and 6.5 mg·L−1, representing 

altogether close to 40% of the remaining dissolved carbon. Meanwhile, ζ-potential 

displayed negative values during all the ozonation process, reaching -28 mV for an ozone 

dosage of 68 mg·L−1. A possible cause is that organic matter could adsorb on NP surfaces 

and  confer  them  a  negative  charge  (Zhang  et  al.,  2009).  The  concentration  of  dissolved  

 

 

Fig. 3.8 Evolution of BAC (□), DOC (■), consumed (●) and dissolved ozone (○) (A) and cationic surfactants 
(▲), carboxylic acids (sum of oxalic, acetic and formic acids,♦), ζ-potential ( ) and dissolved nickel (◊) (B) 
for different ozone dosages in STP influent (BAC+NiO-NPs). 

B) 

A) 
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nickel reached a value significantly lower than that found in synthetic water (0.8 mg·L−1). 

This fact is most likely due to the barrier caused by adsorbed organic matter on NiO-NPs, 

which stabilizes NP dispersion and reduces the rate of dissolution (Mirsa et al., 2012 and 

Garner et al., 2014). 

 

3.5. Aquatic toxicity assessment 

The toxicity of BAC and NiO-NPs to single species and activated sludge 

microorganisms was assessed by determining concentration-response curves as shown 

in Fig. 3.9. All the bioassays were sensitive to BAC with the following 𝐸𝐶50 values: 

0.26 mg·L−1 for V. fischeri, 8.40 mg·L−1 for P. putida, 4.28 mg·L−1 for T. thermophila and 

3.43 mg·L−1 for activated sludge. The 𝐸𝐶50 values are in good agreement with previously 

reported data and are consistent with the use of BAC as biocide (Nalecz-Jawecki et al., 

2003, Sütterlin et al., 2008, Carbajo et al., 2015a and ECHA, 2015). The growth inhibition 

tests using P. putida and T. thermophila were also sensitive to NiO-NPs with 𝐸𝐶50 values 

of 4.25 and 0.58 mg·L−1 respectively, while V. fischeri and activated sludge assays 

displayed 𝐸𝐶50 values >100 mg·L−1. The same sensitivity pattern was observed for nickel 

ions (nickel as nickel sulfate), which displayed a concentration-response curve parallel to 

NiO-NPs for each bioassay (inset Fig. 3.9B). This fact suggests that the concentration of 

nickel ion released from the NP is the driver for the toxicity of NiO-NPs. The low 

sensitivity of V. fischeri and activated sludge to different NPs has also been reported 

elsewhere (Heinlaan et al., 2008, García et al., 2012 and Wang et al., 2014). 

Fig. 3.10 displays the evolution of the toxicity of untreated and treated water 

samples at different ozone exposures in synthetic matrix and STP influent for the 

organisms used in the present study. The aquatic toxicity of untreated synthetic water 

(BAC = 10 mg·L−1 and/or NiO-NPs = 20 mg·L−1) displayed significant inter-bioassay 

differences, which essentially corresponded to the already described sensitivity to BAC 

and NiO-NPs. The growth inhibition of P. putida and T. thermophila was severely 

inhibited because BAC and NiO-NPs concentrations were considerably higher than their 

𝐸𝐶50 values. Moreover, untreated synthetic water could be classified as toxic, or even 
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highly toxic, to subsequent biological treatment according to the scoring system defined 

by Persoone et al. (2003). V. fischeri and activated sludge tests were also strongly 

affected by water spiked with BAC (toxic or highly toxic), but not with single NiO-NPs, 

which is consistent with their lower sensitivity to the nanomaterial. 

 

 

 

Fig. 3.9 Concentration-response curve of BAC, NiO-NPs and inset nickel as nickel sulfate for V. fischeri (●), 
P. putida (■) and T. thermophila (▲) and activated sludge assay (◊). Mean ± 95% confidence interval, 
lines gives nonlinear-regression sigmoidal dose-response curve model, arrows represent the initial BAC 
and NiO-NPs concentrations in spiked water (10 and 20 mg·L−1, respectively). 

 

B) 

A) 
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The aquatic toxicity of BAC+NiO-NPs was lower in STP influent than in the 

synthetic matrix except to V. fischeri, which could be explained by the toxicity of the raw 

wastewater itself. For the rest of biotests, mixture toxicities of BAC+NiO-NPs were 

notably influenced by matrix (i.e., high concentration of solids, organic and inorganic 

matter), which reduces the bioavailability of the cationic surfactants and dissolved 

metals (Nalecz-Jaecki et al., 2003, Heinlaan et al., 2008, Ismail et al., 2010 and Mirsa et 

al., 2012). Moreover, the high amount of nutrients contained in the STP influent 

(assimilable organic carbon, nitrogen, phosphate) could partially mask the toxic effects 

of the studied contaminants. 

In the synthetic water matrix, the evolution of the aquatic toxicity throughout 

ozonation of BAC showed that the increase of ozone dosage up to 54 mg·L−1 (zone 1) 

caused a gradual toxicity reduction. By the end of zone 1, the toxicity reached a constant 

value similar to that of non-spiked synthetic water for all bioassays. TU values remained 

essentially constant thereafter in zone 2 and 3. Ozone treated water could then be 

classified as non-toxic for P. putida and activated sludge tests. Aquatic toxicity and BAC 

concentration follow a similar profile with increasing ozone dosage. Despite the fact that 

BAC was not completely depleted at the end of zone 1 (BAC = 0.4 mg·L−1), the reduction 

of its concentration brought about a considerable reduction of its toxic effects. The 

degradation reactions caused changes in the molecular structure of BAC, affecting 

moieties which were directly responsible for its biocide activity (Rusell, 2003). In fact, 

TOF/MS measurements of TPs showed that benzyl and alkyl groups were oxidized in 

parallel with the depletion of surface activity. 

During the ozonation of NiO-NPs in synthetic water matrix, the toxicity was 

slightly enhanced at the lowest ozone dosage due to the increment of dissolved nickel 

that reached 3 mg·L−1. For higher ozone exposure, no toxicity changes were observed. 

The aquatic toxicity pattern of treated BAC+NiO-NPs in synthetic matrix was similar to 

that of BAC for the bioassays with low sensitivity to NiO-NPs. V. fischeri and activated 

sludge tests reached the same TU values of non-spiked synthetic water at the end of 

zone 1, with the toxicity remaining constant for further ozone dosages (zones 2 and 3). 

For  P.  putida  and  T.  thermophila,  the  toxicity  declined  steadily  with  ozone  exposure  up  
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Fig. 3.10 Evolution of toxic units (TUs) of treated samples for different ozone dosages in synthetic water 
spiked with BAC (□), NiO-NPs (∆), BAC+NiO-NPs (●), STP influent spiked with BAC+NiO-NPs (♦) and non-
spiked STP influent (◊). Mean ± 95% confidence interval,  highly toxic,  toxic,  slightly toxic 
and  non-toxic influent to subsequent biological treatment according to the classification defined by 
Persoone et al. (2003). 
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to an ozone dosage of 58 mg·L−1 to sharply increase thereafter in zones 2 and 3. This 

increase was parallel with that of dissolved nickel, the concentration of which rose from 

1 to 3 mg·L−1. As a consequence, the ozonation yielded a highly toxic wastewater from a 

toxic influent to P. putida. As already described, P. putida and T. thermophila were highly 

sensitive to NiO-NPs and dissolved nickel as evidenced by the corresponding 𝐸𝐶50 

values: 0.57 and 0.061 mg·L−1, respectively. It is worth mentioning that the toxicity 

towards P. putida at the highest ozone dosage (∼190 mg·L−1) was significantly higher in 

BAC+NiO-NPs than in NiO-NPs wastewater, even considering that both had the same 

amount of dissolved nickel (3 mg·L−1). This suggests a synergistic effect between nickel 

and other mixture components. 

The aquatic toxicity of non-spiked STP influent increased steadily with increasing 

ozone exposure for all biotests except V. fischeri, for which it slightly reduced. In spiked 

STP influent, aquatic toxicity steadily decreased in single-species tests up to 68 mg·L−1, 

allowing treated wastewater to be classified as non-toxic to P. putida. For higher ozone 

exposures, the toxicity to P. putida and T. thermophila increased progressively in parallel 

with an increase in the amount of dissolved nickel. For the activated sludge test, 

ozonation resulted in a sharp toxicity reduction at low ozone dosage (18 mg·L−1), 

allowing ozone treated wastewater to be considered non-toxic. For increasing ozone 

exposure, the toxicity of treated wastewater increased progressively equalling that of 

non-spiked STP influent. This fact, together with the low sensitivity of activated sludge to 

nickel (<5% inhibition at 1 mg·L−1), suggests that ozonation by-products from STP 

influent matrix were the main source of toxicity to the activated sludge assay. 

 

4. Conclusions 

It was shown that the continuous ozonation with short reaction time and low 

ozone dosages is a suitable technology for sequential chemical-biological treatment 

regarding the reduction of toxicity caused by wastewater contaminated with BAC and 

NiO-NPs. 
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BAC was significantly removed (>95%) during ozonation independently of NiO-NP 

co-occurrence or water matrix characteristics. NiO-NPs and wastewater matrix notably 

increased the ozone dosage required for a given degree of BAC removal. BAC ozonation 

led to less hydrophobic molecules as a consequence of the reaction on both the 

hydrophobic (alkyl chain) and hydrophilic regions (benzyl and ammonium moieties) of 

the parent compound. The presence of NiO-NPs influenced the first steps of the 

degradation pathway of BAC preventing benzyl group from oxidation. 

The aquatic toxicity of raw wastewater for the single-species tests (V. fischeri, P. 

putida, T. thermophila) and activated sludge assay was considerably reduced for an 

ozone dosage lower than that required for BAC abatement. Higher ozone dosage 

BAC+NiO-NPs caused an increase in nickel leaching from the nanomaterial and 

consequently, a toxicity enhancement of treated wastewater. Toxicity assessment was 

shown to be a critical parameter for the ozonation of wastewater. 
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TOXICITY AND ENVIRONMENTAL RISK OF ANTIBIOTICS FROM STP 
EFFLUENTS FOR LIMNIC PERIPHYTIC BACTERIAL COMMUNITIES 

 

Abstract 

The chronic toxicity of six antibiotics frequently detected in sewage treatment 

plant (STP) effluents and freshwaters (doxycycline, erythromycin, metronidazole, 

ofloxacin, sulfamethoxazole and trimethoprim) towards limnic bacterial periphytic 

communities was assessed. Only doxycycline and ofloxacin affected the carbon source 

metabolization in a concentration-dependent fashion at concentrations above 2.0 and 

16 µg·L−1, respectively. Ofloxacin exposure has a more selective effect, resulting in clear 

changes in the bacterial carbon source utilization pattern, while doxycycline affects the 

bacterial utilization of a broader range of carbon sources with a similar concentration-

response pattern. Indeed, both antibiotics cause different toxicant-induced succession 

(TIS) trajectories in the heterotrophic part of the communities, showing a dissimilar 

ecological mode of action. The combined effects of the six antibiotics were determined 

using a fixed ratio design according to their maximum detected concentrations in the 

effluent of two European STPs. Exposure to antibiotic mixtures reflecting effluents from 

the Swedish STP (Ryaverket, Gothenburg) and the Spanish STP (West-Alcalá, Madrid) 

affected the overall metabolic response of the heterotrophic communities to 

concentrations 8.9 and 250 times higher than the maximum detected concentrations, 

respectively. Furthermore, exposure to the mixture from the Spanish STP led to a re-

arrangement of the carbon source utilization, indicating a change in community 

biodiversity and/or function with a pattern mainly influenced by ofloxacin. Results from 

screening level risk assessment indicate potential risk from ofloxacin and the antibiotic 

mixture under Spanish STP scenario. The results highlight that toxic effects of the 

antibiotic mixture, and especially ofloxacin (the risk driver of the mixture), should be 

assessed, in order to decide whether mitigation measures such as source control by 

targeted restrictions or STP upgrading for improving removal efficiencies are needed. 
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1. Introduction 

Antibiotics are used extensively in human medicine for treating bacterial 

infections (Kümmerer, 2009a). More than 10 000 tonnes of antibiotics are consumed in 

the European Union each year (Valera et al., 2013), with use patterns that vary greatly 

between countries (ECDC, 2014). Many antibiotics are metabolized only to a small 

extent, are poorly biodegraded and incompletely removed by conventional sewage 

treatment plants (STPs) (Verlicchi et al., 2012). Thus, antibiotics are continuously 

released in wastewater effluents into the aquatic environment (Michael et al., 2013), 

where they are detected in the ng·L−1 to lower µg·L−1 range (Kolpin et al., 2002, Segura et 

al., 2009, Santos et al., 2010, Fatta-Kassinos et al., 2011 and Rodríguez-Mozaz et al., 

2015). 

Although the main concern of antibiotics is related to the development of 

resistance mechanisms by bacteria and its implications for human health (Ashbolt et al., 

2013, Rodríguez-Rojas, et al., 2013 and Rodríguez-Mozaz et al., 2015), their continuous 

release into environment and their bioactive properties also raise concerns about the 

chronic toxicity of antibiotics to aquatic organisms (Kümmerer, 2009a). Nevertheless, 

most research on the toxicity of antibiotics has been focused on investigations of their 

toxicity in single-species tests (Jjemba, 2008, Santos et al., 2010 and Brausch, 2012). This 

approach is based on laboratory exposures that estimate the toxicity on single species 

by measuring the response as physiological or population-based parameters (i.e. 

mortality, growth, reproduction, mobility, and metabolism) (Proia et al., 2013a). 

However, single-species tests do not take into account the interaction among species, 

often use genetically homogeneous populations of standard species that are not 

indigenous to the receiving water body and the tests are often conducted under 

experimental conditions very different from the receiving aquatic environment of 

concern (Geiszinger et al., 2009). Therefore, ecotoxicological assessments should be 

completed by studies that use natural communities that are present in the receiving 

water body, in order to provide a more realistic indication of the toxicity of antibiotics in 

exposed ecosystems (Proia et al., 2013b). 
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Evaluation of the toxicity of antimicrobials to complex communities is limited 

during the regulatory risk assessment to the activated sludge respiration inhibition test 

(OECD Guideline 209) (EMA, 2006). However, activated sludge communities have been 

established and live while exposed to concentrations of antibiotics that are significantly 

higher than those that occur in the environment (Verlicchi et al., 2013). Therefore, 

sewage sludge bacterial communities are more tolerant towards antibiotics than 

bacteria in receiving waters. Moreover, the standard activated sludge respiration 

inhibition test is an acute assay that underestimates the toxic effects of antibiotics 

(Froehner et al., 2000 and Kümmerer et al., 2004). 

Periphyton is an aquatic biofilm-forming community that develops on submerged 

surfaces. It comprises bacteria and other heterotrophs (e.g., fungi and protozoa), and 

autotrophs (e.g., diatoms, green algae and cyanobacteria) embedded in an extracellular 

polymeric matrix. Periphyton is a highly structured entity in which a diverse range of 

species compete for space and nutrients, each with its own strategy and sensitivity 

towards different stressors (Sabater et al., 2007). Species-dependent changes in 

ecological fitness due to exposure to toxic compounds hence do not only change the 

overall physiological activity of the biofilm species, but also affect community 

biodiversity (Blanck, 2002). Furthermore, periphyton biofilms can be established in the 

natural environment and then transferred to the laboratory where they can be exposed 

to individual chemicals or complex mixtures under controlled conditions, combining high 

ecological realism with the precision and experimental capacity of laboratory-based 

studies (Porsbring et al., 2007 and Johansson et al., 2014). 

Aquatic ecosystems are exposed to various multi-component mixtures 

(Backhaus, 2014) and also antibiotics do not occur as isolated, pure substances in the 

environment, although their toxicity has been mainly assessed substance by substance 

(Vasquez et al., 2014). It is well established that chemical mixtures typically have higher 

toxicities than each its component alone (Kortenkamp et al., 2009). Consequently, a 

mixture can have a considerable toxicity even if all components are present in low 

concentrations that do not induce toxic effects singly (Backhaus et al., 2008), a pattern 

also observed for mixtures of antibiotics (Backhaus et al., 2000). Therefore, mixture 
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effects must be taken into account when assessing the environmental risk of antibiotics, 

in order not to underestimate their hazard (Backhaus and Karlsson, 2014). Experimental 

findings suggest that the overall risk of a multi-component may often be driven by a few 

compounds (Price et al., 2012 and Backhaus and Karlsson, 2014). The identification of 

such “drivers of mixture toxicity” has been put forward as a research priority in order to 

develop appropriate risk management and mitigation measures in order to safeguard 

the environment against adverse biological effects of anthropogenic chemical 

contamination (Altenburger et al., 2015). 

The present study assesses the chronic toxicities of six antibiotics that are 

frequently detected in STP effluents and the freshwater environment (doxycyline, 

erythromycin, metronidazole, ofloxacin, sulfamethoxazole and trimethoprim) to limnic 

periphytic bacterial communities. The joint toxicities of the six antibiotics, mixed in 

proportion to their occurrence in effluents from a Swedish STP (Ryaverket, Gothenburg) 

and a Spanish STP (West-Alcalá, Madrid), were studied in order to determine whether 

the wastewater effluents might impact the receiving freshwater ecosystem. On basis of 

toxicity data, it is then assessed whether the single antibiotics and their mixture might 

pose a risk to freshwater ecosystems, and identified the major risk driver of the mixture. 

 

2. Materials and methods 

2.1. Materials 

The antibiotics used in this study belong to different chemical and mode-of-

action classes and were selected based on their occurrence in STP effluents and 

freshwaters (see Table 4.1 and Supplementary data). The following six antibiotics were 

tested: doxycycline (DXY), erythromycin (ERY), ofloxacin (OFX), and trimethoprim (TMP) 

purchased from Sigma-Aldrich, and sulfamethoxazole (SMX) and metronidazole (MNZ) 

purchased from Fluka. 

The principal mode of action of DXY (tetracycline) and ERY (macrolide) is 

inhibition  of  protein  biosynthesis  by  binding  to  bacterial  30Sor  50S  ribosomal  subunits,   
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respectively (González-Pleiter et al., 2013). OFX (quinolone) inhibits the enzyme DNA 

gyrase and topoisomerase IV, affecting replication and transcription. MNZ 

(nitroimidazole) is a pro-drug, whose reduced form is covalently bound to DNA inhibiting 

bacterial nucleic synthesis whose reduced form inhibits nucleic acid synthesis by 

disrupting the DNA of microbial cells (Kümmerer et al., 2000). Finally, SMX (sulfonamide) 

and TMP inhibit the folate synthesis pathway in bacteria, but their inhibition sites are 

different. SMX inhibits dihydropteroate synthetase which catalyses the conversion of 

para-aminobenzic acid to dihydropteroic acid, a precursor of folate. On the other hand, 

TMP inhibits dihydrofolate reductase, which converts dihydrofolic acid to tetrahydrofolic 

acid, both active forms of folic acid suitable for utilization (Eguchi et al., 2004). 

Antibiotics were tested singly and in 6-component mixtures. The dilution series 

of single antibiotics were tested in concentrations ranging from the ng·L−1 to lower 

mg·L−1 range (up to 10 µmol·L−1). Two multi-component mixtures were studied, in which 

the six antibiotic were mixed relative to their occurrence in wastewater effluents from a 

Swedish STP (Ryaverket: 13 500 m3·h−1, 832 000 population equivalent, Gothenburg) and 

Spanish STP (West-Alcalá: 3 000 m3·h−1, 374 000 population equivalent, Madrid) 

(Table 4.2). Both STPs apply an activated sludge treatment followed by clarification. The 

main sources of the incoming waters are urban (included hospital wastewaters) and to a  

Table 4.2 Concentration of studied antibiotics (ng·L−1) at the worst case scenario 
(maximum value detected in STP effluent) in the Swedish STP (Ryaverket, 
Gothenburg) and Spanish STP (West-Alcalá, Madrid). 

Antibiotic 
Concentration (ng·L−1) 

Swedish STP Spanish STP 
 

Doxycycline 
 

227a 
 

61c 

Erythromycin 160a 760d 

Metronidazole 33a 127d 

Ofloxacin 120b 3 594d 

Sulfamethoxazole 20b 370d 

Trimethoprim 231a 148d 

Mixture 791 5 060 
 
a Lindenberg et al., 2005 
b Andreozzi et al., 2003 
c Hijosa-Valsero et al., 2011 
d Rosal et al., 2010 
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lesser extent industrial. Therefore, the antibiotics found in the effluents originate from 

their use in human medicine. It is important to note in this context that the two 

countries represent different antibiotic consumption patterns (Johanson et al., 2015). 

Sweden used an average defined daily dose (DDD) of 13.0 per 1 000 inhabitants and per 

day in 2013, while Spain consumed 24.2 DDD, a 1.9-fold difference (ECDC, 2014). Both 6-

compound mixtures were tested from a concentration of 0.1 to 1 000 times the 

maximum detected antibiotic concentrations in each STP effluent. 

The tested antibiotics were dissolved in methanol in order to obtain a 

concentrated stock solution (g·L−1) for each compound and were stored at -20ºC in the 

dark. In order to prepare test solutions, the corresponding aliquot of the stock solution 

was pipetted into a 250 mL Pyrex bottle and the methanol was left to evaporate. 

Afterwards the test medium was added, which consisted of filtered river water (GF/F, 

Whatman, pore size 0.7 µm) amended with nutrients (Z8 medium, Scandinavian Culture 

Collection for Algae and Protozoa). The river water was collected from the periphyton 

sampling site one day prior to the start of the experiment, filtered and stored in the dark 

at 4ºC until use. Characteristics of the river water are included in Table 4.3. All toxicant 

dilutions were vigorously shaken at 4ºC in the dark for at least 12 h prior to use. New 

dilution series were prepared every 24 h and were used for changing the test medium in 

the periphyton incubation vessels in order to ensure constant toxicant and nutrient 

concentrations. 

Table 4.3 Main physico-chemical parameters of Mölndalsån river at station no. 4 (Göta Älvs 
Vattenvårdsförbund, 2013) during the sampling period of the experiments. 
Temperature (ºC) 16.8  Alkalinity (mg CaCO3·L−1)  39.0 
Dissolved oxygen (mg·L−1) 8.9  N like NO3

- (µg·L−1) 190 
pH 7.0  Total N (µg·L−1) 500 
Conductivity (µS·cm−1) 86.9  Total P (µg·L−1) 10.9 
Coloration (mg Pt·L−1) 45.0  COD (mg·L−1) 8.5 
Turbidity (FNU) 2.6  TOC (mg·L−1) 7.3 

 

The stability of antibiotics under SWIFT periphyton test conditions was examined 

at the beginning and at the end of the exposure time according to the corresponding 

OECD Guidance (OECD, 2008). Analysis have been performed by means of LC-MS/MS 

using an Agilent 1260 LC equipped with an Agilent 6410 triple quadrupole detector. The 
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separation was performed on an Agilent Zorbax SB-C18 column (50 × 2.1 mm, 1.8 µm) 

equipped with a 5 mm guard column. A gradient of water (0.1% formic acid) [A] and 

acetonitrile (0.1% formic acid) [B] was applied as follows: 0 min, 5% [B]; 4 min, 10% [B]; 

15 min, 100% [B]; 16 min 5% [B]. The electrospray source of the detector was operated 

in positive mode with an ionization voltage of 4 000 V at 250ºC with a nitrogen flow of 

11 L·min-1 at 40 psi. The following main ions [M+H]+ and one or more fragment ions for 

MS determination were chosen: for DXY m/z 445, 420 and 201; for ERY m/z 734, 158 and 

116; for MNZ m/z 172 and 128; for OFX m/z 362, 318, and 261; for SMX m/z 254, 156 and 

92, and for TMP m/z 291, 261 and 123. The concentrations of ERY, MNZ, SMX and TMP 

remained at 80–120% of their respective nominal concentration, therefore the effect 

concentrations are expressed as nominal concentrations in accordance with OECD 

Guidance (OECD, 2008). Concentrations of OFX and DXY after 24 hours exposure 

decreased to 76 and 52% of their nominal concentration, respectively. The limited 

stability of quinolones and tetracyclines in aqueous solution as a consequence of their 

photodegradability and complexing properties have been previously reported (Halling-

Sørensen et al., 2002 and Sukul and Spiteller, 2007). Thus, the exposure concentrations 

of OFX and DXY were calculated as the geometric mean of the measured concentrations 

during the experiment. 

 

2.2. SWIFT periphyton test 

Toxicant effects were studied in a slightly modified version of the semi-static 

SWIFT periphyton test, as described by Porsbring et al. (2007). Periphyton communities 

were sampled in Mölndalsån (N 57º 40´ 59´´ E 12º 13´ 7´´), a small river near Gothenburg 

(Sweden), which is neither recipient of STP effluent nor subjected to run offs from 

agricultural areas, and is hence considered free from antibiotic contamination. Biofilms 

were established on submerged glass discs (1.5 cm2) that were mounted on 

polyethylene racks (Blanck and Wangberg, 1988) over seven days at an approximate 

depth of 0.5 m and then transferred to the lab. Eight colonized discs were placed in glass 

beakers (10 × 15 × 5 cm), into which 200 mL test solution were then added. The 

periphyton communities were then incubated for three days in a thermo constant room 
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at river temperature (15–17ºC) with a day-light cycle illumination (16 h light of 

∼125 μmol photon·m-2·s-1, 8 h darkness). During the exposure the periphyton samples 

were constantly shaken. 

In order to assess effects on bacteria, three glass discs were sampled after 72 h 

from each test vessel. The discs were transferred to glass scintillation vials containing 

20 mL of test solutions. Scintillation vials were sonicated three times for 15 seconds, 

followed by vigorous shaking over 15 seconds in order to detach the periphyton biolfims 

from the discs. Afterwards, the suspension was filtered through sterile paper (Kimcare, 

Kimberly-Clark Professional) into a sterile plastic Petri dish to remove large biofilm 

clumps. 150 µL of filtered suspension was pipetted into each well of a Biolog EcoPlatesTM 

(referred as EcoPlates in the following), purchased from Dorte Egelung ApS, Roskilde 

(Denmark). These 96-well plates, pre-loaded with 31 different carbon-sources and a 

tetrazolium dye (Table 4.4), provide information on total metabolic activity and 

functional diversity of the bacteria growing in them. Optical densities were measured 

over 96 h (24, 42, 48, 66, 72, 86 and 96 h) at 595 and 700 nm using a microplate 

spectrophotometer (µ QuantTM, Bio-Tek Instruments Inc.). 

The recorded optical density (OD) was corrected first for turbidity by subtracting 

the absorbance at 700 nm from the absorbance at 595 nm (absorbance of the oxidized 

tetrazolium dye) for each well. The resulting OD was subsequently corrected for any 

unspecific colour formation by subtracting the median absorbance of the three wells 

without any pre-loaded carbon source (blanks) to yield the final correct OD for each 

carbon source (ODcorr) and exposure time. Negative values for ODcorr were set to zero for 

the following calculations. Average well colour (AWC) was then determined for each 

plate and exposure time by calculating the arithmetic mean of the ODcorr of all carbon 

source wells. The inhibition of AWC for each treatment was finally calculated in relation 

to the average AWC of the control plates as an indicator of general response of the 

whole bacterial communities. For this purpose, the data recorded after 66 h incubation 

were used. At this time a clear colour development was visible in most wells, but at the 

same time, the extensively metabolized carbon sources were not yet exhausted. 
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Table 4.4 Pre-loaded carbon source in Biolog EcoPlatesTM 
Lable Carbon Source Guild 
C1 Water Water 
C2 Pyruvic acid methyl ester Carboxylic acid 
C3 Tween 40 Polymer 
C4 Tween 80 Polymer 
C5 α-cyclodextrin Polymer 
C6 Glycogen Polymer 
C7 D-cellobiose Carbohydrate 
C8 α-D-lactose Carbohydrate 
C9 β-methyl-D-glucoside Carbohydrate 
C10 D-xylose Carbohydrate 
C11 i-erythritol Carbohydrate 
C12 D-mannitol Carbohydrate 
C13 N-acetyl-D-glucosamine Carbohydrate 
C14 D-glucosaminic acid Carboxylic acid 
C15 Glucose-1-phosphate Carbohydrate 
C16 D,L-α-glycerol phosphate Carbohydrate 
C17 D-galactonic acid γ-lactone Carbohydrate 
C18 D-galacturonic acid Carboxylic acid 
C19 2-hydroxy benzoic acid Phenolic compound 
C20 4-hydroxy benzoic acid Phenolic compound 
C21 γ-hydroxybutyric acid Carboxylic acid 
C22 Itaconic acid Carboxylic acid 
C23 α-ketobutyric acid Carboxylic acid 
C24 D-malic acid Carboxylic acid 
C25 L-arginine Amino acid 
C26 L-asparagine Amino acid 
C27 L-phenylalanine Amino acid 
C28 L-serine Amino acid 
C29 L-threonine Amino acid 
C30 Glycyl-L-glutamic acid Amino acid 
C31 Phenylethyl-amine Amine 
C32 Putrescine Amine 

 

Inhibition of AWC values were used for estimating concentrations-response 

curves using the Weibull model (Eq. 4.1), while significances between control and 

treatment were calculated using Dunnett’s test, in order to determine No Observed 

Effect Concentrations (𝑁𝑂𝐸𝐶). 

𝐴𝑊𝐶 𝑖𝑛ℎ = 1 − exp (− exp  (𝜃1 +𝜃2 ∗  𝑙𝑜𝑔10(𝑐𝑜𝑛𝑐))) (4.1) 
 

Curves describing the bacterial activity (colour development) of each carbon 

source over incubation time from 0 to 96 h were determined by fitting a Weibull model 

in the form of: 
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𝑂𝐷𝑐𝑜𝑟𝑟 = 1 − exp (− exp  (𝜃1 + 𝜃2 ∗  𝑙𝑜𝑔10(𝑡𝑖𝑚𝑒))) (4.2) 
 

The area under each of the resulting curve (AUC) was calculated as an estimate 

of the total metabolization of each carbon source, using the classical simplex method. In 

order to gain insight into the overall metabolic diversity of the communities, data were 

ordained using nonmetric multidimensional scaling (nMDS), which reduces the 

multidimensional structure of the data into a 2-dimensional plot in which the distances 

between the individual samples reflect the multivariate dissimilarity between the 

original samples (Clarke and Warwick, 2001). Manhattan Distances (City-Block Metric) 

(Eq. 4.3) between all pairs of samples 𝑗, 𝑘 were used as input data for the similarity 

matrix. 

𝑀𝐷 = ��𝑂𝐷𝑐𝑜𝑟𝑟𝑗,𝑖 − 𝑂𝐷𝑐𝑜𝑟𝑟𝑘,𝑖�
31

𝑖=2

 (4.3) 

 

Calculations were implemented using PROXSCAL algorithm in SPSS software 

(v. 22, IBM SPSS, Chicago, USA). 

 

2.3. Concept for predicting mixture toxicities 

Predictive approaches based on the mathematical concepts of Concentration 

Addition (CA) and Independent Action (IA) have been performed. Both concepts predict 

the toxicity of a mixture based on the individual toxicities of the mixture components 

(Kortenkamp et al., 2009). 

CA can be mathematically formulated for an 𝑛-compound mixture as: 

�
𝑐𝑖
𝐸𝐶𝑥𝑖

= 1
𝑛

𝑖=1

 (4.4) 

 

where 𝑐𝑖 denotes the concentration of compound 𝑖 in a mixture that is expected to 

cause 𝑥% effect, and 𝐸𝐶𝑥𝑖  gives the concentration at which the compound 𝑖 alone 

causes the same 𝑥% effect. CA is based on the assumption that all components in the 
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mixture behave as if they are simple dilutions of one another, which is often taken to 

mean that CA describes the joint action of compounds with an identical mechanism of 

action (Kortenkamp et al., 2009). 

The competing concept of IA has been derived from probabilistic reasoning. 

Accordingly, the effect of a mixture comprised of 𝑛-compounds is calculated by applying 

the statistical concept of independent random events (Bliss, 1939): 

𝐸(𝑐𝑚𝑖𝑥) = 1 −�[1 − 𝐸(𝑐𝑖)]
𝑛

𝑖=1

 (4.5) 

 

where 𝐸(𝑐𝑖) is the effect of compound 𝑖 if applied alone at concentration 𝑐𝑖, the 

concentration at which it is present in the mixture. Due to its probabilistic basis, IA 

assumes that all substances in a mixture exert their effects completely independent of 

each other. This is usually interpreted as the compounds have dissimilar modes of action 

and affect different physiological process (Kortenkamp et al., 2009). 

 

2.4. Risk assessment 

In order to estimate and assess the potential risk that antibiotics could cause on 

freshwater ecosystems, risk quotients (RQs) are calculated assuming the worst case 

scenario (i.e., the maximum measured antibiotic concentrations) for Swedish and 

Spanish STP effluents (Table 4.2). 

The toxic units (TUs, 𝑇𝑈𝑖 =  𝐸𝑛𝑣𝐶𝑜𝑛𝑐𝑖/𝐸𝐶10𝑖) of single antibiotics were first 

calculated basis of 𝐸𝐶10 due to the well-known shortcoming of classic 𝑁𝑂𝐸𝐶 

determinations (van Dam et al., 2012). Multiplying TUs by the assessment factor (AF) of 

10 (EMA, 2006) were calculated RQ for each single antibiotic. If no 𝐸𝐶10 values were 

available for a particular antibiotic, the highest tested concentration was used. 

On the basis of single antibiotic data, the expected joint risk of the antibiotic 

mixture is then estimated using the strategy for the component-based risk assessment 
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of chemical mixtures (Backhaus and Faust, 2012), which is primarily based on CA. In fact, 

the sum of toxic units (STUs) was calculated for each scenario as follows: 

𝑆𝑇𝑈𝑠 = ��
𝐸𝑛𝑣𝐶𝑜𝑛𝑐𝑖
𝐸𝐶10𝑖

�
𝑛

𝑖=1

 (4.6) 

 

The final RQ for the mixture then equals the STU multiplied by the AF (EMA, 

2006). The antibiotic mixtures studied by means of a whole-mixture approach were also 

assessed their risk as if they were a single chemical (Backhaus et al., 2010) and then 

compared with the RQ from component-based strategy in order to determinate the risk 

predict capacity of the latter approach. RQ higher than 1 suggests that antibiotic risk 

would be inadequately controlled for the microorganisms present in a freshwater 

ecosystem. 

 

3. Results and discussion 

3.1. Toxicity of single antibiotics 

The effects of antibiotics on the overall metabolic activity (inhibition of average 

well colour development, AWC) of the limnic periphytic bacterial communities are 

shown in Fig. 4.1. Table 4.5 provides 𝑁𝑂𝐸𝐶, 𝐸𝐶10, 𝐸𝐶50 and 𝐸𝐶90 values together with 

the parameter estimates for the Weibull fits. The individual antibiotics clearly differed in 

their potencies: periphytic bacteria were highly sensitive to DXY and OFX, which caused 

effects on their metabolic activity at µg·L−1 concentrations, with 𝐸𝐶10 and 𝐸𝐶50 values of 

2.0 and 94.3 µg·L−1 for DXY and 15.9 and 117 µg·L−1 for OFX. A comparison of the 𝐸𝐶50 to 

the 𝐸𝐶10 values reveals, however, that the concentration-reponse curves have different 

slopes with DXY (𝐸𝐶50/𝐸𝐶10 = 47) having a clearly flatter curve than OFX (𝐸𝐶50/

𝐸𝐶10 = 7.4). A flat concentration-response curve might pose more of a challenge for risk 

mitigation measures, as huge reductions in the concentration would be necessary to 

decrease toxicity. The most significant factor affecting steepness of the concentration-

response slope at community-level is, apart from the mechanism/mode of action of the 

antibiotic,  the  biodiversity  of  the  organisms  within  DXY  and  OFX  might  also  be  driven  by  
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Fig 4.1 Concentration-response curves for the individual antibiotics for the endpoint “inhibition of average 
well colour development” (AWC) (●) with corresponding controls (○). Solid lines give the Weibull model fit 
and dashed lines their 95% confidence intervals. Box-plots represent occurrence of antibiotics in 
wastewater (WW) and freshwater (FW) reported in peer-reviewed literature (Supplementary data), and 
vertical red lines represent the 𝑃𝑁𝐸𝐶 value determined for bacterial communities in the present study. 
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other factors such as ecological the exposed community and their different sensitivities 

towards the toxicant (Kümmerer et al., 2009b). However, the different slope of the 

concentration-response curves of interactions between biofilm-inhabiting organisms 

(i.e., algae, bacteria, fungi, protozoa) (Geiszinger et al., 2009). Similar concentration-

response relationships were found for tetracycline (chlortetracycline) and quinolone 

(ciprofloxacin) antibiotics on bacterial communities from natural environments (Brosche 

and Backhaus, 2010 and Johansson et al., 2014). 

SMX and TMP affected limnic bacterial communities at mg·L−1 concentrations, 

while MNZ and ERY did not inhibit the carbon source metabolism in the tested 

concentration range (Fig. 4.1). Instead, a significant stimulation of the AWC was visible 

at ERY concentrations higher than 73 µg·L−1. These patterns are consistent with the 

spectrum of activity of the tested antibiotics. OFX, DXY, SMX and TMP have a broad 

spectrum of activity against gram-positive and gram-negative bacteria, whereas 

metronidazole is mainly effective against anaerobes (Kümmerer et al., 2000). ERY is 

most effective against gram-positive bacteria (Alexy, 2003), while limnic bacterial 

communities are dominated by gram-negative bacteria (Manz et al., 1999). Its 

stimulatory effects might therefore indicate indirect effects, i.e. the suppression of the 

few gram-positive species present which might lead to an increased metabolic activity of 

the unaffected gram-negative species. 

The exposed periphytic bacterial communities had a similar sensitivity as various 

gram-negative bacteria that were tested in single-species tests (Table 4.6), which is 

consistent with the prevalence of these bacteria in freshwater ecosystems (Manz et al., 

1999). SMX was a notable exception, the periphytic bacterial biofilm was clearly more 

sensitive than the gram-negative bacterium Pseudomonas putida (𝐸𝐶50 values of 12 700 

and 58 700 µg·L−1) and the gram-positive Enterococcus faecalis (𝐸𝐶50 >800 000 µg·L−1). 

The European Medicines Agency (EMA) suggests using blue-green algae for the toxicity 

testing of antimicrobials (EMA, 2006). These are already affected at lower 

concentrations of ERY, OFX and SMX, but show higher tolerance to TMP than the 

bacterial communities of the present study (Table 4.6). The limnic bacterial communities 

exposed  in  the  current  study  seem  to  be  more  tolerant  both  to  SMX  and  ERY  than  the  
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freshwater biofilms studied by Yergeau et al. (2012) in which first effects were observed 

at 0.5 µg·L−1, although these differences might be at least partly caused by the different 

endpoints employed. 

In order to further characterize the toxicant-induced changes of the bacterial 

communities, changes in the time-integrated metabolization of each individual carbon 

source during 96 hours were evaluated as changes in the area under the curve (AUC, see 

material and methods). The catabolic activity was in general unevenly distributed 

between the 31 carbon sources that are present on the EcoPlates, and not all carbon 

sources were utilized. Three carbon sources never reached an ODcorr of 0.05 or higher 

(C19 (2-hydroxy benzoic acid), C23 (α-ketobutyric acid) and C29 (L-threonine)) and were 

classified as inactive. Five additional carbon sources (C5 (α-cyclodextrin), C11 (i-

erythritol), C21 (γ-hydroxybutyric acid), C27 (L-phenylalanine) and C30 (glycyl-L-glutamic 

acid)) were only slightly metabolized by unexposed communities (ODcorr <0.13 after 66 h 

incubation). Data from all these carbon sources were not used for the subsequent 

analyses. 

In order to visualize the pattern of carbon source utilization, the relative 

proportion of each carbon source to the total carbon source utilization was plotted. DXY 

and OFX, the two most toxic antibiotics, induced the most substantial changes (Fig. 4.2). 

OFX changed the relative carbon source utilization, in relation to the chemical class 

(“guild”) of the carbon sources (amines, amino acids, carbohydrates, carboxylic acids, 

phenolic compounds and polymers) already at low overall effect levels. First changes of 

the carbon source utilization pattern became visible at 96 µg·L−1, corresponding to 44% 

effect on AWC. Utilization of phenolic compounds, amino acids and amines decreased 

notably at 304 µg·L−1 and higher, while the respiration of carbohydrates increased in 

parallel and they became the guild dominating the metabolic pattern at the higher 

concentrations. DXY exposure, in contrast, did not substantially affect the relative 

carbon source utilization at concentrations up to 214 µg·L−1, which already caused 64% 

effect on AWC. Higher DXY concentrations then induced drastic changes. In fact, at the 

highest tested concentration of DXY, the carbohydrate C15 (glucose-1-phosphate) 

represents  73%  of  the  carbon  source  utilization.  Under  the  assumption  that  carbon  
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Doxycycline 

 

 
Erythromycin

 
 

  
  

Fig.4.2 Relative area under the curve (AUC) of the individual carbon sources and the corresponding 
average well colour (AWC) Weibull function (continuous line) plotted against single antibiotic exposure 
concentrations. Inset plots represent relative AUC of individual guild and the corresponding AWC Weibull 
function (continued on next page). 
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Metronidazole

 
 
 

Ofloxacin

 
 

 
 

Fig. 4.2 Relative area under the curve (AUC) of the individual carbon sources and the corresponding 
average well colour (AWC) Weibull function (continuous line) plotted against single antibiotic exposure 
concentrations. Inset plots represent relative AUC of individual guild and the corresponding AWC Weibull 
function (continued on next page). 
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Sulfamethoxazole

 

 
Trimethoprim

 
 

  
  

Fig. 4.2 Relative area under the curve (AUC) of the individual carbon sources and the corresponding 
average well colour (AWC) Weibull function (continuous line) plotted against single antibiotic exposure 
concentrations. Inset plots represent relative AUC of individual guild and the corresponding AWC Weibull 
function. 
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source utilization, reflects the structure of the bacterial community, this seems to 

indicate that DXY has a much broader spectrum of activity than OFX, as it affects carbon 

source utilization more evenly. That is, the sensitivities of the different bacterial species 

in the biofilm seem to be more equally sensitive to DXY than to OFX. 

In addition, the AUC values of individual carbon sources allow for a multivariate 

data exploration. For this purpose, nonmetric multidimensional scaling (nMDS) was 

conducted, with the aim of visualizing the toxicant-induced succession (TIS) of the 

bacteria. The resulting graph is shown in Fig. 4.3, where the data are plotted in relation 

to the mean of all controls of all experiments (𝑛 = 29), in order to enable comparison 

across the studied antibiotics (single and mixtures, see below). The inhibitory effects of  

 
Fig. 4.3 Nonmetric multidimensional scaling (nMDS) of the time integrated carbon source utilization (AUC) 
using the PROXSCAL algorithm. The communities were exposed to doxycyline ( ), erythromycin ( ), 
metronidazole ( ), ofloxacin ( ), sulfamethoxazole ( ) and trimethoprim ( ). Numbers represent 
antibiotic exposure concentrations (µg·L−1) and the grey circle indicates no significant differences of 
between exposed and non-exposed communities. The arrows indicate toxicant-induced succession (TIS) 
trajectories for doxycycline and ofloxacin, starting from the control ( ) to the highest test concentration. 
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OFX and DXY to limnic bacteria led to a clear trajectory from left to right and left-down 

to right-up, respectively. The different TIS trajectories at the same effect range (i.e., low 

to high influence on the community succession, inset Fig. 4.3) show that OFX and DXY do 

not only have different molecular modes of action (inhibition of DNA gyrase versus 

inhibition of protein synthesis), but that they also have different ecological modes of 

action, which leads to different species being affected and replaced by more tolerant 

ones. The other antibiotics that were included in the study  (ERY, MNZ, SMX and TMP) 

did not affect the structure of the bacterial community at the tested concentrations 

(inside grey circle in Fig. 4.3) and consequently, their ecological mode of action cannot 

be assessed (Porsbring, 2009). 

 

3.2. Toxicity of antibiotic mixture 

The joint toxicity of all six antibiotics on limnic biofilm communities was studied 

in two different mixtures, corresponding to their occurrence in a Swedish and a Spanish 

STP. The outcome of the mixture experiments on the overall metabolic activity (AWC) is 

shown in Fig. 4.4. Details of fit parameters of Weibull model, 𝐸𝐶𝑥 and 𝑁𝑂𝐸𝐶 values for 

the two studied mixtures are given in Table 4.7. The tested concentration range (0.1–

1 000x the effluent concentration) covers the full concentration-response curve of the 

Spanish scenario, whereas a maximum inhibition of 68% was recorded at 1 000x the 

effluent concentration for the Swedish scenario. That is, the sensitivity of the bacterial 

communities to the mixtures was markedly different with 𝐸𝐶10 and 𝐸𝐶50 values of 8.87x 

and 62.1x the effluent concentration for the Spanish scenario and 248x and 867x the 

effluent concentration for the Swedish mixture. This fact is not only a consequence of 

the higher antibiotic concentrations detected (Table 4.2) in the Spanish wastewater 

(5 060 ng·L−1) compared to the Swedish effluent (791 ng·L−1), but is also be related to the 

different fraction of each compound in the mixtures. For instance, in the Spanish STP 

effluent, 71% of total concentration corresponds to OFX (3 594 ng·L−1), a highly toxic 

substance towards the bacterial communities, while in Swedish scenario, the six 

antibiotics are more equally distributed and TMP (231 ng·L−1), a far less toxic compound, 

is the most abundant (29%). 
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Swedish STP 

 

Spanish STP 

 
Fig. 4.4 Concentration-response curves for the Swedish and Spanish antibiotic mixtures, for the endpoint 
“inhibition of average well colour development” (AWC) (●) with corresponding controls (○). Black solid 
line give the Weibull fit, black dashed lines their 95% confidence intervals and blue and red lines 
prediction according to Concentration Addition and Independent Action, respectively. 
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Table 4.7 Effect on periphytic bacteria exposed to antibiotic mixture at maximum detected concentration 
in effluents from the Swedish STP (Ryaverket, Gothenburg) and Spanish STP (West-Alcalá, Madrid). The 
effect is described as the “inhibition of the average well color” (AWC) in EcoPlates for bacterial 
communities. Estimated parameters of the Weibull fits (𝜃�1,𝜃�2) that were used for estimating 𝐸𝐶10, 𝐸𝐶50 
and 𝐸𝐶90 values are given together with approximate 95% confidence intervals and the No Observed 
Effect Concentrations (𝑁𝑂𝐸𝐶𝑠) determinate using Dunnett’s test, α = 0.05. Concentration values are 
expressed in concentration times of the antibiotic mixture in STP effluents. 

Mixture 𝜃�1 𝜃�2 𝐸𝐶10 𝐸𝐶50 𝐸𝐶90 𝑁𝑂𝐸𝐶 

 

Swedish STP 

 

-10.5358 

 

3.46286 

 

248 [164–364] 

 

867 [764–980] 

 

1 925a 

 

100 

Spanish STP -4.36213 2.22791 8.87 [5.61–14.0] 62.1 [52.7–73.4] 215 [161–285] 10 

 
a estimation of 𝐸𝐶90 value outside the concentration range. Maximum inhibition of 68% was recorded at 
1 000x. 

 

As shown Fig. 4.4, mixture toxicity was also predicted using Concentration 

Addition (CA) and Independent Action (IA) (Eqs. 4.4 and 4.5, respectively). For Spanish 

STP mixture, full concentration-response curve could be approximated well by CA 

concept although, the differences between both predictive concepts are quite small: the 

factor of 3.7 and 1.9 between predicted 𝐸𝐶10 and 𝐸𝐶50 values. It is interesting to note 

the higher predictive power of CA compared to IA, despite the fact that the antibiotics 

comprising the mixture have distinctly different mechanisms of action. Differences 

between simple CA concept and complex biological realities can be observed (the factor 

of observed to CA-predicted 𝐸𝐶10 and 𝐸𝐶50 values 2.5 and 1.9), however its predictive 

power is sufficient for the mixture risk assessment purpose (Junghans et al., 2006). On 

the other hand, significant higher deviation was observed in the Swedish STP scenario at 

low effects (𝐸𝐶10), where both CA and IA clearly overestimated the observed mixture 

toxicity. The ratio of observed to predicted 𝐸𝐶10 values is 39 for CA and 230 for IA, but 

differences between predictive concepts are small (the factor of 5.9 between predicted 

𝐸𝐶10 values). This experimental finding would be interpreted as an antagonism at low 

effect levels. It would also correspond to the results of Yeh and co-workers, who 

demonstrated Bliss-antagonistic mixture toxicities in binary combinations of 

chloramphenicol together with either tetracycline or streptomycin (Yeh et al., 2006). 
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Results of the chronic effects on the periphytic bacteria of two studied mixture 

were also plotted as the relative proportion of single carbon source utilization (Fig. 4.5). 

Different responses were observed for the two mixtures. The antibiotic mixture that 

reflects the antibiotic content of the Spanish STP effluent changed the relative carbon 

source utilization of the community notably at concentration from 100x the effluent 

concentration and above. Especially the utilization of phenolic compounds and amines 

decreased markedly and came to a complete halt at a concentration equalling 316x the 

effluent concentration. Consumption of amino acids and polymers also decreased 

drastically at the highest tested concentration, and carbohydrates were the guild 

dominating the metabolic pattern at 1 000 times the effluent concentrations. No major 

re-arrangement of carbon source utilization was observed in the antibiotic mixture 

reflecting the Swedish STP effluent up to a total concentration equal to 1 000x the 

effluent concentration. 

The AUC data of the individual carbon sources was further analyzed using nMDS 

(Fig. 4.6) as for single antibiotics. The bacterial communities exposed to individual 

antibiotics (Fig. 4.3) were removed in order to improve the clarity of the plot. For the 

studied mixtures, there are two clusters of exposures close to the control for 

concentrations up to 10 times for Spanish STP effluent and 316 times for Swedish STP 

effluent. From those points, the main trend in the data is once again a movement from 

the left to the right side of the graph when antibiotic mixture concentration is increased. 

It is important to stress that the multivariate Anosim-based 𝑁𝑂𝐸𝐶𝑠 for the AUC of the 

different carbon sources were determined at higher concentration than the AWC-based 

𝑁𝑂𝐸𝐶: 32 and 1 000 times for Spanish and Swedish scenarios, respectively. Under the 

assumption that differences in relative carbon source utilization are indicative of 

changes in community biodiversity (species composition, physiological activity of each 

species), the Swedish mixture does not seems to significantly affect the bacterial 

biodiversity in the tested concentration range, while Spanish effluent causes a clear 

changes at concentrations 32 times higher than the maximum detected concentrations 

and above. In fact, heterotrophic communities’ exposure at concentration between 100 

and   316   times   in   Spanish   STP   effluent,   resulting   in   communities   similar   to   those  
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Swedish STP 

 
 

Spanish STP 

 
 

  
Fig. 4.5 Relative average under the curve (AUC) of individual carbon sources and the corresponding 
average well colour (AWC) Weibull function (continuous line) plotted against Swedish and Spanish STP 
mixtures exposure concentration times. Inset plots represent relative AUC of individual guild and the 
corresponding AWC Weibull function. 
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Fig. 4.6 Nonmetric multidimensional scaling (nMDS) of the time integrated carbon source utilization (AUC) 
using the PROXSCAL algorithm. The communities were exposed to antibiotic mixtures reflecting the 
mixtures in Swedish STP ( ) and Spanish STP ( ) effluents. Numbers represent antibiotic mixture 
exposure concentrations (concentration times) and the grey circle indicates no significant differences of 
between exposed and non-exposed communities. The arrows indicate toxicant-induced succession (TIS) 
trajectories for doxycycline, ofloxacin and Spanish STP, starting from the control ( ) to the highest test 
concentration. 

 

OFX induced succession (inset Fig. 4.6). The nMDS plot indicates OFX as the compound 

largely determining the structure of the limnic bacterial communities exposed to the 

Spanish scenario, that is, the driver of the mixture toxicity with respect to the structural 

endpoint. Interestingly, the trajectory of the bacteria exposed to the Spanish antibiotic 

mixture does not fall between the trajectories of the two ecotoxicologically dominant 

mixture components, OFX and DXY. This might be considered a reflection of the input 

from the four less toxic mixture components, whose presence seems to drive the 

trajectory of the mixture downwards. 
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3.3. Hazard and risk of single and mixed antibiotic to limnic bacterial communities 

First, the environmental risk of the individual antibiotics assuming the worst case 

scenario for Swedish and Spanish STP effluents (Table 4.2) is briefly assessed. Table 4.8 

shows TUs calculated from 𝐸𝐶10 values for the inhibition of AWC (as the more sensitive 

and better quantifiable endpoint) for the natural bacterial communities and the 

corresponding RQs. The results show that OFX and DXY are clearly hazardous for 

bacterial communities in the freshwater environment. In particular, OFX concentrations 

exceed the corresponding 𝑃𝑁𝐸𝐶 in the Spanish scenario, if based on 𝐸𝐶10 values for 

AWC and an assessment factor of 10 (EMA, 2006). Similarly, DXY concentrations in the 

Swedish scenario exceed their corresponding 𝑃𝑁𝐸𝐶. 

Table 4.8 Risk quotients (RQs) of the tested antibiotics to bacterial communities for effluents from 
the Swedish STP (Ryaverket, Gothenburg) and Spanish STP (West-Alcalá, Madrid). RQ higher than 
one are emphasized in bold. 

Antibiotic 
Swedish STP  Spanish STP 

TUs RQ  TUs RQ 
 

Doxycycline 
 

0.1135__ 
 

1.1_____ 
 

 
 

0.0305____ 
 

0.31____ 

Erythromycin 0.0000__ 0.00____  0.0000____ 0.00____ 

Metronidazole 0.0000__ 0.00____  0.0000____ 0.00____ 

Ofloxacin 0.0076__ 0.08____  0.2260____ 2.3_____ 

Sulfamethoxazole 0.0000__ 0.00__00  0.0006____ 0.01____ 

Trimethoprim 0.0377__ 0.38__00  0.0241____ 0.24____ 
 

Mixture 

(component-based) 

 

0.1588__ 
 

1.6_____ 
 

 
 

0.2815____ 
 

2.8_____ 

Mixture 

(whole-mixture) 
– 0.04____  – 1.1_____ 

 

The published literature on occurrence in STP effluents and freshwaters is fairly 

extensive for most of the studied antibiotics in peer-reviewed literature (Supplementary 

data). These data allow us performing a graphical comparison between toxic effects on 

the studied bacterial communities with the occurrence of the investigated antibiotics in 

different scenarios (Fig. 4.1). The 𝑃𝑁𝐸𝐶𝑠 for OFX and DXY concentrations shows a clear 

overlap with the concentrations measured in wastewaters and freshwaters, i.e. the two 

antibiotics seem to be problematic not only for the two scenarios analysed in the 

present study. However, the large local and regional differences in exposure 
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concentrations do not allow a general conclusion on the environmental risk of OFX and 

DXY, but call for site-specific assessments. In fact, it is noteworthy that concentration 

detected of OFX in wastewater effluents located in India (160 µg·L−1, Larsson et al., 

2007) would provoke a strong inhibition of 61% whereas, its median concentration in 

STP effluents (219 ng·L−1) will not cause effects on the overall response of the periphytic 

bacterial communities. The high variability of the concentrations found in surface waters 

might also be a result of different factors like sampling location (e.g., close to effluent 

discharge or upstream sampling), different river flows (e.g. dilution factors), and the 

time of the sampling (season); facts that make it difficult to reach a general conclusion 

on the presence or absence of risk.  

Also TMP might exceed its 𝑃𝑁𝐸𝐶 in several exposure scenarios (Fig. 4.1). These 

data are not in line with Straub (2013), who concluded that TMP does not pose a 

significant risk to freshwater systems. This is because the 𝑃𝑁𝐸𝐶 estimated by Straub 

(2013) is markedly higher (240 µg·L−1) than the value estimated in the present work 

(0.61 µg·L−1). This indicates the need for further studies with natural microbial 

communities, especially as the available data from the present study only roughly 

describe the concentration-response pattern of TMP. For SMX, there is a low likelihood 

that exposure concentrations and effect concentration overlap. These data are 

consistent with recently reported studies about aquatic environmental risk assessment 

of SMX (Kosma et al., 2014 and Straub, 2015), in which they were concluded that there 

is no significant risk in the majority of cases. No 𝑃𝑁𝐸𝐶𝑠 were calculated for ERY and 

MNZ. 

A comparison of the observed toxicity of both mixtures with environmental 

concentrations yields a ratio between the 𝐸𝐶10 and the measured environmental 

concentrations of 0.004 (Swedish mixture) and 0.11 (Spanish mixture). This indicates a 

low direct environmental risk from the Swedish scenario. For the Spanish scenario, 

however, conclusions on the environmental risk depend on the applied assessment 

factor. An assessment factor of 10 is suggested by EMA (2006) for data from “the 

antimicrobial effect study”, which relates to the activated sludge respiration assay. The 

EMA document does not provide suggestions for assessment factors for studies with 
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natural microbial communities. As the application of an assessment factor of 10 would 

result in a risk quotient exceeding 1, an improvement of the regulatory guidance is 

warranted. From an ecological perspective, in view of the seasonality of microbial 

activities and biodiversity in natural environment, an assessment factor of 10 certainly 

does not seem excessively high. On the basis of TUs of the individual antibiotics, the CA-

expected joint risk can be estimated for both mixtures, by summing up the toxic units 

(TUs) for each scenario, based on 𝐸𝐶10 values for the inhibition of AWC. Using an 

assessment factor of 10 (EMA, 2006), the results yield a final risk quotient of 1.6 for the 

Swedish STP effluent and 2.8 for the Spanish STP scenario. The comparison between CA-

based and empirical risk quotients, again, shows a very good prediction of the toxicity of 

the Spanish mixture (RQSTU = 2.8 vs. RQempirical = 1.1), while the toxicity of the Swedish 

mixture is overestimated (RQSTU = 1.6 vs. RQempirical = 0.04). 

A component-based strategy using CA allows the ranking of the mixture 

components according to their TUs (Backhaus and Karlsson, 2014). Indeed, it can be 

clearly observed that ofloxacin (80%) contributes most to the overall STUs in the Spanish 

scenario, whereas the rest of the studied compounds has only a negligible contribution. 

This fact is illustrated in Fig. 4.7, in which the bacterial communities shows similar 

sensitivities when the concentration of OFX is scaled to its corresponding occurrence in 

the Spanish STP effluent. The differences between both fits to the data and CA-

prediction become indiscriminate in lower effect levels (overlapping of the confidence 

belts). The figure confirms OFX as the compound largely determining the bacterial 

toxicity of the whole Spanish mixture. 

Finally, it is worth pointing out that final assessment of the environmental risk 

due to the total antibiotic load in the studied STP scenarios depends on the dilution of 

the effluent in the recipient river. Between the two studied countries, the differences in 

national annual dilution factors (and hence chemical concentrations) are significant; 

there are nearly 2 orders of magnitude between the annual median dilution factors in 

Sweden (1 825) and Spain (26) (Keller et al., 2014). However, the spatial variability of 

dilution factors within a country warrants consideration. The effluent of Ryaverket STP 

(the studied Swedish STP) is diluted by a factor close to 150 in the catchment of the Göta 
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river (mean annual flow, 550 m3·s−1, Göta Älvs Vattenvårdsförbund, 2013). That is, the 

Swedish STP effluent is diluted to concentrations significantly below the mixture 𝑃𝑁𝐸𝐶 

determined based on the data presented in this study. The Spanish STP (West-Alcalá 

STP) discharges its effluents into the Henares river (mean annual flow, 10.7 m3·s−1, 

CEDEX, 2015), which dilutes the total wastewater by an average factor of 13 (the 

monthly dilution factor generally varies between 3.4 and 25). In dry weather conditions, 

the Henares river can reach a wastewater content in the creek downstream from West-

Alcalá STP close to 30% (minimum mean monthly flow, 2.86 m3·s−1, CEDEX, 2015). This 

would result in a total concentration of the antibiotic mixture of 1 518 µg·L−1, which is 

only a factor of 30 lower than the 𝐸𝐶10, i.e. the concentration at which effects on the 

carbon utilization became directly visible. Applying any assessment factor, in order to 

account for spatial and temporal changes in the sensitivity of the exposed bacterial 

community would then indicate a potential environmental risk, at least during the dry 

months of the year. 

 

 

Fig. 4.7. Concentration-response curves for the Spanish STP mixture (●) compared to ofloxacin ( ) 
exposure for the endpoint “inhibition of average well colour development” (AWC) with corresponding 
controls ( , ). Solid black and red lines gives the Weibull fit, dashed lines their 95% confidence intervals 
and blue line prediction according to Concentration Addition. 
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4. Conclusions 

The results clearly demonstrate that among the studied antibiotics (doxycycline, 

erythromycin, metronidazole, ofloxacin, sulfamethoxazole and trimethoprim), 

doxycycline and ofloxacin affect the carbon source metabolization of limnic periphytic 

bacteria in a concentration-dependent fashion after chronic exposure to concentrations 

above 2.0 and 16 µg·L−1 (𝐸𝐶10 values), respectively. Ofloxacin exposure has a more 

selective effect, resulting in clear changes in the relative bacterial carbon source 

utilization pattern, while doxycycline affects the bacterial utilization of a broader range 

of carbon sources with a similar concentration-response pattern. Indeed, both 

antibiotics cause different TIS trajectories on the bacterial communities, indicating that 

they also have dissimilar mode of action on ecological level. 

The joint toxicity of the six studied antibiotics for the Swedish and Spanish STP 

scenarios shows that their chronic exposure affects the bacterial carbon source 

utilization at concentration above 8.9 and 250 times the maximum detected effluent 

concentrations. However, only the Spanish mixture exposure led to a re-arrangement of 

the carbon source utilization, indicating a change in community biodiversity and/or 

function with a pattern mainly influenced by ofloxacin. 

Results from screening level risk assessment show potential risk for ofloxacin and 

the antibiotic mixture under the Spanish STP scenario. Despite final risk to freshwater 

organisms depends on the dilution, the removal and the degradation rates in surface 

waters, the results highlight that the toxic effects of antibiotic mixtures, and especially 

ofloxacin (i.e., the risk driver of the mixture), should be assessed, in order to decide 

whether mitigation measures such as source control by target restrictions or STP 

upgrading for improving removal efficiencies are need. 
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SUPPLEMENTARY DATA 

Table S1 Occurrence of studied antibiotic in STP effluents (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

DXY Australia  ND-40   Watkinson et al., 2007 
 Australia 5 STPs ND-15 10  Watkinson et al., 2009 
 Canada 8 STPs ND-46 38  Miao et al., 2004 
 Spain  León STP   61 Hijosa-Valsero et al., 2011 
 Sweden  ND-220   Andersson et al., 2005 
 Sweden  Henriksdal STP ND-915   Lindberg et al., 2005 
 Sweden Ryaverket STP ND-227   Lindberg et al., 2005 
 Sweden Umea STP ND-78   Lindberg et al., 2005 
 Sweden Kalmar STP ND-424   Lindberg et al., 2005 
 Sweden Floda STP 72-880   Lindberg et al., 2005 
 USA Northern 

Colorado STP 
  90 Yang et al., 2003 

ERY a Canada 8 STPs ND-838 80  Miao et al., 2004 
 China Kaifuqu STP   430 Xu et al., 2007a 
 China Guangzhou STP   2054 Xu et al., 2007a 
 China New Territory STP   216 Xu et al., 2007a 
 China Kowloon STP   259 Xu et al., 2007a 
 China Wan Chai STP   850 Gulkowska et al., 2008 
 China Tai Po STP   520 Gulkowska et al., 2008 
 China Shatin STP   600 Gulkowska et al., 2008 
 China Stonecutters 

Island STP 
  510 Gulkowska et al., 2008 

 China Shatin STP   96.3 Li et al., 2009 
 China Stanley STP   37.9 Li et al., 2009 
 Germany  ND-6000 2500  Hriscch et al., 1999 
 Germany    620 Ternes et al., 2003 
 Italy 8 STPs  47.4  Zuccato et al., 2005 
 Italy Milan STP   34 Zuccato et al., 2010 
 Italy Varese STP   27 Zuccato et al., 2010 
 Italy Lugano STP   59 Zuccato et al., 2010 
 Italy Como STP   6.5 Zuccato et al., 2010 
 Spain Alcalá STP <LOD-760  331 Rosal et al., 2010 
 Spain  León STP   61 Hijosa-Valsero et al., 2011 
 Spain Girona STP1   17 Gros et al., 2012 
 Spain Girona STP2   14 Gros et al., 2012 
 Spain Almeria STP 236-1250  613 Martínez-Bueno et al., 2012 
 Spain Cantabria STP 99-1112  371 Martínez-Bueno et al., 2012 
 Spain Madrid STP 1 100-6316  997 Martínez-Bueno et al., 2012 
 Spain Madrid STP 2 260-2695  694 Martínez-Bueno et al., 2012 
 Spain Barcelona STP 99-3934  720 Martínez-Bueno et al., 2012 
 Spain Alcalá STP   330 Rodríguez et al., 2012 
 Spain Alcazar de San 

Juan STP 
  110 Rodríguez et al., 2012 

 Spain Alicante STP 10-10  10 Ibañez et al., 2013 
 Spain Murcia STP 10-200  20 Ibañez et al., 2013 
 Spain  Alcalá STP   670 Carbajo et al., 2015 
 Sweden 3 STPs 53-530   Fick et al., 2011 
 Switzcherland Kloten-Opfikon 

STP 
110-199   McArdell et al., 2003 

 Switzcherland Kloten-Opfikon 
STP 

3.4-9.5  6 Göbel et al., 2004 

 Switzcherland 2 STPs 60-110 70  Göbel et al., 2005 
 Taiwan 5 STPs   695 Lin et al., 2008 
 Taiwan 4 STPs 226-811   Lin et al., 2009 
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Table S1 Occurrence of studied antibiotic in STP effluents (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 UK 5 STPs <LOQ-1842   Ashton et al., 2004 
 UK Howdon STP  202  Roberts and Thomas, 2006 
 UK Howdon STP  202  Roberts and Thomas, 2006 
 UK Cilfynydd STP 292-2841  1385 Kasprzyk-Hordern et al., 

2009 
 UK Coslech STP 23-2772  696 Kasprzyk-Hordern et al., 

2009 
 USA Northern 

Colorado STP 
  80 Yang and Carlson., 2004 

 USA 10 STPs ND-610 35  Glassmeyer et al., 2005 
 USA 7 STPs  270  Karthikeyan and Meyer, 

2006 
MNZ Spain  Alcalá STP   212 Rosal et al., 2008 
 Spain 3 STPs <LOQ-295  164 Gros et al., 2009 
 Spain Alcalá STP <LOQ-127  55 Rosal et al., 2010 
 Spain Barcelona STP 36-1801  327 Martínez-Bueno et al., 2012 
 Spain Almería STP 25-337  81 Martínez-Bueno et al., 2012 
 Spain Cantabria STP 17-1081  200 Martínez-Bueno et al., 2012 
 Spain Madrid STP 1 27-2163  225 Martínez-Bueno et al., 2012 
 Spain Madrid STP 2 21-331  199 Martínez-Bueno et al., 2012 
 Spain Girona STP1   121 Gros et al., 2012 
 Spain Girona STP 1   58 Gros et al., 2013 
 Spain Girona STP 2   17 Gros et al., 2013 
 Spain  Girona STP 3   83 Gros et al., 2013 
 Spain Alcalá STP   118 Herrera et al., 2014 
 Spain Alcalá STP   330 Carbajo et al., 2015 
 Spain Girona STP ND-144   Rodríguez-Mozaz et al., 

2015 
 Switzerland Lausanne STP    567 Margot et al., 2013 
 Taiwan 5 STPs   100 Lin et al., 2008 
 Taiwan 4 STPs 10-126   Lin et al., 2009 
 UK Cilfynydd STP 60-421  265 Kasprzyk-Hordern et al., 

2009 
 UK Coslech STP 129-561  353 Kasprzyk-Hordern et al., 

2009 
OFX Canada 8 STPs ND-506 94  Miao et al., 2004 
 Canada 8 STPs 32-548 179  Lee et al., 2007 
 China Kaifuqu STP   41 Xu et al., 2007a 
 China Guangzhou STP   137 Xu et al., 2007a 
 China New Territory STP   48 Xu et al., 2007a 
 China Kowloon STP   165 Xu et al., 2007a 
 China Gao Beidian STP   503 Xiao et al., 2008 
 China Shatin STP   556.4 Li et al., 2009 
 China Stanley STP   2.1 Li et al., 2009 
 France Pierre Bénite STP   330 Andreozzi et al., 2003 
 France Chatillon-sur-

Chalaronne STP 
  510 Andreozzi et al., 2003 

 Greece Iraklio STP   460 Andreozzi et al., 2003 
 India Patancheru STP   55000 Fick et al., 2009 
 India Patancheru STP   160000 Fick et al., 2009 
 Italy Latina STP   580 Andreozzi et al., 2003 
 Italy Roma STP   290 Andreozzi et al., 2003 
 Italy Naples STP   310 Andreozzi et al., 2003 
 Italy 8 STPs  600  Zuccato et al., 2005 
 Italy Varese Olona STP   183 Castiglioni et al., 2008 
 Italy Milan STP   5.3 Zuccato et al., 2010 
 Italy Varese STP   77 Zuccato et al., 2010 
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Table S1 Occurrence of studied antibiotic in STP effluents (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Italy Como STP   4.9 Zuccato et al., 2010 
 Spain  Alcalá STP   565 Rosal et al., 2008 
 Spain 3 STPs 13-367  95 Gros et al., 2009 
 Spain Alcalá STP <LOD-3594  816 Rosal et al., 2010 
 Spain Girona STP1   191 Gros et al., 2012 
 Spain Girona STP2   157 Gros et al., 2012 
 Spain Almeria STP 321-13426  1569 Martínez-Bueno et al., 2012 
 Spain Cantabria STP 43-81  55 Martínez-Bueno et al., 2012 
 Spain Madrid STP 1 181-16574  2837 Martínez-Bueno et al., 2012 
 Spain Madrid STP 2 217-10019  2572 Martínez-Bueno et al., 2012 
 Spain Barcelona STP 228-1024  499 Martínez-Bueno et al., 2012 
 Spain Girona STP 1   67 Gros et al., 2013 
 Spain Girona STP 2   101 Gros et al., 2013 
 Spain  Girona STP 3   63 Gros et al., 2013 
 Spain Alicante STP 100-490  220 Ibañez et al., 2013 
 Spain Murcia STP 10-430  210 Ibañez et al., 2013 
 Spain Alcalá STP   4700 Carbajo et al., 2015 
 Spain Girona STP ND-172   Rodríguez-Mozaz et al., 

2015 
 Sweden Ryaverket STP   120 Andreozzi et al., 2003 
 Sweden  Henriksdal STP ND-7   Lindberg et al., 2005 
 Sweden Kalmar STP ND-52   Lindberg et al., 2005 
 Sweden Floda STP ND-45   Lindberg et al., 2005 
 Sweden Kristianstad STP   10 Zorita et al., 2009 
 Switzerland Lausanne STP    84 Margot et al., 2013 
 Taiwan 5 STPs   123 Lin et al., 2008 
 Taiwan 4 STPs 53-991   Lin et al., 2009 
 USA STP 1 <LOQ-50 45  Renew and Huang, 2004 
 USA STP 2 100-210 180  Renew and Huang, 2004 
 USA East Lansing STP   100 Nakata et al., 2005 
 USA Albulquerque STP   110 Brown et al., 2006 
 USA 50 STPs ND-660  160 Kostich et al., 2014 
SMX 18 European 

countries 
90 STP ND-1691 164 280 Loss et al., 2013 

 18 European 
countries 

90 STP ND-1147 67.5 142 Loss et al., 2013 

 Australia 2 STPs ND-270 320  Watkinson et al., 2007 
 Australia 5 STPs ND-200 50  Watkinson et al., 2009 
 Canada Eight STPs ND-871 243  Miao et al., 2004 
 China Kaifuqu STP   16 Xu et al., 2007a 
 China Guangzhou STP   78 Xu et al., 2007a 
 China New Territory STP   12 Xu et al., 2007a 
 China Kowloon STP   9 Xu et al., 2007a 
 China Shatin STP   46.6 Li et al., 2009 
 China Stanley STP   15.3 Li et al., 2009 
 France Pierre Bénite STP   90 Andreozzi et al., 2003 
 France Chatillon-sur-

Chalaronne STP 
  70 Andreozzi et al., 2003 

 Germany  ND-2000 400  Hirsch et al., 1999 
 Germany Berlin STP 1   300 Hartig et al., 1999 
 Germany Berlin STP 2   1500 Harig et al., 1999 
 Germany    620 Ternes et al., 2003 
 Greece Iraklio STP   90 Andreozzi et al., 2003 
 Greece 8 STPs <LOQ-481  47.2 Kosma et al., 2014 
 Italy Latina STP   10 Andreozzi et al., 2003 
 Italy Naples STP   30 Andreozzi et al., 2003 
 Italy 8 STPs  127  Zuccato et al., 2005 
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Table S1 Occurrence of studied antibiotic in STP effluents (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Italy Milan STP   16 Zuccato et al., 2010 
 Italy Varese STP   11 Zuccato et al., 2010 
 Italy Lugano STP   15 Zuccato et al., 2010 
 Italy Como STP   30 Zuccato et al., 2010 
 Rep. of Korea TanCheon STP 63-193 180  Choi et al., 2008a 
 Rep. of Korea JungRang STP 25-275 185  Choi et al., 2008a 
 Rep. of Korea NanJi STP 31-316 148  Choi et al., 2008a 
 Rep. of Korea SeoNam STP 185-492 219  Choi et al., 2008a 
 Spain  0-580  250 Carballa et al., 2004 
 Spain  Alcalá STP   150 Rosal et al., 2008 
 Spain 3 STPs 13-448  208 Gros et al., 2009 
 Spain Alcalá STP 104-370  231 Rosal et al., 2010 
 Spain  León STP   60 Hijosa-Valsero et al. , 2011 
 Spain Alcalá STP   230 Rodríguez et al., 2012 
 Spain Alcazar de San 

Juan STP 
  90 Rodríguez et al., 2012 

 Spain Girona STP1   222 Gros et al., 2012 
 Spain Almeria STP 191-1142  548 Martínez-Bueno et al., 2012 
 Spain Cantabria STP 39-543  246 Martínez-Bueno et al., 2012 
 Spain Madrid STP 1 56-498  208 Martínez-Bueno et al., 2012 
 Spain Madrid STP 2 103-390  257 Martínez-Bueno et al., 2012 
 Spain Barcelona 227-486  328 Martínez-Bueno et al., 2012 
 Spain Girona STP 1   198 Gros et al., 2013 
 Spain Girona STP 2   27 Gros et al., 2013 
 Spain  Girona STP 3   19 Gros et al., 2013 
 Spain Alcalá STP   552 Herrera et al., 2014 
 Spain  Alcalá STP   670 Carbajo et al., 2015 
 Spain Girona STP ND-73   Rodríguez-Mozaz et al., 

2015 
 Spain Alicante STP 30-80  60 Ibañez et al., 2013 
 Spain Murcia STP 60-120  80 Ibañez et al., 2013 
 Sweden Ryaverket STP   20 Andreozzi et al., 2003 
 Sweden  Henriksdal STP ND-193   Lindberg et al., 2005 
 Sweden Umea STP ND-135   Lindberg et al., 2005 
 Sweden Kalmar STP ND-304   Lindberg et al., 2005 
 Sweden Floda STP ND-302   Lindberg et al., 2005 
 Sweden 3 STPs 30-290   Fick et al., 2011 
 Switzcherland Kloten-Opfikon 

STP 
6-15  11 Göibel et al., 2004 

 Switzcherland 2 STPs 211-860 290  Göbel et al., 2005 
 Switzerland Lausanne STP    171 Margot et al., 2013 
 Taiwan 5 STPs   226 Lin et al., 2008 
 Taiwan 4 STPs 47-964   Lin et al., 2009 
 UK 5 STPs <LOQ-132   Ashton et al., 2004 
 UK Cilfynydd <LOQ-23  10 Kasprzyk-Hordern et al., 

2009 
 UK Coslech 4-44  19 Kasprzyk-Hordern et al., 

2009 
 USA Northern 

Colorado STP 
  320 Yang et al., 2003 

 USA STP 1 <LOQ-70 60  Renew and Huang, 2004 
 USA STP 2 330-2140 660  Renew and Huang, 2004 
 USA 10 STPs ND-763 68  Glassmeyer et al., 2005 
 USA 7 STPs  195  Karthikeyan and Meyer, 

2006 
 USA Lackawana STP  900  Batt et al., 2006 
 USA East Aurora STP  410  Batt et al., 2006 
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Table S1 Occurrence of studied antibiotic in STP effluents (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 USA Holland STP  1300  Batt et al., 2006 
 USA Albulquerque STP   310 Brown et al., 2006 
 USA Amherst STP   680 Batt et al., 2007 
 USA East Aurora STP   220 Batt et al., 2007 
 USA Holland STP   500 Batt et al., 2007 
 USA Lackawana STP   380 Batt et al., 2007 
 USA Northwest Ohio 

STP 
 274  Spongberg and Witter, 

2008 
 USA Omaha STP   141 Bartelt-Hunt et al., 2009 
 USA Nortern Colorado 

STP 1 
  1261 Ferrer and Thurman, 2013 

 USA Nortern Colorado 
STP 2 

  133 Ferrer and Thurman, 2013 

 USA 50 STPs ND-910  2900 Kostich et al., 2014 
TMP 18 European 

countries 
90 STPs ND-800 178 229 Loss et al., 2013 

 Australia  ND-70  50 Watkinson et al., 2007 
 Australia 5 STPs ND-250 10  Watkinson et al., 2009 
 China Wan Chai STP   170 Gulkowska et al., 2008 
 China Tai Po STP   140 Gulkowska et al., 2008 
 China Shatin STP   120 Gulkowska et al., 2008 
 China Stonecutters 

Island STP 
  230 Gulkowska et al., 2008 

 China Shatin STP   66.2 Li et al., 2009 
 China Stanley STP   10.8 Li et al., 2009 
 France Pierre Bénite STP   40 Andreozzi et al., 2003 
 France Chatillon-sur-

Chalaronne STP 
  20 Andreozzi et al., 2003 

 Germany  ND-660 320  Hrisch et al., 1999 
 Germany    340 Ternes et al., 2003 
 Greece Iraklio STP   80 Andreozzi et al., 2003 
 Greece 8 STPs <LOQ-533  47.4 Kosma et al., 2014 
 India Patancheru STP   4400 Fick et al., 2009 
 Italy Latina STP   40 Andreozzi et al., 2003 
 Italy Roma STP   30 Andreozzi et al., 2003 
 Italy Naples STP   130 Andreozzi et al., 2003 
 Rep. of Korea TanCheon STP <LOQ-87   Choi et al., 2008a 
 Rep. of Korea JungRang STP <LOQ-119 13  Choi et al., 2008a 
 Rep. of Korea NanJi STP <LOQ-108   Choi et al., 2008a 
 Rep. of Korea SeoNam STP 31-174 110  Choi et al., 2008a 
 Rep. of Korea Han River STP ND-79.9  153 Choi et al., 2008b 
 Rep. of Korea Kyung-Ahn 

Stream STP 
ND-96.3  89.3 Choi et al., 2008b 

 Spain  Alcalá STP   69 Rosal et al., 2008 
 Spain 3 STPs <LOQ-116  37 Gros et al., 2008 
 Spain Alcalá STP <LOD-148  99 Rosal et al., 2010 
 Spain Girona STP1   100 Gros et al., 2012 
 Spain Girona STP2   10 Gros et al., 2012 
 Spain Almeria STP 29-1416  371 Martínez-Bueno et al., 2012 
 Spain Cantabria STP 56-257  129 Martínez-Bueno et al., 2012 
 Spain Madrid STP 1 29-403  118 Martínez-Bueno et al., 2012 
 Spain Madrid STP 2 29-387  196 Martínez-Bueno et al., 2012 
 Spain Barcelona STP 64-624  193 Martínez-Bueno et al., 2012 
 Spain Girona STP 1   108 Gros et al., 2013 
 Spain  Girona STP 3   69 Gros et al., 2013 
 Spain Alcalá STP   850 Herrera et al., 2014 
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Table S1 Occurrence of studied antibiotic in STP effluents. 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Spain Girona STP ND-125   Rodríguez-Mozaz et al., 
2015 

 Spain  Alcalá STP   430 Carbajo et al., 2015 
 Sweden Ryaverket STP   50 Andreozzi et al., 2003 
 Sweden  Henriksdal STP 214-225   Lindberg et al., 2005 
 Sweden Ryaverket STP 66-231   Lindberg et al., 2005 
 Sweden Umea STP 644-1340   Lindberg et al., 2005 
 Sweden Kalmar STP 561-700   Lindberg et al., 2005 
 Sweden Floda STP 230-777   Lindberg et al., 2005 
 Sweden 3 STPs 60-510   Fick et al., 2011 
 Switzcherland Kloten-Opfikon 

STP 
3-7  4 Göbel et al., 2004 

 Switzcherland 2 STPs 20-310 70  Göbel et al., 2005 
 Switzerland Lausanne STP    158 Margot et al., 2013 
 Taiwan 5 STPs   321 Lin et al., 2008 
 Taiwan 4 STPs 200-415   Lin et al., 2009 
 UK 5 STPs <LOQ-1288 70  Ashton et al., 2004 
 UK Howdon STP  271  Roberts and Thomas, 2006 
 UK Cilfynydd STP 625-6052  1152 Kasprzyk-Hordern et al., 

2009 
 UK Coslech STP 385-1218  876 Kasprzyk-Hordern et al., 

2009 
 USA STP 2 <LOQ-1760 1070  Renew and Huang, 2004 
 USA 10 STPs ND-414 11  Glassmeyer et al., 2005 
 USA 7 STPs  170  Karthikeyan and Meyer, 

2006 
 USA Albulquerque STP   180 Brown et al., 2006 
 USA Lackawana STP  315  Batt et al., 2006 
 USA East Aurora STP  90  Batt et al., 2006 
 USA Holland STP  160  Batt et al., 2006 
 USA Amherst STP   2400 Batt et al., 2007 
 USA East Aurora STP   210 Batt et al., 2007 
 USA Holland STP   540 Batt et al., 2007 
 USA Lackawana STP   360 Batt et al., 2007 
 USA Nortern Colorado 

STP 1 
  1531 Ferrer and Thurman, 2013 

 USA Nortern Colorado 
STP 2 

  15.3 Ferrer and Thurman, 2013 

 USA 50 STPs ND-370  170 Kostich et al., 2014 
 
a Erythromycin (and –H2O) 
UK: United Kingdom 
USA: States Unitates of America 
ND: Not detect 
LOD: Limit of detection 
LOQ: Limit of quantification 
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Table S2 Occurrence of studied antibiotic in freshwater (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

DXY Australia 6 river systems ND-400 ND  Watkinson et al., 2007 
 Australia 81 surface waters ND-40   Watkinson et al., 2009 
 China Huangpu river 5.61-46.9 13.6  Jiang et al., 2011 
 China Streams with 

livestock 
ND-12.6   Zhou et al., 2013 

 USA Poundre river   100 Yang et al., 2003 
 USA Cache la Poudre 

river 
10-50  30 Kim and Carlson, 2007 

 USA Choptank river <LOQ-2   Arikan et al., 2008 
 USA Subwatershed <LOQ-146   Arikan et al., 2008 
ERYa China Victoria Harbour ND-5.2   Xu et al., 2007b 
 China  Pearl river ND-636   Xu et al., 2007b 
 China Yellow river <LOQ-102   Xu et al., 2009 
 China Pearl river ND-2070   Yang et al., 2011 
 China Haihe river System 3-400 110 130 Heeb et al., 2012 
 China Yangtze river 21-217 48 81 Qi et al., 2014 
 China Wangyang river ND-253 68.7 98.1 Jiang et al., 2014 
 France Siene river <LOQ-4   Dihn et al., 2011 
 France Predecelle river <LOQ-4.2   Dihn et al., 2011 
 France Charmoise river <LOQ-131   Dihn et al., 2011 
 Germany River waters and 

drainages 
ND-1700 150  Hirsch et al., 1999 

 Germany Water slides-
Westphalia 

<190   Christian et al., 2003 

 Italy Po River 1.40-15.9   Calmari et al., 2003 
 Italy Lambro river   4.5 Zuccato et al., 2005 
 Italy Po river ND-15.9 3.2  Zuccato et al., 2005 
 Italy Po river 0.78-4.62  2.9 Zuccato et al., 2010 
 Italy Arno river 2.88-8.12  5.4 Zuccato et al., 2010 
 Italy    30.5 Meffe and de 

Bustamante, 2014 
 Japan Tamagawa river 21-120 78 32.9 Managaki et al., 2007 
 Japan Nationwide survey ND-27.8 0.01 2.55 Murata et al., 2011 
 Japan  Nationwide survey ND-128 1.1 8.13 Murata et al., 2011 
 Spain  Llobregat river ND-363   Osorio et al., 2012 
 Spain Llobregat river 10-70  30 Ginebreda et al., 2010 
 Spain Jarama river ND-603   Valcárcel et al., 2011 
 Spain Guadarrama river ND-721   Valcárcel et al., 2011 
 Spain Henares river ND-284   Valcárcel et al., 2011 
 Spain Tagus river ND-3847   Valcárcel et al., 2011 
 Spain Tagus river basin <LOQ-326   Martínez-Bueno et al., 

2010 
 Spain Llobregat river (STP 

upstream) 
  4 Proia et al., 2013 

 Spain Llobregat river (STP 
downstream) 

  32.3 Proia et al., 2013 

 Spain  Llobregat river 
basin 

58.1-363  12.3 Osorio et al., 2014 

 UK River (STP 
upstream) 

<LOQ-57   Ashton et al., 2004 

 UK River (STP 
downstream) 

<LOQ-1022   Ashton et al., 2004 

 UK Tyne river  <LOQ-70   Roberts and Thomas, 
2006 

 UK Taff river 11-351  91 Kasprzyk-Hordern et al., 
2008 
(continued on next page) 
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Table S2 Occurrence of studied antibiotic in freshwater (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 UK Ely river <LOQ-141  50 Kasprzyk-Hordern et al., 
2008 

 UK Taff river (STP 
upstream) 

<LOQ-20  4 Kasprzyk-Hordern et al., 
2009 

 UK Taff river (STP 
downstream) 

11-121  52 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
upstream) 

<LOQ-2  0 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
downstream) 

<LOQ-72  15 Kasprzyk-Hordern et al., 
2009 

 USA Cache La Poudre 
river 

  170 Yang and Carlson, 2004 

 USA Cache la Pundre 
river 

20-450  120 Kim and Carlson, 2007 

 Vietnam Urban drainage 29-41 35.6 36.5 Managaki et al., 2007 
 Vietnam Mekong river 9-12 10.5 10.5 Managaki et al., 2007 
MNZ China Haihe river System 12-250 100 100 Heeb et al., 2012 
 China Yangtze river 7-224 35 74 Qi et al., 2014 
 Italy    68 Meffe and Bustamante, 

2014 
 Spain Ebro river basin 6-45  21 Gros et al., 2009 
 Spain Jarama river ND-1757   Valcárcel et al., 2011 
 Spain Manzanares river ND-1251   Valcárcel et al., 2011 
 Spain Guadarrama river ND-1834   Valcárcel et al., 2011 
 Spain Tagus river ND-182   Valcárcel et al., 2011 
 Spain Tagus basin <LOQ-32   Martínez-Bueno et al., 

2010 
 Spain  Llobregat river 

basin 
1.19-3.98  0.22 Osorio et al., 2014 

 Spain Ter river (STP 
downstream) 

ND-28.4   Rodríguez-Mozaz et al., 
2015 

 UK Taff river <LOQ-14  5 Kasprzyk-Hordern et al., 
2008 

 UK Ely river <LOQ-24  11 Kasprzyk-Hordern et al., 
2008 

 UK Taff river (STP 
upstream) 

<LOQ-10  1 Kasprzyk-Hordern et al., 
2009 

 UK Taff river (STP 
downstream) 

2-11  5 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
downstream) 

<LOQ-24  12 Kasprzyk-Hordern et al., 
2009 

OFX China Pearl river ND-108   Xu et al., 2007b 
 China Major Pearl river <LOQ-439   Peng et al., 2008 
 China Tonghui river 149-535 176  Xiao et al., 2008 
 China Yellow river <LOQ-264   Xu et al., 2009 
 China Streams ND-14.5   Zhou et al., 2013 
 China Wangyang river ND-11735 668 15835 Jiang et al., 2014 
 Findland Vantaa river   5 Vieno et al., 2007 
 France Seine river ND-55   Tamtam et al., 2008 
 France Siene river 2.3-18   Dihn et al., 2011 
 France Predecelle river 3.5-65   Dihn et al., 2011 
 France Charmoise river 4.3-231   Dihn et al., 2011 
 India Isakavagu-

Nakkavagu rivers 
  10000 Fick et al., 2009 

 India Lake    11000 Fick et al., 2009 
 Italy Olona river <LOQ-177   Castiglioni et al., 2008 
 Italy Lambro river 19-306   Castiglioni et al., 2008 
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Table S2 Occurrence of studied antibiotic in freshwater (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Italy Po river <LOQ-37   Castiglioni et al., 2008 
 Italy Lambro river   4.5 Zuccato et al., 2005 
 Italy Po river ND-15.9 3.2  Zuccato et al., 2005 
 Italy Po river 0.65-18.1  10.9 Zuccato et al., 2010 
 Italy Arno river <1.4-10.9  5 Zuccato et al., 2010 
 Italy    306 Meffe and Bustamante, 

2014 
 South 

Korea 
Mankyung river ND-87.4   Kim and Carlson, 2009 

 Spain Ebro river basin <LOQ-50  11 Gros et al., 2009 
 Spain Llobregat river 190-8770  2110 Ginebreda et al., 2010 
 Spain Tagus river system <LOQ-402   Martínez-Bueno et al., 

2010 
 Spain Jarama river ND-336   Valcárcel et al., 2011 
 Spain Manzanares river ND-269   Valcárcel et al., 2011 
 Spain Guadarrama river ND-552   Valcárcel et al., 2011 
 Spain Tagus river ND-49   Valcárcel et al., 2011 
 Spain Ter river   33 Gros et al., 2012 
 Spain Onyar river   20 Gros et al., 2012 
 Spain Ebro river basin <LOQ-79.9  10.2 López-Serna et al., 2012 
 Spain  Llobregat river <LOD-448   Osorio et al., 2012 
 Spain Llobregat river (STP 

upstream) 
  30.0 Proia et al., 2013 

 Spain Llobregat river (STP 
downstream) 

  208 Proia et al., 2013 

 Spain  Ter river (STP 
downstream) 

<138   Rodríguez-Mozaz et al., 
2015 

SMX 27 
European 
countries 

 ND-4072 15 76 Loss et al., 2009 

 Australia 6 river systems ND-2000 8  Watkinson et al., 2007 
 Australia 81 surface waters ND-2000 8  Watkinson et al., 2009 
 China  Pearl River ND-193   Xu et al., 2007b 
 China Major Pearl river <LOQ-510   Peng et al., 2008 
 China Yellow river <LOQ-56   Xu et al., 2009 
 China Pearl river ND-616   Yang et al., 2011 
 China Huangpu river 16.9-55.2 28.3  Jiang et al., 2011 
 China Haihe river System 17-600 140 180 Heeb et al., 2012 
 China Wangyang river ND-4870 78.9 529 Jiang et al., 2014 
 China Yangtze river 5-36 12 16 Qi et al., 2014 
 China Streams 3.58-11.9   Zhou et al., 2013 
 France Seine river <121   Tamtam et al., 2008 
 France Siene river 3.6-18   Dihn et al., 2011 
 France Predecelle river <LOQ-25   Dihn et al., 2011 
 France Charmoise river 5.6-1435   Dihn et al., 2011 
 France Orne river ND-6   Minguez et al., 2014 
 Germany 5 rivers  45  Hartig et al., 1999 
 Germany River and drainages ND-480 30  Hirsch et al., 1999 
 Germany Water slides-

Westphalia 
40-200   Christian et al., 2003 

 Italy Po river 1.83-2.39  2.1 Zuccato et al., 2010 
 Italy Arno river 1.79-11.4  5.3 Zuccato et al., 2010 
 Italy    89 Meffe and Bustamante, 

2014 
 Japan Tamagawa river 4-23 18.5 7 Managaki et al., 2007 
 Japan Nationwide survey ND-33.9 1.1 4.85 Murata et al., 2011 
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Table S2 Occurrence of studied antibiotic in freshwater (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Rep. of 
Korea 

Han river <LOQ-82 21  Choi et al., 2008b 

 Spain Ebro river basin <LOQ-50  11 Gros et al., 2009 
 Spain Henares-Jarama-

Tagus river system 
0.1-23.7 6.9  Fernández et al., 2010 

 Spain Tagus river system <LOQ-140   Martínez-Bueno et al., 
2010 

 Spain Llobregat river 30-11920  1110 Ginebreda et al., 2010 
 Spain Jarama river ND-952   Valcárcel et al., 2011 
 Spain Manzanares river ND-638   Valcárcel et al., 2011 
 Spain Guadarrama river ND-879   Valcárcel et al., 2011 
 Spain Henares river ND-32   Valcárcel et al., 2011 
 Spain Tagus river ND-82   Valcárcel et al., 2011 
 Spain Llobregat river 0.2-1500   Osorio et al., 2012 
 Spain Ter river   16 Gros et al., 2012 
 Spain Onyar river   79 Gros et al., 2012 
 Spain Llobregat river (STP 

upstream) 
  234 Proia et al., 2013 

 Spain Llobregat river (STP 
downstream) 

  908 Proia et al., 2013 

 Spain  Henares river (STP 
upstream) 

  28 Herrera et al., 2014 

 Spain  Henares river (STP 
downstream) 

  171 Herrera et al., 2014 

 Spain  Llobregat river 
basin 

33.9-151  5.83 Osorio et al., 2014 

 Spain  Ter river (STP 
upstream) 

ND-7   Rodríguez-Mozaz et al., 
2015 

 Spain  Ter river (STP 
downstream) 

ND-71.8   Rodríguez-Mozaz et al., 
2015 

 Sweden Hoje river ND-10   Bendz et al., 2005 
 Sweden  <LOD-44   Fick et al., 2011 
 UK Downstream of 

STPs 
<50   Ashton et al., 2004 

 UK Taff river <LOQ-2  1 Kasprzyk-Hordern et al., 
2008 

 UK Ely river <LOQ-4  1 Kasprzyk-Hordern et al., 
2008 

 UK Taff river (STP 
upstream) 

<LOQ-1  0 Kasprzyk-Hordern et al., 
2009 

 UK Taff river (STP 
downstream) 

<LOQ-8  2 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
upstream) 

<LOQ-1  0 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
downstream) 

<LOQ-4  1 Kasprzyk-Hordern et al., 
2009 

 USA 139 stream sites ND-1900 150  Kolpin et al., 2002 
 USA Buffalo river (East 

Aurora STP 
downstream) 

 20  Batt et al., 2006 

 USA Buffalo river 
(Holland STP 
downstream) 

 56  Batt et al., 2006 

 USA Rio Grande   300 Brown et al., 2006 
 USA Cache la Poundre 

River 
40-320  110 Kim and Carlson, 2007 

 USA Choptank River <LOQ-7   Arikan et al., 2008 
(continued on next page) 
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Table S2 Occurrence of studied antibiotic in freshwater (continued on next page). 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 USA Subwatershed <LOQ-7   Arikan et al., 2008 
 USA 139 stream sites <1900   Kolpin et al., 2002 
 USA Grand Island river <LOQ-29.4   Bartelt-Hunt et al., 2009 
 USA Lincoln river 1.4-343   Bartelt-Hunt et al., 2009 
 USA Hstings   173 Bartelt-Hunt et al., 2009 
 Vietnam Urban drainage 37-360 153 179 Managaki et al., 2007 
 Vietnam Mekong river 20-33 22 26.3 Managaki et al., 2007 
TMP Australia Six river systems ND-150 3  Watkinson et al., 2007 
 Australia 81 surface waters ND-150 3  Watkinson et al., 2009 
 China Huangpu river 6.75-62.4 14.2  Jiang et al., 2011 
 China Pearl river ND-605   Yang et al., 2011 
 China Haihe river system 8-340 60 82 Heeb et al., 2012 
 China Streams 6.22-19.2   Zhou et al., 2013 
 China Wangyang River ND-1126 61.0 242 Jiang et al., 2014 
 France Seine River ND-45   Tamtam et al., 2008 
 France Predecelle river <LOQ-8   Dihn et al., 2011 
 France Charmoise river <LOQ-254   Dihn et al., 2011 
 France Orne river ND-2   Minguez et al., 2014 
 Germany River and drainages ND-200 ND  Hirsch et al., 1999 
 Germany Water slides-

Westphalia 
6-70   Christian et al., 2003 

 Japan Tamagawa river 19-54 29.5 13.7 Managaki et al., 2007 
 Japan Nationwide survey ND-3.6 0.02 2.50 Murat et al., 2011 
 Korea Han river ND-312  108 Choi et al., 2008b 
 Korea Kyung-Ahn stream ND-30.6  117 Choi et al., 2008b 
 Italy    25 Meffe and Bustamante, 

2014 
 India Isakavagu-

Nakkavagu rivers 
  4000 Fick et al., 2009 

 Rep. of 
Korea 

Han river <LOQ-26   Choi et al., 2008b 

 Spain Ebro river basin <LOQ-16  4 Gros et al., 2009 
 Spain Llobregat river 20-470  140 Ginebrada et al., 2010 
 Spain Henares-Jarama-

Tagus river system 
0.4-23.3 12.0  Fernández et al., 2010 

 Spain Tagus river system <LOQ-112   Martínez-Bueno et al., 
2010 

 Spain Jarama river ND-690   Valcárcel et al., 2011 
 Spain Manzanares river ND-478   Valcárcel et al., 2011 
 Spain Guadarrama river ND-519   Valcárcel et al., 2011 
 Spain Henares river ND-38   Valcárcel et al., 2011 
 Spain Tagus river ND-61   Valcárcel et al., 2011 
 Spain Ter river   5 Gros et al., 2012 
 Spain Onyar river   9 Gros et al., 2012 
 Spain  Llobregat river ND-35.6   Osorio et al., 2012 
 Spain Ebro river basin <LOQ-59.9  9.46 López-Serna et al., 2012 
 Spain Llobregat river (STP 

upstream) 
  7.6 Proia et al., 2013 

 Spain Llobregat river (STP 
downstream) 

  27.4 Proia et al., 2013 

 Spain  Llobregat river 
basin 

7.88-20.5  0.70 Osorio et al., 2014 

 Spain  Henares river (STP 
upstream) 

  18 Herrera et al., 2014 

 Spain  Henares river (STP 
downstream) 

  249 Herrera et al., 2014 
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Table S2 Occurrence of studied antibiotic in freshwater. 

Antibiotic Country Location 
Concentration (ng·L−1) 

Reference 
Range Median Mean 

 Spain  Ter river (STP 
downstream) 

ND-92.7   Rodríguez-Mozaz et al., 
2015 

 Sweden  Hoja river <1-20   Bendz et al., 2005 
 Sweden  <LOD-8   Fick et al., 2011 
 UK River (STP 

upstream) 
<LOQ-36   Ashton et al., 2004 

 UK River (STP 
downstream) 

<LOQ-42   Ashton et al., 2004 

 UK Downstream of 
STPs 

<10-42  12 Ashton et al., 2004 

 UK Tyne river  7-19   Roberts and Thomas, 
2006 

 UK Taff river 2-120  71 Kasprzyk-Hordern et al., 
2008 

 UK Ely river 10-183  73 Kasprzyk-Hordern et al., 
2008 

 UK Taff river (STP 
upstream) 

<LOQ-7  1 Kasprzyk-Hordern et al., 
2009 

 UK Taff river (STP 
downstream) 

30-120  89 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
upstream) 

<LOQ-90  19 Kasprzyk-Hordern et al., 
2009 

 UK Ely river (STP 
downstream) 

10-183  62 Kasprzyk-Hordern et al., 
2009 

 USA 139 stream sites ND-710 150  Kolpin et al., 2002 
 USA Buffalo river (STP 

downstream) 
  80 Batt et al., 2006 

 Vietnam Urban drainage 15-46 28 29.9 Managaki et al., 2007 
 Vietnam Mekong river 7-19 17.5 15.3 Managaki et al., 2007 
a Erythromycin (and –H2O) 
UK: United Kingdom 
USA: States Unitates of America 
ND: Not detect 
LOD: Limit of detection 
LOQ: Limit of quantification 
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Chapter 5 

 

CONTINUOUS OZONATION TREATMENT OF OFLOXACIN: 

TRANSFORMATION PRODUCTS, WATER MATRIX EFFECT AND 

AQUATIC TOXICITY 

 

Abstract 

The continuous ozonation of the antibiotic ofloxacin (OFX) has been performed 

using a synthetic water matrix and in a sewage treatment plant (STP) effluent. The aim 

was to study the effect of the water matrix on the ozonation with particular emphasis on 

the aquatic toxicity of treated water. OFX was completely removed in both water 

matrices, although the amount of ozone consumed for its depletion was strongly matrix-

dependent. The extent of mineralization was limited and a number of intermediate 

transformation products (TPs) appeared, twelve of which could be identified. OFX 

reaction pathway includes the degradation of piperazinyl and quinolone moieties. The 

further oxidation of TPs gave rise to the formation and accumulation of carboxylic acids, 

aldehydes, nitrogen-containing organic compounds and inorganic ions. Aquatic toxicity 

of treated mixtures was assessed using four standard species: the bacteria Vibrio fischeri 

and Pseudomonas putida as target organisms and the protozoan Tetrahymena 

thermophila and the algae Pseudokirchneriella subcapitata as non-target organisms. OFX 

was toxic for the bacteria and the microalgae at the spiked concentration in untreated 

water. However, the continuous ozonation at the upper operational limit removed its 

toxic effects. T. thermophila was not affected by OFX, but was sensitive to STP effluent. 
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1. Introduction 

Antibiotics are commonly used to treat infections in humans and are intensively 

applied for veterinary uses (van der Grinten et al., 2010). As a consequence of their poor 

metabolization and their incomplete removal in sewage treatment plants (STPs), 

antibiotics are continuously released into the aquatic environment (Kümmerer, 2009a 

and Fatta-Kassinos et al., 2011). Their occurrence in surface waters has generated 

human health and environmental concerns. Although found at sub-therapeutic levels, 

relatively low concentrations of these drugs can promote bacterial resistance 

(Kümmerer, 2009b and Rizzo et al., 2013). Indeed, antibiotic resistant bacteria (ARB) and 

antibiotic resistance genes (ARGs) have been found in STP effluents, surface and drinking 

waters (Schwartz et al., 2003 and Yang et al., 2014). Despite the fact that antibiotics are 

specifically applied to fight pathogenic bacteria, non-target environmental organisms 

which provide important ecosystem services are inevitably exposed, resulting in a 

potential risk of ecosystem disruption (van der Grinten et al., 2010 and Brain et al., 

2009). 

Ofloxacin (OFX), a quinolone, is a broad-spectrum antibacterial agent widely used 

for treating bacterial infections. Its major mode of action is the inhibition of DNA 

replication in bacteria via interference of the normal function of the A-subunit of the 

DNA gyrase protein (Sukul and Spiteller, 2007). It displays high activity not only against 

bacteria, but the detection of a gyrase-like protein in plants explains the high quinolone 

toxicity also found for algae (Brain et al., 2009). In conventional STP, OFX is partially 

removed (apparent removal efficiency of 60%), mainly by adsorption onto activated 

sludge (Li and Zhang, 2010 and Verlicchi et al., 2012), being the balance discharged with 

treated wastewater. In fact, OFX has frequently been detected in STP effluents and river 

basins in up to μg·L−1 and ng·L−1 levels, respectively (Segura et al., 2009, Fatta-Kassinos 

et al., 2011, Verlicchi et al., 2012 and Michael et al., 2013). As a consequence of its 

occurrence and toxicity, recent publications have concluded that OFX might pose a 

potential risk to aquatic organisms (Kümmerer et al., 2000, Isidori et al., 2005, Segura et 

al., 2009 and Backhaus and Karlsson, 2014). 
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As conventional processes used in an STP are unable to act as a reliable barrier 

toward some pharmaceutical compounds, a great effort is currently directed to develop 

technologies capable of efficiently removing them (Ternes et al., 2004). Among them, 

ozonation is known as an attractive alternative due to its effectiveness in the removal of 

a wide range of micropollutants with potential environmental risks (Andreozzi et al., 

2004, Huber et al., 2005, Rosal et al., 2010 and Rodríguez et al., 2012). A further 

advantage of the ozonation is its disinfecting potential, which is able to deactivate ARG 

biological activities in addition to achieving ARB inactivation, preventing the 

dissemination of antibiotic resistance (Tyrrell et al., 1995 and Dodd, 2012). 

Using continuous processes working with real STP effluents have proven more 

useful than batch/semi-batch works performed in wastewater or simulated effluents for 

full-scale studies. Continuous treatment displays a closer approximation to a full-scale 

system and a better understanding of the fate of pollutants under oxidizing conditions 

(Huber et al., 2005). In addition to the reaction time and ozone dose, the extent of 

oxidation depends mainly on the chemical nature of the micropollutant itself and water 

matrix composition (Katsoyiannis et al., 2011). Moreover, it is important to take into 

account that the abatement of the target compound rarely leads to its total 

mineralization, but rather the formation of transformation products (TPs). The concern 

is whether or not these TPs keep the biological effects of the parent compounds or 

whether new and undesired biological effects are developed (Dantas et al., 2008, Li et 

al., 2008, Dodd et al., 2009 and Gómez-Ramos et al., 2011). This issue cannot be 

addressed merely elucidating the structures of the TPs by chemical analysis. Instead, the 

assessment of treated water toxicity and the influence of the water matrix are necessary 

for the optimization of continuous ozonation treatments. 

In this work, the continuous ozonation of OFX in two different water matrices 

(synthetic water and STP effluent) was studied, elucidating its TPs in order to propose a 

reaction pathway. Aquatic toxicity of treated water was assessed using a biotest battery 

composed of two target (Vibrio fischeri and Pseudomonas putida) and two non-target 

(Tetrahymena thermophila and Pseudokirchneriella subcapitata) organisms. 
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2. Materials and methods 

2.1. Materials 

Ofloxacin (OFX) was purchased from Sigma-Aldrich (≥98%). Two water matrices 

spiked with OFX (22 mg·L−1) were used for ozonation process experiments: synthetic 

water and an STP effluent. The synthetic matrix was prepared in ultrapure water 

(resistivity ≥18 MΩ·cm at 25ºC) with the required amount of sodium bicarbonate to 

equal the alkalinity and pH values of the STP effluent. Wastewater was collected from 

the outlet of the secondary clarifier of an STP located in Alcalá de Henares (Spain). The 

plant treats domestic wastewater with a minor contribution of industrial effluents from 

facilities located near the city (374 000 population equivalent) and has a nominal 

capacity of 3 000 m3·h−1. Details on wastewater characterization are showed in Table 5.1. 

Table 5.1 Main physico-chemical parameters of STP effluent. 
pH 7.33  Na+ (mg·L−1) 65.0  Cr (µg·L−1) 0.36 
Conductivity (µS·cm−1) 750  NH4

+ (mg·L−1) 4.14  Ni (µg·L−1) 11.5 
TSS (mg·L−1) 11.4  K+ (mg·L−1) 14.7  Cu (µg·L−1) 12.7 
Turbidity (NTU) 7.00  Mg2+ (mg·L−1) 18.3  Zn (µg·L−1) 34.4 
COD (mg·L−1) 27.8  Ca2+ (mg·L−1) 51.9  As (µg·L−1) 9.88 
DOC (mg·L−1) 8.42  Cl− (mg·L−1) 85.7  Se (µg·L−1) 0.05 
BOD5 (mg·L−1) 6.00  NO2

− (mg·L−1) 5.61  Cd (µg·L−1) ND 
BOD5/COD 0.22  NO3

− (mg·L−1) 58.8  Sn (µg·L−1) 4.27 
SUVA254* (L·mg C−1 m−1) 2.61  PO4

3− (mg·L−1) 3.34  Hg (µg·L−1) ND 
Alkalinity (mg CaCO3·L−1) 138  SO4

2− (mg·L−1) 81.3  Pb (µg·L−1) ND 
 

*Specific ultraviolet absorption at 254 nm 
ND: not detected 
 

2.2. Experimental procedure 

The experiments were carried out in a cylindrical reactor (internal diameter of 

6.0 cm and working height of 51 cm) with a total working volume of 1.44 L, which 

operated in continuous co-current mode. The retention time distribution curve yielded 

an average retention time of 10.3 min. The reactor modelling using the continuous 

stirred tank reactor (CSTR) in series model (Burrows et al., 1999) determined an 

equivalent value of 1.13 tanks, indicating that the bubble column can reasonably 

approach a perfect CSTR (Asenjo and Merchuck, 1995). 
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Water flow rate was 142 mL·min−1 and gas flow was 390 mL·min−1 with different 

inlet ozone concentrations. During the runs, the inlet ozone dosage was stepwise 

increased from 4.2 to 145 milligrams of ozone per liter of wastewater (mg·L−1). For the 

different ozone dosages samples were withdrawn for analysis at the column outlet once 

the stationary state was reached. This was ensured by circulating the hydraulic retention 

time four times after a constant ozone concentration was obtained both in liquid and 

gas phases at the column outlet. Assuming CSTR behaviour and stationary state 

𝑑𝐶𝑂3
𝑙𝑖𝑞 𝑑𝑡⁄ = 0), the amount of ozone consumed can be obtained by means of the 

following mass balance (Eq. (5.1)): 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑂3 = 𝐹𝑂3
𝑔𝑎𝑠,𝑖𝑛 − 𝐹𝑂3

𝑔𝑎𝑠,𝑜𝑢𝑡 − 𝐹𝑂3
𝑙𝑖𝑞,𝑜𝑢𝑡 (5.1) 

 

in which 𝐹𝑂3 is the rate of ozone entering the system in the gas phase (gas, in) or leaving 

either in the exhaust gases (gas, out) or dissolved in water (liq, out). Details about 

experimental set-up are given in Chapter 3 (section 2.2). 

 

2.3. Analytical methods 

OFX concentration was performed by HPLC, Agilent 1200, with reversed-phase 

C18 analytical column (Phenomenex Luna SCX, 250 × 4.6 mm, 5 µm) and operated at a 

flow rate of 0.5 mL·min−1. An isocratic method, with 30% acetonitrile and 70% ultrapure 

water with 0.1 M phosphoric acid and 10 mM ammonium acetate mobile phase, was 

employed with detection of OFX at λ 294 nm. The structural elucidation of TPs was 

carried out using a hybrid quadrupole time-of-flight mass spectrometer TripleTOF 5600 

system (AB SCIEX) with an ESI (electrospray ionization) source coupled to an Agilent 

1200 Series HPLC system (LC/ESI-QTOF-MS). The ion source parameters were: Ion Spray 

Voltage Floating (ISVF), 5 500 V; Temperature (TEM), 550ºC; Curtain Gas (CUR), 25 

(arbitrary units) and Ion Source Gas (GS1 and GS2) at 35 and 40 psi, respectively. The MS 

was operated in full scan TOF-MS and MS/MS mode through information dependent 

acquisition (IDA) in a single run analysis. In addition to the discriminative information 

based on mass accuracy of the molecular ions acquired in TOF-MS, MS/MS mode was 
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used for the characterization of the TPs. The declustering potential (DP) and collision 

energy (CE) were 70 V and 10 V in the full scan TOF-MS experiment. The LC analysis was 

performed with a reversed-phase C18 analytical column (Agilent Zorbax Eclipse XDB, 

50 × 4.6 mm, 1.8 µm). Mobile phases [A] and [B] were, respectively, acetonitrile and 

HPLC-grade water with 0.1% formic acid. A linear gradient was set from 10% to 100% of 

[A] in 11 min, and then maintained at 100% for 5 min. Data acquisition and processing 

were carried out using Analyst® TF 1.5 and PeakViewTM (AB SCIEX) software. 

Dissolved Organic Carbon (DOC) was determined using a TOC-VCSH Shimadzu TOC 

analyzer. Carboxylic acids were measured by a Dionex DX120 Ion Chromatograph with a 

conductivity detector. Oxalic and mesoxalic acid concentrations were analyzed by IonPac 

AS9-HC analytical column (4 × 250 mm) with ASRS-Ultra suppressor whereas, acetic and 

formic acid concentrations were measured using an IonPac ICE analytical column 

(9 × 250 mm) with AMMS-ICE II suppressor. Inorganic ions were determined by means of 

a Metrohm 861 Advance Compact IC with conductivity detector; a Metrosep A Supp 7-

250 analytical column was used in anion analysis while, a Metrosep C3 column was used 

in cation analysis. Formaldehyde was measured spectrophotometrically using the 

acetylacetone method (Hach-Lange LCK 325). 

 

2.4. Procedures for aquatic toxicity tests 

Aquatic toxicity assessment was performed with a bioassay battery composed of 

single-species tests of the bacteria V. fischeri and P. putida, the algae P. subcapitata and 

the protozoan T. thermophila. This set of bioassays allowed both acute and chronic 

assays to be performed and the combined usage of target (prokaryotes) and non-target 

(eukaryotes) OFX organisms at different trophic levels. 

V. fischeri acute test measure the decrease in bioluminescence induced in the cell 

metabolism. The bioassay was performed according to ISO 11348-3 standard protocol 

(ISO, 2007) using the commercial BioFix®Lumi test (V. fischeri, NRRL-B 11177 from 

Macherey-Nagel, Germany). Bioluminescence was measured at 15 ± 1ºC after 30 min in 

96-well white polypropylene microplate by a Fluoroskan Ascent FL microplate 
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luminometer (Thermo Scientific). P. putida test determine the inhibitory effect of a 

substance on the bacteria (P. putida, NCIB 9494 from CECT, Spain) by means of cell 

growth inhibition. The bioassay was performed according to ISO guideline 10712 (ISO, 

1995). Bacterial culture was exposed to test solutions at 23 ± 1ºC for 16 h in 10 mL glass 

incubation vials which were constantly shaken in the dark. The cell growth was 

determined by optical density (λ 600 nm) in 96-well clear polypropylene microplate 

using a Rayto RT-2100C microplate reader. 

Growth inhibition assay with the ciliate protozoan T. thermophila was carried out 

according to the Standard Operational Procedure Guidelines of Protoxkit FTM (1998). The 

test is based on the turnover of substrate into ciliate biomass. Substrate and 

reconstitution medium were purchased from MicroBioTest Inc. (Belgium) whereas T. 

thermophila (SB 210) was kindly supplied by D. Cassidy-Hanley (Tetrahymena Stock 

Center, USA). Ciliates were incubated with water samples and food suspension in test 

vessels at 30 ± 1ºC for 24 h in the dark. Growth inhibition was determined on the basis of 

turbidity changes (OD at λ 440 nm), at the beginning and at the end of the test. 

Finally, algal growth inhibition test was carried out following the procedure 

described in the European Guideline OECD TG (Guideline) 201, using P. subcapitata open 

system (OECD, 2011). The algal stock culture for inoculation was taken from commercial 

test system Algaltoxkit FTM (MicroBioTest Inc., Belgium). The cells of P. subcapitata were 

exposed to tested water samples at 23 ± 1ºC for 72 h in 10 mL glass incubation vials 

which were constantly shaken and illuminated in a chamber (∼100 μmol foton·m−2·s−1). 

Algal biomass was measured daily by chlorophyll-a content, whose extraction was 

carried out as following: 50 μL culture samples were transferred to a 96-well black 

polypropylene microplate, 200 μL of ethanol was added to each well and the plate was 

shaken for 3 h in the dark. Thereafter the fluorescence was measured using a Fluoroskan 

Ascent FL microplate fluorometer (Excitation 450 nm, Emission 672 nm) from Thermo 

Scientific. 

ZnSO4·7H2O for V. fischeri test, 3,5-dichlorophenol for P. putida and K2Cr2O7 for 

the rest of the bioassays were used as reference substances in order to check each test 
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procedures. Three independent experiments with duplicate samples were carried out to 

ensure reproducibility. All aquatic toxicity data are expressed as mean ± 95% confidence 

interval and data analysis were performed using a nonlinear-regression sigmoidal dose-

response curve model provided in the GraphPad Prism 6.0 software (GraphPad software 

Inc., San Diego, USA). 

 

3. Results and discussion 

3.1. Synthetic water matrix 

The continuous ozonation process was studied from different ozone dosages in 

order to achieve maximum OFX oxidation and mineralization degrees. Fig. 5.1 shows the 

evolution of OFX concentration and DOC in the synthetic matrix as a function of the 

amount of ozone supplied. OFX declined with ozone up to an exposure of 60 mg·L−1, 

where it was completely removed. Otherwise, despite DOC also decaying with ozone, 

ozonation did not lead to OFX mineralization, with maximum values slightly over 40%. 

The evolution of the consumed and dissolved ozone is also represented in 

Fig. 5.1. Based on the evolution of both parameters, three different zones can be 

observed as a function of ozone dosage. In zone 1, up to 58 mg·L−1, ozone consumption 

linearly increased and no dissolved ozone was detected (<0.01 mg·L−1), which indicated 

that ozone was acting as limiting reactant. This behaviour occurred during the oxidation 

of more easily oxidizable compounds because ozone mass transfer rate was slower than 

ozone consumption. In this initial zone, total OFX degradation was reached, suggesting 

that the target pollutant is easily abated by ozonation. This result was in line with 

previous studies using semi-batch processes. Márquez et al. (2013) reported high 

second-order rate constants (>106 M−1·s−1) at pH >7 and De Witte et al. (2009) found a 

half-life time of 12.8 min at pH 7 for ozone inlet of 0.58 mg·min−1.Runs carried out using 

𝑡-butanol (30 mM) as a radical scavenger (Fig. 5.2), suggest that OFX is mainly degraded 

by molecular ozone attack. The direct ozonation reaction would occur with the fast 

reacting moieties present in the OFX molecule such as the deprotonated amine and the 

aromatic ring (103–1011 M−1 s−1) (De Witte et al., 2009, Márquez et al., 2013 and El Najjar 
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et al., 2013). Dodd et al. (2006) also observed that the kinetics of other quinolone 

reactions was predominantly driven by molecular ozone oxidation. 

 

Fig. 5.1 Evolution of OFX (□), DOC (■), consumed (●) and dissolved ozone (○) for different ozone dosages 
in synthetic water matrix. 

 

The DOC depletion achieved in zone 1 was 30%, which represented roughly three 

quarters of the maximum mineralization degree achieved along the runs. In zone 2, 

consumed ozone still increased and dissolved ozone began to be detected at the outlet 

stream. This fact is consistent with the oxidation of less easily oxidizable compounds, 

whose ozonation proceeded at a slower rate than ozone mass transfer. In this zone, the 

mineralization degree slightly rose from 30 to 41%, suggesting that the increase of 

consumed ozone was mainly due to the partial oxidation of organic matter. For dosages 

above 108 mg·L−1 (zone 3), ozone consumption remained constant, without further 

mineralization and a concentration of ozone at the reactor outlet (gas and liquid) which 

increased proportionally to ozone input. Under these conditions, the upper operational 

limit of the system, the consumed ozone value was 48 mg·L−1. Taking into account both 

consumed ozone and the abatement degree of OFX at the upper ozone dosage, the 

ozone consumed per milligram of OFX found in the synthetic water matrix was 

2.15 mg·O3·(mg OFX)−1. Considering the ozone consumed by the matrix (2.88 mg·L−1), the 

mass factor was 2.02 mg O3·(mg OFX)−1. 
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Fig. 5.2 Evolution of OFX in the synthetic water matrix without (■) and with 𝑡-butanol (30 mM) (□) for 
different levels of consumed ozone. 

 

3.2. Elucidation of transformation products and degradation pathway 

Twelve compounds were elucidated as TPs formed during the ozonation of OFX. 

Table 5.2 shows LC/ESI-QTOF-MS mass measurements of OFX and its TPs and structures 

proposed for them. The evolution of the corresponding TPs and OFX depletion as a 

function of the amount of ozone supplied are shown in Fig. 5.3. Relative amounts were 

calculated from the ion counts associated with each individual compound normalized by 

the ion count corresponding to the initial concentration of OFX. This approach allowed 

the yields and the evolution of TPs to be estimated, while their actual concentrations 

could not be determined due to the lack of standards (Liu et al., 2012a). As can be seen 

in the figure, the TP amounts behaved as an intermediate product in series reactions, 

with their counts initially increasing to reach a maximum and then decreasing due to the 

further oxidation of these products by ozone. In fact, the maximum concentration of 

most TPs occurred for ozone dosages between 4.2 and 28 mg·L−1, and all of them 

disappeared at ozone exposure of 64 mg·L−1 (at the end of zone 1), demonstrating thus 

their high reactivity with ozone (Fig. 5.3A). It is worth mentioning that the yields of TPs 

were variable, with the highest ion counts corresponding to TP2.  
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Table 5.2 LC/ESI-QTOF-MS mass measurements of ofloxacin (OFX) and its transformation products (TPs) 
and structures proposed for them (continued on next page). 

Compound 
Rt 

(min) 
Elemental 

formula 
Mass (𝑚/𝑧) Error 

Proposed structure 
Theoretical Experimental ppm DBE 

OFX 4.170 C18H21FN3O4
+ 362.1511 362.1518 2.0 9.5 

 

 C17H21FN3O2
+ 318.1612 318.1608 -1.2 8.5 

C14H14FN2O2
+ 261.1034 261.1025 -3.4 8.5 

C11H10FN2O2
+ 221.0721 221.0713 -3.5 7.5 

TP1 4.150 C17H19FN3O4
+ 348.1354 348.1367 3.7 9.5 

 

 C17H17FN3O3
+ 330.1249 330.1256 2.3 9.5 

C16H19FN3O2
+ 304.1456 304.1468 3.9 8.5 

C16H18N3O2
+ 284.1394 284.1404 3.7 8.5 

C14H14FN2O2
+ 261.1034 261.1052 6.9 8.5 

TP2 4.550 C18H21FN3O5
+ 378.1460 378.1471 2.9 9.5 

 

 C18H20FN3O4
+ 361.1432 361.1421 -3.2 9.5 

C18H19FN3O4
+ 360.1354 360.1372 5.0 9.5 

C17H21FN3O3
+ 334.1562 334.1579 5.2 8.5 

C17H21N2O4
+ 317.1496 317.1530 11 8.5 

TP3 3.940 C18H21FN3O6
+ 394.1409 394.1419 2.6 9.5 

 

 C18H19N2O6
+ 359.1238 359.1285 13 7.5 

C17H19N2O4
+ 315.1339 315.1378 12 8.5 

C15H12FN2O3
+ 287.0827 287.0835 3.0 10.5 

C13H12FN2O2
+ 247.0877 247.0907 12 7.5 

TP4 3.435 C18H19FN3O5
+ 376.1303 376.1323 5.3 10.5 

 

 C18H17FN3O4
+ 358.1198 358.1205 2.1 11.5 

C15H12FN2O3
+ 287.0826 287.0825 -0.3 10.5 

C14H14FN2O2
+ 261.1034 261.1036 0.8 8.5 

TP5 4.117 C16H19FN3O4
+ 336.1354 336.1346 -0.4 8.5 

 

 C16H17FN3O3
+ 318.1249 318.1248 -0.2 9.5 

C13H10FN2O3
+ 298.1186 298.1188 0.7 10.5 

C13H10FN2O3
+ 261.0670 261.0692 8.4 9.5 

TP6 5.953 C13H12FN2O4
+ 279.0775 279.0780 1.8 8.5 

 

 C13H10FN2O3
+ 261.0670 261.0674 1.6 8.5 

C10H5FN2O3
+ 220.0279 220.0284 2.4 7.5 

C10H4FN2O3
+ 219.0200 219.0209 4.1 7.5 

TP7 4.533 C18H21FN3O6
+ 394.1409 394.1426 4.3 9.5 

 

 C15H14FN2O4
+ 305.0932 305.0944 3.9 9.5 

C14H14FN2O2
+ 261.1034 261.1059 9.6 8.5 

C13H12FN2O2
+ 247.0877 247.0884 2.8 6.5 

TP8 0.953 C16H21FN3O4
+ 338.1511 338.1537 7.7 7.5  

 C15H21FN3O3
+ 310.1562 310.1577 5.0 6.5 

C15H19FN3O2
+ 292.1456 292.1462 2.1 7.5 

C12H12FN2O2
+ 235.0877 235.0888 4.7 7.5 

TP9 2.322 C16H21FN3O5
+ 354.1460 354.1469 2.6 7.5 

 

 C16H20FN3O4
+ 337.1432 337.1453 6.1 7.5 

C15H20FN3O3
+ 309.1483 309.1466 -5.6 6.5 

C15H19N3O3
+ 289.1421 289.1443 7.6 5.5 

TP10 4.585 C15H21FN3O4
+ 326.1511 326.1523 3.8 6.5 

 

 C15H20FN3O3
+ 309.1483 309.1480 -1.0 6.5 

C15H19N3O3
+ 289.1421 289.1417 -1.3 5.5 

C14H14FN2O2
+ 261.1034 261.1078 17 8.5 

C11H10FN2O2
+ 221.0721 221.0713 -3.5 7.5 

(continued on next page) 
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Table 5.2 LC/ESI-QTOF-MS mass measurements of ofloxacin (OFX) and its transformation products (TPs) 
and structures proposed for them. 

Compound 
Rt 

(min) 
Elemental 

formula 
Mass (𝑚/𝑧) Error 

Proposed structure 
Theoretical Experimental ppm DBE 

TP11 1.878 C14H19FN3O4
+ 312.1354 312.1364 3.2 6.5 

 

 C13H17FN3O2
+ 266.1299 266.1285 -5.4 5.5 

C12H12FN2O+ 219.0928 219.0917 -5.1 4.5 
 209.1085 209.1099 6.8 5.5 

TP12 4.441 C16H19FN3O4
+ 336.1354 336.1350 -1.2 8.5 

 

 C16H18FN3O3
+ 319.1327 319.1329 0.7 8.5 

C15H18FN3O2
+ 291.1378 291.1395 6.0 6.5 

C14H15FN3O2
+ 276.1143 276.1142 -0.3 8.5 

C13H10FN2O3
+ 261.0670 261.0692 8.4 9.5 

 

The generation pathway of these TPs is expected to include multiple routes due 

to the presence of several reactive sites in the parent compound and the occurrence of 

two oxidation mechanisms by both molecular ozone and hydroxyl radicals. Despite this 

complexity, the results presented above and the information available from reported 

data (De Witte et al., 2009 and Liu et al., 2012a) can be interpreted to propose the 

degradation pathway shown in Scheme 5.1. The degradation of OFX occurs on both 

piperazinyl (TP1–TP6, open symbols in Fig. 5.3) and quinolone ring (TP7–TP12, solid 

symbols in Fig. 5.3). No TPs were found corresponding to the degradation of the oxazinyl 

group, indicating that it remained unmodified by ozonation reactions. 

On the one hand, the reactions of the piperazinyl ring were due to attacks to 

both the methyl group and the piperazine core. TP1 is attributed to the demethylation of 

the piperazinyl ring at position 4′. TP1 could be regarded as one of the intermediates for 

the formation of TP6, which can be yield owing to the total oxidation of the piperazine 

ring to an amino group. The main transformation product TP2 was a consequence of the 

initial ozone attack on N4′ atom (Dodd et al., 2006). The oxidation of TP2 may yield TP3 

through the addition of a hydroxyl radical at 7′. OFX can also be oxidized to the keto-

derivative TP4, which would be transformed into TP5 through the opening of the 

piperazine ring. Further oxidation of TP3 and TP5 would generate TP6. These cited TPs, 

from the reaction of the piperazine group, seem to be formed primarily via molecular 

ozone attack (Liu et al., 2012a). According to the proposed reaction pathway, the 

carbonyl  and  carboxyl  groups  at  the  quinolone  moiety,  which  are  essential  for  binding  at  
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Fig. 5.3 Evolution of relative ion amount of ofloxacin, TPs and sum of TPs (ΣTPs) and quinolone core 
compounds (ΣQCs) for different ozone dosages in synthetic water matrix. 
 

the DNA gyrase (Sukul and Spiteller, 2007), were not modified in TP1–TP6 so the direct 

ozonation mechanism is not likely inactivating the drug. Under this assumption, the sum 

of ion counts from TP1–TP6 and OFX, would correspond to biologically active 

compounds, non-monotonically decreased up to ozone dosages higher than 16 mg·L−1 as 

observed in Fig. 5.3A. On the other hand, the oxidation of quinolone moiety through the 

breaking of C2=C3 double bond led to TP7. In agreement with Liu et al. (2012a), TP7 

should produce TPA (non-observed in the present study), whose decarboxylation at C3 

yields anthranilic acid analogues (TP8–TP11), whereas deformylation at C2 leads to isatin 

analogue formation (TPB and TP12). TPs from reactions at the quinolone moiety were a 

consequence of hydroxyl radical reactions according to reported data on 

fluoroquinolone degradation (De Witte et al., 2009 and Liu et al., 2012a). The proposed 

degradation pathway for the early oxidation stages of OFX is not only consistent with the   
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Scheme 5.1 Proposed degradation pathway for ofloxacin in ozonation process. 
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evolution and yield of TPs, but also supports that OFX oxidation was most likely due to 

direct ozonation reactions. In fact, TPs from reactions at piperizine group, mainly 

generated by molecular ozone (open symbols in Fig. 5.3), were more abundant than 

those at quinolone moiety, primarily consequence of radical reactions (full symbols in 

Fig. 5.3). 

The further oxidation of detected TPs gave rise to the formation of species with 

lower molecular weight such as carboxylic acids. Fig. 5.4 represents the evolution of the 

main detected carboxylic acids (mesoxalic, oxalic, acetic and formic acid) found in 

ozonation runs. Their concentration increased in zone 2 due to the partial oxidation of 

organic matter. This explains the noticeable increase of consumed ozone in spite of OFX 

has been completely depleted. In zone 3, the concentration of carboxylic acids remained 

essentially constant together with mineralization degree. This fact is in good agreement 

with the well-known refractory character of these final ozonation products, which is the 

reason why their concentrations increased in the reaction mixture (von Sonntag and von 

Gunten, 2012 and Petre et al., 2015). The organic acids only account for a third of DOC. 

As a consequence, other refractory organic compounds were not detectable by ionic 

chromatography, such as aldehydes or nitrogen-containing organic compounds, which 

should be present (Liu et al., 2012b). Among aldehydes, formaldehyde was detected at a 

concentration close to 1.0 mg·L−1 at ozone exposures of 39 mg·L−1, probably as a result 

of the reaction yielding TPs such as TP1. 

Nitrogen was not completely mineralized as shown by the amount of nitrate 

detected, which achieved a maximum value corresponding to 30% of the initial nitrogen 

content of OFX (11.3 mg·L−1). This fact suggests that the remaining organic carbon 

contained a high amount of nitrogen in compounds such as quaternary amines which 

are species that are particularly refractory to ozonation (Muñoz and von Sonntag, 2000 

and Nawrocki and Andrzejewski, 2011). OFX decay also led to the occurrence of other 

inorganic ion, fluoride, whose concentration reached a value corresponding to 100% 

initial fluorine in OFX. 
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Fig. 5.4 Evolution of formaldehyde (♦), mesoxalic (■), oxalic (●), acetic (▼), formic acid (▲), nitrate (Δ) 
and fluoride (○) for different ozone dosages in synthetic water matrix. 
 

3.3. Matrix effect 

STP effluent showed an instantaneous ozone demand of 8.7 mg·L−1, in line with 

reported values for other wastewaters (Xu et al., 2002 and Sharif et al., 2012). The 

organic compounds (DOC = 8.4 mg·L−1) were mineralized at an extent of 20% at the 

upper operational condition, consuming 18 mg O3·L−1 (Fig. 5.5). 

Fig. 5.6A represents the evolution of OFX, DOC and the concentration profiles for 

consumed and dissolved ozone during the ozonation of OFX in STP effluent. A new zone, 

denoted zone 0, was identified for ozone dosages lower than 16 mg·L−1. In it, OFX was 

only slightly oxidized, with a depletion of about 20%, whereas in synthetic water matrix 

for similar ozone exposures it reached 67%. On the contrary, DOC steeply decreased 

quickly achieving a mineralization degree of 16%. These data show the competition for 

ozone between the dissolved organic compounds of the water matrix and OFX, 

suggesting that ozone/hydroxyl radicals would preferably attack certain moieties in 

wastewater organic matter. This fact is in line with Katsoyiannis et al. (2011), who 

showed that kinetics of the reaction of ozone with DOC strongly affects the rate at which 

target compounds were transformed by ozone. Beyond this preliminary zone, a similar 
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profile synthetic matrix was observed. In zone 1, OFX was almost completely abated and 

DOC fell steadily down to 16 mg·L−1 (28%) with increasing ozone exposure up to 

84 mg·L−1. In zone 2, between 84 to 124 mg·L−1, ozone consumption increased and the 

mineralization degree slightly rose from 28 to 33% (DOC = 15 mg·L−1). Further ozone 

dosage up to 124 mg O3·L−1, did not increase mineralization and the amount of ozone 

consumed remained constant at 64 mg·L−1. As a result, this value was considered the 

upper operational limit. 

 

Fig. 5.5 Evolution of DOC (■), consumed (●) and dissolved ozone (○) at different ozone dosages in STP 
effluent. 
 

The evolution of individual carboxylic acids and inorganic ions with ozone dosage 

is displayed in Fig. 5.6B. The pattern of organic acids was similar to that found in 

synthetic water matrix for zones 1–3. However, higher concentrations were detected at 

the upper operational limit due to the partial oxidation of wastewater organic matter 

(Liu et al., 2012b). The nitrate concentration was significantly higher than that found in 

synthetic matrix, reasonably as a consequence of the oxidation of ammonium and nitrite 

present in the STP effluent. Nitrite reacts rapidly with ozone and is almost 

stoichiometrically oxidized to nitrate (von Sonntag and von Gunten, 2012). This reaction 

took place in zone 0 at low ozone dosage (Fig. 5.6B). Taking into account the nitrate 

from wastewater matrix, OFX nitrogen mineralization was around 25%, value close to 
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the observed in the synthetic water. Fluoride represented a value close to 100% of the 

fluoride in the structure of OFX and was not detected in zone 0 in which a low OFX 

depletion took place. 

The total abatement of OFX was reached for an ozone dosage of 85 mg·L−1, which 

was  considerably  higher  than  that  observed  in  the  synthetic  water  matrix  (60 mg·L−1). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.6 Evolution of OFX (□), DOC (■), consumed (●) and dissolved (○) ozone (A) and mesoxalic (■), 
oxalic (●), acetic (▼), formic acid (▲), nitrate (Δ), nitrite (□), ammonium (▽) and fluoride (○) (B) for 
different ozone dosages in STP effluent. 

 

A) 

B) 
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The maximum ozone consumption was 64 mg·L−1, which was also higher than the value 

obtained in synthetic water (48 mg·L−1) and close to the sum of ozone consumed by the 

wastewater matrix, 18 mg·L−1 (Fig. 5.5), and that due to OFX abatement, 45 mg·L−1 

(Fig. 5.1). The ozone dose in STP effluent was 2.95 mg O3·(mg OFX)−1, which was 

remarkably higher than that observed in synthetic water (2.15 mg O3·(mg OFX)−1). 

Fig. 5.7 displays the evolution of ozone consumption as a function of OFX removed in 

both matrices. In the synthetic water matrix, the amount of ozone consumed increased 

steadily with OFX removed (zone 1) with a sharp rise at the highest values as a 

consequence of the reactions of ozone with partial oxidized organic matter (e.g., 

carboxylic acids), which are mainly occurred in zone 2. On the other hand, in the real 

wastewater matrix, the ozone consumed rose relatively quickly up to 12 mg O3·L−1, for 

low OFX abatement. Subsequently, the profile of consumed ozone of both water 

matrices runs almost in parallel. The ozone consumption gap between both matrices 

matches with the amount consumed by the STP effluent in the previously defined 

zone 0. In this preliminary zone, ozone is primarily consumed by reactions with the 

dissolved organic matter in wastewater (8.4 mg·L−1), part of which was easily oxidizable 

at low ozone dosages (Nöthe et al., 2009), and the oxidation of reduced nitrogen 

species. 

 

Fig. 5.7 Evolution of ozone consumption throughout OFX abatement in synthetic water matrix (□) and 
STP effluent (●). 
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Total OFX depletion did not lead to its full mineralization in the real matrix either, 

achieving a maximum DOC removal of 33%. Because OFX was not the only organic 

compound in the spiked STP effluent, and taking into account that the maximum 

amount of organic carbon mineralized in wastewater was 1.9 mg·L−1 (Fig. 5.5), the OFX 

mineralization degree for maximum ozone dosages was 24%, significantly less than the 

41% obtained in synthetic water. These facts underline that OFX oxidation and 

mineralization degrees were not only influenced by the presence of naturally occurring 

radical scavengers (mainly carbonates and bicarbonates), but also by other inorganic and 

organic compounds which hamper its depletion and mineralization through indirect 

reactions (Nöthe et al., 2009 and Katsoyiannis et al., 2011). 

 

3.4. Aquatic toxicity assessment 

First, the toxicity of OFX on single species was evaluated by determining 

concentration-response curves (Fig. 5.8). The growth inhibition assay with P. putida test 

was the most sensitive with an 𝐸𝐶50 value of 0.11 mg·L−1. This is a consequence of the 

specific design of quinolone, which inhibits bacterial cell division (Sukul and Spiteller, 

2007). P. subcapitata also presented a low 𝐸𝐶50 value, 1.9 mg·L−1, although microalgae 

are non-target organisms for the antibiotic. Nevertheless, it has been indicated that the 

presence of gyrase-like proteins makes algae sensitive to OFX and warns about the 

effect of quinolone on non-target organisms (Brain et al., 2009). On the other hand, T. 

thermophila and V. fischeri have 𝐸𝐶50 values >100 mg·L−1. T. thermophila, an eukaryote, 

is not expected to be affected by antibiotics (Láng and Kőhidai, 2012), whereas V. 

fischeri, despite being a target organism, was not OFX sensitive due to the short 

incubation time of the bioassay (Backhaus et al., 1997). The 𝐸𝐶50 values were in good 

agreement with those previously reported for V. fischeri, P. putida and P. subcapitata 

(Alexy, 2003 and Isidori et al., 2005). No prior data have been found for T. thermophila. 

Fig. 5.9 displays the evolution of the toxicity of untreated and treated samples at 

different ozone exposures in the synthetic water matrix and STP effluent for the 

organisms   of   the   bioassay   battery.   The   aquatic   toxicity   of   raw   synthetic   water  
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Fig. 5.8 Concentration-response curve of ofloxacin for V. fischeri (●), P. putida (■), T. thermophila (∆) and 
P. subcapitata (◊) test (mean ± 95% confidence interval). Lines gives nonlinear-regression sigmoidal dose-
response curve model fit and black arrow represents the initial OFX concentration in spiked waters 
(22 mg·L−1). 
 

(OFX = 22 mg·L−1) displayed significant interspecies differences, which essentially 

correspond to the already described sensitivity to OFX. Accordingly, the growth of P. 

putida and P. subcapitata was severely inhibited as quinolone concentration was 

considerably higher than 𝐸𝐶50 values. The lower effect on V. fischeri and T. thermophila 

was consistent with their lower sensitivity to OFX. A similar behaviour was observed for 

spiked STP effluent on all bioassays except for T. thermophila, whose toxicity was 

markedly higher. This fact is result of the toxicity of the STP effluent itself. In contrast, 

the wastewater matrix did not display noticeable toxicity for the rest of bioassays. 

In the synthetic water matrix, the toxicity for P. putida and P. subcapitata was 

reduced with the increasing ozone dosage up to its total depletion. At the end of zone 1, 

aquatic toxicity for both microorganisms reached the same value of the non-spiked 

synthetic water. The toxic effects for V. fischeri increased with ozone exposure at low 

ozone dosage, whereas for T. thermophila no growth inhibition was observed in any 

case. The toxicity for V. fischeri, P. putida and P. subcapitata in STP effluent, decreased 

with increasing ozone dosage until the inhibition value of control sample was reached. 

The toxic effects for T. thermophila follow a similar trend to the non-spiked wastewater  
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Fig. 5.9 Evolution of toxic effects of treated samples at different ozone dosages in OFX spiked synthetic 
matrix (□) and STP effluent (●), and non-spiked STP effluent (○) for the biotest battery. Inset plots 
represent the evolution of toxicity on P. putida as toxic units (𝑇𝑈 = 100/𝐸𝐶50) for samples with inhibition 
equal to 100%. 
 

213 



 

Chapter 5 

 

profile throughout all input ozone levels, suggesting that ozonated STP effluent 

appeared to be the main source of toxicity to the protozoan. 

Aquatic toxicity and OFX concentration followed a similar profile with increasing 

ozone dosage, both being completely depleted at the end of zone 1. Toxicity decay in 

wastewater matrix required a higher amount of ozone with regards to the synthetic 

water matrix. In general, it can be observed that the toxicity did not significantly decay 

in zone 0 in the STP effluent where OFX depletion was slowed down by matrix effects. 

Fig. 5.10 shows a comparison between toxic effects of pure OFX dissolved in ultrapure 

water and that exerted by ozonated solutions of OFX in two different water matrices on 

the most sensitive organisms: P. putida and P. subcapitata. Despite treated water 

mixtures being notably less toxic than the single OFX, all profiles followed the same 

pattern. These data suggest that OFX is the main cause of aquatic toxicity and that the 

influence of ozonated by-products, especially those with potential biological activity (i.e., 

TP1-TP6), was almost negligible. It is interesting to note that the generation of easily 

assimilable organic matter (Thayanukul et al., 2013), bicarbonate (Luzhøft et al., 1999) 

and/or extra amounts of nitrate and phosphate (Selivanovskaya et al., 2004) are the 

most likely cause of the remarkable stimulation observed for P. putida and P. 

subcapitata growth. 

Despite the toxic effects towards V. fischeri initially decline in parallel with 

remaining OFX concentration afterwards (Fig. 5.9), luminescence inhibition significantly 

increased at low ozone dosages (remaining OFX ≈ 11 mg·L−1). Particularly, a steep 

increase was observed in the synthetic water matrix, reaching 50% for an ozone dosage 

of 39 mg·L−1. Part of this toxicity enhancement could be attributed to the formation of 

formaldehyde, whose concentration in synthetic water reached 1.0 mg·L−1 for an ozone 

dosage of 39 mg·L−1. This value is close to the 𝐸𝐶50 value of 8.4 mg·L−1 reported by Ricco 

et al. (2004). The occurrence of organic nitrogen compounds (1.85 mg·L−1 as organic 

nitrogen) could also represent a contribution to the total toxicity due to the high toxicity 

of some of them formed by the ozonation of the piperizinyl group (Calamari et al., 

1980). A similar toxicity trend was observed for V. fischeri in previous studies (Calza et 

al.,   2008,   Vasquez   et   al.,   2013   and   El   Najjar   et   al.,   2013).   Calza   et   al.   (2008)   also  
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Fig. 5.10 Concentration-response curve of single OFX (▲) and evolution of the effects of treated water 
samples at different remaining OFX concentrations in ozonated synthetic matrix (□) and STP effluent (●) 
on P. putida (A) and P. subcapitata (B). 
 

suggested that the increase in the luminescence inhibition during photocatalytic 

treatment of OFX was not due to the initial TPs but to secondary products, namely 

piperazine and its derivatives and other degradation products, not detected by LC/MS. 

A) 

B) 
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This fact highlighted the concern about the generation of secondary products with new 

and undesired new biological effects (von Sonntag and von Gunten, 2012). V. fischeri 

displayed the same toxicity pattern in the STP effluent although with lower toxicity, 

which is most likely due to the effect of the wastewater matrix. The presence of other 

chemicals in wastewater may interfere with the mechanisms of action of secondary 

products of OFX ozonation, minimizing the response or limiting the interaction with 

target bacterial receptors (Hernando et al., 2007). 

 

4. Conclusions 

The continuous ozonation performances with short residence times attained 

total abatement of OFX in synthetic water and real STP effluent, but not totally 

mineralization is achieved. The water matrix has a strong influence on the ozone dose 

required for OFX removal and a given degree of mineralization. 

The extent of mineralization was limited in both water matrices and a number of 

TPs appeared which suggested that reaction pathway include the oxidation of 

piperazinyl and quinolone moieties. The degradation of the initial TPs gave rise to the 

formation and accumulation of final by-products such as carboxyl acids, aldehydes, 

nitrogen-containing organic compounds and inorganic ions. 

Although OFX is toxic both for target (P. putida) and non-target (P. subcapitata) 

organisms, ozonation completely removed its toxic effects. This fact implies that the 

generated by-products presented negligible toxicity. 
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COMPARATIVE TOXICITY ASSESSMENT OF AN OZONATED 
ANTIBIOTIC MIXTURE USING SINGLE SPECIES AND NATURAL 

BIOFILM COMMUNITIES 
 

Abstract 

The continuous ozonation of a mixture of six antibiotics frequently detected in 

wastewater and surface water (doxycycline, erythromycin, metronidazole, ofloxacin, 

sulfamethoxazole and trimethoprim) has been performed in a sewage treatment plant 

(STP) effluent. The study aims to evaluate ozonation as tertiary wastewater treatment 

with particular emphasis on the aquatic toxicity of ozonated STP effluent. The antibiotics 

were significantly degraded (≥98%) at ozone dosage of 1.2 mg O3·(mg DOC)−1 except 

metronidazole, which required 4.3 mg O3·(mg DOC)−1 to achieve similar removal 

efficiency. The degradation of the antibiotics did not imply their complete mineralization 

(in all cases <30%) as a consequence of the accumulation of transformation products 

(TPs). In order to evaluate the toxic effects of TPs, aquatic toxicity assessment based on 

effect-driven approach was performed using the single species toxicity to the bacterium 

Pseudomonas putida and the alga Pseudokirchneriella subcapitata and the impact on 

natural biofilm communities, in which the effect on the heterotrophic and phototrophic 

part of a limnic periphyton was studied. The ozonation avoided the toxicity to the 

growth rate of P. putida and P. subcapitata, and to the metabolic activity of periphytic 

bacterial communities. The comparison between the evolution of toxic effects based on 

a whole mixture approach and antibiotic degradation profiles indicates that aquatic 

toxicity is caused predominantly by the parent compounds whereas the formation of TPs 

did not significantly contribute to the mixture toxicity. The prediction of aquatic toxicity 

of ozonated wastewater by component-based approach, primarily based on 

Concentration Addition (CA) concept, was slightly overprotective with a relatively small 

likelihood of overestimating the toxic effects of treated STP effluent. Ozonated 

wastewater samples induced changes on the bacterial structure of natural biofilm 

communities even at ozone dosages in which antibiotics were significantly removed. 
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1. Introduction 

Large quantities of antibiotics are consumed by humans and animals to treat 

diseases and infections (Khetan and Collins, 2007). As a consequence of their poor 

metabolization and their incomplete removal in conventional sewage treatment plants 

(STPs), antibiotics are continuously discharged into the aquatic environment (Kümmerer, 

2009a, Verlicchi et al., 2012 and Michael et al., 2013). Their occurrence in surface water 

is of concern as antibiotics could impair microbial ecology, increase the proliferation of 

antibiotic resistant pathogens, and pose threats to human health (Khetan and Collins, 

2007, Segura et al., 2009 and Rizzo et al., 2014). 

Ozonation of secondary STP effluents as an end-of-pipe polishing step is an 

effective process for the degradation of a wide range of micropollutants including 

antibiotics (Ikehata et al., 2006, Michael et al., 2013 and Hübner et al., 2015). A further 

advantage of the ozonation is its disinfection potential, which is able to deactivate 

antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), preventing the 

dissemination of antibiotic resistance (Dodd, 2012). Given these facts, ozonation is 

generally recognized as a suitable technology for the tertiary treatment of wastewater in 

order to reduce the contamination in the aquatic environment. However, the 

mineralization of micropollutants during ozonation is typically low and most target 

compounds are only transformed into more oxidized by-products (Hübner et al., 2015). 

There is a growing concern on whether transformation products (TPs) keep or not the 

biological effects of the parent compounds (Dodd et al., 2009), or whether or not new 

and undesired biological effects are developed (Li et al., 2008, Dodd et al., 2010, Gómez-

Ramos, et al., 2011 and El Najjar et al., 2013). Therefore, a thorough aquatic 

toxicological evaluation of treated wastewater is essential for the optimization of 

ozonation treatment (Escher and Fenner, 2011). 

The most straightforward approach is to test ozonated STP effluent with the aim 

of providing an experimental estimation of its hazard (Petala et al., 2008, Stalter et al., 

2010 and Magdeburg et al., 2012). According to the effect-driven approach defined by 

Escher and Fenner (2011), the toxic effects should be compared to the concentration 
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profiles of parent compounds in order to assess the toxicity of TPs. If the decrease in 

toxicity parallels the decrease of concentration of parent compounds, the TPs are 

considered to be irrelevant and toxicity could be estimated based on the information of 

identified parent compounds only (i.e., the toxicities of the individual antibiotics and 

their concentrations in the mixture) (Tang et al., 2014). Component-based approach is a 

predictive approach that has been widely based on the mathematical concepts of 

Concentration Addition (CA) and Independent Action (IA) (Altenburger et al., 2004 and 

Kortenkamp et al., 2009). In the field of ecotoxicology, current scientific evidence seems 

to support the choice of CA as a first, pragmatic default approach for predicting the joint 

action of chemicals (Belden et al., 2007, Kortenkamp et al., 2009, Coors and Frische, 

2011, Tang et al., 2013 and Tang et al., 2014). 

In order to a achieve a comprehensive hazard assessment of treated effluents, 

biotests of species representative of the different trophic levels present in the receiving 

water body are required (Kortenkamp et al., 2009 and Escher and Fenner, 2011). 

Standardized single-species tests are fast, simple to perform, cost-effective and reliable. 

However, they have significant shortcomings such as not taking into account the 

interaction among species, the use of species that are not indigenous to recipient 

streams, their genetically homogeneous population and the fact that test procedures 

are usually conducted under experimental conditions very different from those of the 

receiving water body (Proia et al., 2013). Therefore, aquatic toxicity assessment should 

also be monitored using natural communities in order to complement the toxicological 

information obtained with single-species tests and provide a better indication of the 

effects of effluents on exposed ecosystems (Geiszinger et al., 2009). 

Periphyton is an aquatic biofilm-forming community that comprises a broad 

range of heterotrophic (e.g., bacteria, protozoa and fungi) and autotrophic species (e.g., 

green algae, diatoms and cyanobacteria) embedded in an extracellular polymeric matrix. 

They develop on submerged surfaces and constitute the major component for the 

uptake, storage and cycling of carbon, nutrients (Pusch et al., 1998 and Battin et al., 

1999) and anthropogenic contaminants in many river sections (Sabater et al., 2007). The 

mutual benefits and the close spatial relationships between organisms with distinct life-
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strategies closely displays the quality of the surrounding flowing water, generating a 

complex micro-ecosystems in which specific metabolic process and interactions may 

occur (Proia et al., 2013). Species-dependent changes in ecological fitness due to 

exposure to toxic compounds do not only change the overall physiological activity of the 

biofilm species, but also affect its biodiversity (Blanck, 2002). 

The study assesses ozonation as technology for tertiary treatment of wastewater 

spiked with six antibiotics frequently detected in STP effluents. The aquatic toxicological 

assessment was based on the effect-driven approach performed with two levels of 

biological complexity: single species (the bacterium Pseudomonas putida and the alga 

Pseudokirchneriella subcapitata) and natural biofilm communities. The predictive power 

of component-based approach, primarily based on CA concept, was studied in order to 

provide reliable estimates of the toxicity of treated STP effluents. 

 

2. Materials and methods 

2.1. Materials 

The antibiotics used in this study belong to different classes and were selected 

based on their occurrence in wastewater and freshwater (see Table 4.1 and 

Supplementary data of Chapter 4). The following six antibiotics were selected: 

doxycycline (DXY), erythromycin (ERY), ofloxacin (OFX), and trimethoprim (TMP) 

purchased from Sigma-Aldrich, and sulfamethoxazole (SMX) and metronidazole (MNZ) 

purchased from Fluka. Wastewater was collected from the effluent of the secondary 

clarifier of a STP located in Alcalá de Henares (Spain). The plant treats domestic 

wastewater with a minor contribution of industrial effluents from facilities located near 

the city (374 000 population equivalent) and has a nominal capacity of 3 000 m3·h−1. 

Details on STP effluent characterization are included in Table 6.1. Wastewater was 

spiked with the selected antibiotics before ozonation runs (DXY: 42 µg·L−1; ERY: 

491 µg·L−1; MNZ: 117 µg·L−1; OFX: 2 920 µg·L−1; SMX: 320 µg·L−1; TMP: 140 µg·L−1), 

keeping constant the mixture ratio according to their maximum detected values in an 

effluent of Alcalá STP (Rosal et al., 2010). 

227 



 

Chapter 6 

 

Table 6.1 Main physico-chemical parameters of STP effluent. 
pH 7.84  Na+ (mg·L−1) 70.6 
Conductivity (µS·cm−1) 763  NH4

+ (mg·L−1) 2.28 
TSS (mg·L−1) 4.22  K+ (mg·L−1) 16.1 
Turbidity (NTU) 3.2  Mg2+ (mg·L−1) 14.5 
COD (mg·L−1) 24.5  Ca2+ (mg·L−1) 43.7 
DOC (mg·L−1) 8.25  Cl− (mg·L−1) 98.1 

BOD5 (mg·L−1) 3.00  NO2
− (mg·L−1) 1.89 

BOD5/COD 0.12  NO3
− (mg·L−1) 41.5 

SUVA254* (L·mg C−1 m−1) 2.36  PO4
3− (mg·L−1) 1.74 

Alkalinity (mg CaCO3·L−1) 112  SO4
2− (mg·L−1) 62.2 

Cr (µg·L−1) 0.36  Doxycycline (ng·L−1) <LOQ 

Ni (µg·L−1) 12.2  Erythromycin (ng·L−1) 670 

Cu (µg·L−1) 11.9  Metronidazole (ng·L−1) 330 

Zn (µg·L−1) 62.7  Ofloxacin (ng·L−1) 4 700 

As (µg·L−1) 9.16  Sulfamethoxazole (ng·L−1) 670 

Se (µg·L−1) 0.29  Trimethoprim (ng·L−1) 430 

Cd (µg·L−1) ND    

Sn (µg·L−1) 3.91    

Hg (µg·L−1) ND    

Pb (µg·L−1) ND    
 

*Specific ultraviolet absorption at 254 nm;  
LOQ: limit of quantification 
ND: not detected 

 

2.2. Ozonation process 

The experiments were carried out in a cylindrical reactor with a total working 

volume of 1.44 L (internal diameter of 6.0 cm and working height of 51 cm), which 

operated in continuous co-current mode. The retention time distribution curve yielded 

an average liquid retention time of 10.3 min. The reactor modelling using the continuous 

stirred tank reactor (CSTR) in series model determined an equivalent value of 1.13 tanks, 

indicating that the bubble column can reasonably approach a perfect CSTR (Asenjo and 

Merchuck, 1995). Water and gas flow rates were 142 and 390 mL·min−1 respectively, 

with different inlet ozone concentrations. During the runs, the inlet ozone dosage was 

stepwise increased from 2.5 to 50 milligrams of ozone per liter of wastewater (mg·L−1). 

For the different ozone dosages, samples were withdrawn for analysis at the column 

outlet once the stationary state was reached. This was ensured by circulating four times 

the hydraulic retention volume after constant ozone concentration was obtained both in 
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the liquid and gas phases at the column outlet. Details are given elsewhere in Chapter 3 

(section 2.2). 

 

2.3. Analytical methods 

A solid phase extraction (SPE) procedure was applied for simultaneous clean-up 

and/or concentration of studied antibiotics from wastewater. SPE was performed using 

commercial OasisTM HLB (divinylbenzene/N-vinylpyrrolidone copolymer) cartridges 

(200 mg, 6 cm3) from Waters (Mildford, MA, USA). The method is described in Gómez et 

al. (2006) and was extensively used for the determination of a wide range of 

pharmaceutical compounds in waters offering high rates of recovery for the studied 

antibiotics (Gómez et al., 2007, Gros et al., 2009 and Martínez-Bueno et al., 2010). 

All extract samples were analyzed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) using a triple-stage quadrupole mass spectrometer (TSQ 

Quantum; Thermo Scientific Inc., San José, CA, USA), working in selected reaction 

monitoring (SRM) mode with positive electrospray ionization (ESI). The separation of the 

analytes was performed using an HPLC (Agilent 1200 Series; Agilent Technologies, Palo 

Alto, CA, USA) equipped with a reversed-phase C-18 analytical column (Agilent Eclipse 

XDB, 150 × 4.6 mm, 5 µm). Acetonitrile (mobile phase [A]) and HPLC-grade water 

(mobile phase [B]) with 0.1% formic acid were used as mobile phase at a flow rate of 

0.4 mL·min-1 for gradient elution (gradient curve: 0–1 min, 10% [A]; 1–23 min, linear 

change from 10 to 95% [A]; 23–29 min, 95% [A]; 29–30 min, linear change from 95 to 

10% [A]; post run-time, 30–35 min). Mass spectra of the column elutes were recorded in 

MS/MS using the following conditions: the spray needle voltage was 3.0 kV, heated 

capillary temperature 350ºC, sheath gas pressure 40, and auxiliary gas setting 2. Both 

the sheath gas and auxiliary gas used were nitrogen. The collision gas was argon at a 

pressure of 200 Pa for all studies. Quantitative analyses were done in SRM mode. The 

confirmation of each antibiotic was performed by means of two SRM transitions at the 

correct retention time and by monitoring the SRM ratio (Table 6.2), in accordance with 

EU guidelines for LC-MS/MS analysis (Commission Decision, 2002/657/EC). All 
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determinations were performed in duplicate. Data acquisition and processing were 

carried out using Thermo Xcalibur software (v. 2.2, Thermo Fisher Scientific Inc., San 

José, CA, USA). 

 

Table 6.2 Values of the parameters optimized with the developed method by LC-TQS-MS/MS to antibiotic 
analysis.* 

Antibiotic 
Rt 
(min) 

Precursor 
ion 
(m/z)  

SRM1 CE1 SRM2 CE2 SRM3 CE3 
[SRM2]/[SRM1] 
(%RSD) 

 

Doxycycline 

 

13.2 

 

445 

 

428 

 

18 

 

201 

 

38 

 

267 

 

35 

 

0.05 

Erythromycin 14.1 734 158 30 576 17 558 18 0.7 

Metronidazole 9.1 172 128 14 82 24 111 24 0.4 

Ofloxacin 10.8 362 318 18 261 26 205 41 0.9 

Sulfamethoxazole 15.2 254 108 24 156 16 92 28 1.0 

Trimethoprim 10.6 291 230 23 123 25 110 33 0.5 

 

* Rt: retention time; CE: collision energy (eV); SRM 1: quantitation; SRM 2–3: confirmation. 
 

Dissolved Organic Carbon (DOC) was determined using a TOC-VCSH Shimadzu TOC 

analyzer. Oxalic and mesoxalic acid concentration were measured by IonPac AS9-HC 

analytical column (4 × 250 mm) with ASRS-Ultra suppressor, whereas acetic and formic 

acid concentrations were determined using an IonPac ICE analytical column 

(9 × 250 mm) with AMMS-ICE II suppressor. 

 

2.4. Procedures for aquatic toxicity tests 

Aquatic toxicity assessment of wastewater samples was performed by means of 

tests with two levels of biological complexity: single species and natural biofilm 

communities. Taking into account the mean dilution factor of the STP effluent in the 

recipient river (Henares River; mean annual flow rate of 10.7 m3·s−1, CEDEX, 2015), 

wastewater samples were 10 times diluted in the test medium of each bioassay. 
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2.4.1. Single-species tests 

P. putida test determines the inhibitory effect of a substance on the bacteria (P. 

putida, NCIB 9494 from CECT, Spain) by means of cell growth inhibition. The bioassay 

was performed according to the ISO guideline 10712 (ISO, 1995). Bacterial cultures were 

exposed to test solutions (10% of raw or ozone treated wastewater in test medium) at 

23 ± 1ºC for 16 h in 10 mL glass incubation vials, which were constantly shaken in the 

dark. Cell growth was determined by optical density (λ 600 nm) in 96-well clear 

polypropylene microplate using a Rayto RT-2100C microplate reader. Algal growth 

inhibition test was performed following the procedure described in the European 

Guideline OECD TG (Guideline) 201, using P. subcapitata open system (OECD, 2011). The 

algal stock culture for inoculation was taken from the commercial test system 

Algaltoxkit FTM (MicroBioTest Inc., Belgium). The cells of P. subcapitata were exposed to 

water samples (10% of raw or ozonated wastewater in test medium) at 23 ± 1ºC for 72 h 

in 10 mL glass incubation vials which were constantly shaken and illuminated in a 

chamber (∼100 μmol foton·m−2·s−1). Algal biomass was measured daily using 

chlorophyll-a content, the extraction of which was carried out as follows: 50 μL samples 

of cultures were transferred to a 96-well black polypropylene microplate, 200 μL of 

ethanol was added to each well and the plate was shaken for 3 h in the dark. Thereafter, 

the fluorescence was measured using a Fluoroskan Ascent FL microplate fluorometer 

(Excitation 450 nm, Emission 672 nm) from Thermo Scientific. 

3,5-dichlorophenol for P. putida and potassium dichromate for P. subcapitata 

were used as reference substances in order to check test procedures. Three 

independent experiments with duplicate samples were carried out to ensure 

reproducibility. All aquatic toxicity data are expressed as mean ± 95% confidence interval 

and data analysis was carried out using a nonlinear-regression sigmoidal concentration-

response curve model provided in the GraphPad Prism software (v. 6.0, GraphPad Inc., 

San Diego, USA). 
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2.4.2. Natural biofilm community assay 

Tests with natural biofilm communities were performed according to a slightly 

modified version of the semi-static SWIFT periphyton test, described by Porsbring et al. 

(2007). Biofilms were sampled in Mölndalsån (N 57º 40´ 59´´ E 12º 13´ 7´´), a small river 

near Gothenburg (Sweden), which is neither recipient of STP effluent nor subjected to 

run offs from agricultural areas, and is hence considered free from antibiotic 

contamination. Biofilms were established on submerged glass discs (1.5 cm2) that were 

mounted on polyethylene racks (Blanck and Wangberg, 1988) over seven days at an 

approximate depth of 0.5 m and then transferred to the laboratory. 

Eight colonized discs were placed in glass beaker (10 × 15 × 5 cm), then adding 

200 mL test solution. Test solution is composed by 10% of raw or ozone treated 

wastewater in filtered Mölndalsån river water (GF/F, Whatman, pore size 0.7 µm) 

amended with nutrients (Z8 medium, Scandinavian Culture Collection for Algae and 

Protozoa). Periphyton communities were incubated under constantly shaken in a 

thermo constant room at river temperature (16–17ºC) with a day-light cycle illumination 

(16 h light of ∼125 μmol foton·m−2·s−1, 8 h darkness). 

In order to assess effects on bacteria, three glass discs were sampled after 72 h 

from each test vessel. The discs were transferred to glass scintillation vials containing 

20 mL test solutions. Scintillation vials were sonicated three times over 15 seconds 

followed by vigorous shaking over 15 seconds with the aim of detaching the periphyton 

biolfim from the discs. Afterwards, the suspension was filtered through sterile paper 

(Kimcare, Kimberly-Clark Professional) into sterile plastic Petri dish. 150 µL of filtered 

suspension was pipetted into each well of a Biolog EcoPlatesTM (from now on only 

referred to as EcoPlates) which was purchased from Dorte Egelung ApS, Roskilde 

(Denmark). These 96-well plates, pre-loaded with 31 different carbon-sources and a 

tetrazolium dye (Table 4.4 in Chapter 4), provide information on total metabolic activity 

and functional diversity of the bacteria growing in them. Optical densities were 

measured over 96 h (24, 42, 48, 66, 72, 86 and 96 h) at 595 nm (absorbance of the 
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oxidized tetrazolium dye) and 700 nm (in order to correct for turbidity) using a 

microplate spectrophotometer (µ QuantTM, Bio-Tek Instruments). 

The recorded OD was corrected first for turbidity by subtracting the absorbance 

at 700 nm from the absorbance at 595 nm for each well. The resulting OD was 

subsequently corrected for any unspecific colour formation by subtracting the median 

absorbance of the three wells without any added carbon source per plate (blanks) to 

yield the final correct absorbance for each carbon source (ODcorr) and exposure time. 

Negative values for ODcorr were set to zero for the following calculations. Average well 

colour (AWC) was then determined for each plate and exposure time by calculating the 

arithmetic mean of the ODcorr of carbon source wells. The inhibition of AWC for each 

treatment was finally calculated in relation to the average AWC of the control plates as 

an indicator of general metabolic activity response of the whole bacterial communities. 

For this purpose, the data recorded after 66 h incubation was selected because evident 

colour development was visible in most wells, but still not exceeding the linear detection 

range. 

Curves describing the bacterial activity (colour development) of each carbon 

source over incubation time from 0 to 96 h were determined by fitting a Weilbull model 

as follows: 

𝑂𝐷𝑐𝑜𝑟𝑟 = 1 − exp (− exp  (𝜃1 +𝜃2 ∗  𝑙𝑜𝑔10(𝑡𝑖𝑚𝑒))) (6.1) 

 

Then, area under the curve (AUC) was measured using the classical simplex 

method as indicator of the bacterial community structure. The ordination of the data 

was done via nonmetric multidimensional scaling (nMDS), an ordering method that 

reduces the multidimensional data structure into a 2-dimensional plot in which the 

distances between individual samples reflect the multivariate dissimilarity between 

them (Clarke and Warwick, 2001). Manhattan Distances (City-Block Metric) (Eq. 6.2) 

between all pairs of samples 𝑗, 𝑘 were used as input data for a similarity matrix. 

Calculations were implemented using PROXSCAL algorithm in SPSS software (v. 22, 

IBM SPSS). 
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𝑀𝐷 = ��𝑂𝐷𝑐𝑜𝑟𝑟𝑗,𝑖 − 𝑂𝐷𝑐𝑜𝑟𝑟𝑘,𝑖�
31

𝑖=2

 (6.2) 

 

Total content and relative fractions of photosynthetic pigments were used as a 

measure of algal biomass and community structure. Five discs glass were collected after 

96 h of incubation and were transferred into scintillation vials containing 2 mL of ice-

cold extraction media (30% methanol, 30% acetone, 30% dimethyl sulfoxide (all HPLC 

grade) and 10% of ultrapure water). The samples were shielded from light and stored 

-18ºC until analysis. Prior to analyses, scintillation vials were sonicated over 15 seconds 

followed by vigorous shaking over 15 seconds and finally the samples were filtered 

through 0.45 µm filters into HPLC vials. 

Pigments were determined by means of a HPLC (ThermoQuest, Thermo 

Scientific) equipped with a C18-column (Genete KinetexTM, 150 × 3.0 mm, 2.6 µm). 

Analytes were separated using a gradient following the method described by Porsbring 

et al. (2007) (Table 6.3) and detected with a diode array detector (TSP UV6000LP) at 

436 nm. The chromatograms were finally analyzed using LaChrome software (v. 4.0, 

Thermo Finnigan, Thermo Fisher Scientific). Eleven pigments were detected and four of 

them were identified: fucoxanthin, diadinoxanthin, chlorophyll-a and β-carotene. The 

effects on pigment content were expressed as percent inhibition compared to the 

arithmetic mean of controls an indicator of general response of the whole algal 

community. 

Table 6.3 Mobile phase gradient used in HPLC pigment analysis. [A] 
methanol:ammonium acetate buffer 85:15 (buffer 0.5 M ammonium acetate pH 
7.2); [B] acetonitrile:water 90:10; [C] ethyl acetate. 
Time (min) A (%) B (%) C(%) 
0 100 0 0 
8 0 100 0 
8.6 0 90 10 
13.1 0 65 35 
21 0 31 69 
25 0 31 69 
27 0 100 0 
28 100 0 0 
30 100 0 0 
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2.5. Data treatment for assessing the aquatic toxicity 

Component-based approach estimates the expectable total toxicity of a mixture 

of selected pure compounds in terms of their individual effects (Kortenkamp et al., 

2009). Aquatic toxicity was calculated as the sum of toxic units (STUs) of single 

antibiotics within each scenario following the strategy proposed by Backhaus and Faust 

(2012): 

𝑆𝑇𝑈𝑠 = ��
𝐸𝑛𝑣𝐶𝑜𝑛𝑐𝑖
𝐸𝐶50𝑖

�
𝑛

𝑖=1

 (6.3) 

 

where 𝐸𝑛𝑣𝐶𝑜𝑛𝑐𝑖 are the actual concentrations of the individual substances in a mixture 

and 𝐸𝐶50𝑖  denote the concentration of these substances that cause 50% inhibition if 

present singly. The quotients 𝐸𝑛𝑣𝐶𝑜𝑛𝑐𝑖/𝐸𝐶50𝑖 are termed Toxic Units (TUs), which were 

calculated for each ozone dosage using the remaining concentration of antibiotics in 

wastewater and their single 𝐸𝐶50 values (Table 6.4). This strategy is primarily based on 

the classical mixture toxicity concept of CA, which assumes similar mode or mechanisms 

of action for all toxicants. However, the antibiotics comprising the mixture have 

different mechanisms of action and consequently, it could be argued that the competing 

Independent Action (IA) concept should be the more appropriate model. 

Table 6.4 𝐸𝐶50 values of studied antibiotic for single species and natural biofilm communities. Values are 
expressed in µg·L−1. 

 Single species  Natural biofilm communities 

P. putida P. subcapitatata  Bacterial Algal 
 

Doxycycline 
 

40a 
 

62e 
  

94a 
 

445a 

Erythromycin 54 500b 20f  >7 340a >7 340a 

Metronidazole >800 000b 39 100g  >1 710a >1 710a 

Ofloxacin 113c 1 440f  117a >3 040a 

Sulfamethoxazole 12 700d 146h  2 520a >2 530a 

Trimethoprim 75 500d 40 000i  >2 900a >2 900a 
 

a Present study; b Alexy, 2003; c Carbajo et al., 2015; d Akhyany, 2013; e Suda et al., 2012; f Isidori et al., 2005; 
g Lanzky and Halling-Sørensen, 1997; h Ferrari et al., 2004 ; i Yang et al., 2008. 
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The acceptability of the component-based approach might depend on the 

quantitative error that can possibly occur when using CA for mixtures in which the 

components are not strictly similarly acting. Under the assumption of no interaction 

between the mixture components, this error may equal the quantitative difference 

between CA and IA predictions in accordance with Junghans et al. (2006): 

𝐸𝐶50𝐼𝐴

𝐸𝐶50𝐶𝐴
≤

∑ 𝑐𝑖
𝐸𝐶50𝑖

𝑛
𝑖=1

𝑚𝑎𝑥
𝑖 ∈ (1 …𝑛) �

𝑐𝑖
𝐸𝐶50𝑖

�
 (6.4) 

 

Under these circumstances a maximum possible ratio by which CA may predict 

higher mixture toxicity than IA equals the number of mixture components (𝑛). Given the 

uncertainty of the hazard and exposure estimates of the individual antibiotics (i.e., 

quality, quantity and spread of the individual toxicity data and the expectable 

fluctuations of the concentration of individual antibiotics), a maximum possible ratio of 

less than 2 might be considered acceptable (Backhaus and Karlsson, 2014). 

In order to allow comparing predictive and experimental toxicity data, the toxic-

effects obtained from whole mixture approach were transformed into TUs, which can 

also be defined as the reciprocal of the wastewater dilution (expressed in percentage) 

need to achieve 50% inhibition (𝐸𝐶50) (Sprague and Ramsay, 1965): 

𝑇𝑈 =
100
𝐸𝐶50

  (6.5) 

 

TUs of non-diluted samples whose effect percentage observed was higher than 

controls but below 50% (<1 TU) were estimated using the approach proposed by 

Persoone et al. (2003) (𝑇𝑈 = 𝑖𝑛ℎ 50⁄ , in which 𝑖𝑛ℎ is the percentage of inhibition). 
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3. Results and discussion 

3.1. Ozonation 

The continuous ozonation process of the spiked STP effluent was studied using 

different ozone dosages in order to achieve the maximum degradation degree for the 

selected antibiotics. Fig. 6.1 represents the evolution of each antibiotic as a function of 

the amount of ozone supplied during the ozonation. Antibiotics declined with ozone 

dosage up to achieve a significant abatement for each target pollutant (≥98%). DXY, ERY, 

TMP and SMX were totally depleted (i.e., concentrations below quantification limit). 

Nonetheless, the ozone dosage required for depletion was different for MNZ than for 

the other antibiotics. DXY, ERY, OFX, TMP and SMX were removed ≥98% for ozone 

exposure of 13 mg·L−1 (1.2 mg O3·(mg DOC)−1), whereas MNZ required more than 

threefold ozone (46 mg·L−1, that is 4.3 mg O3·(mg DOC)−1) to reach similar degradation 

efficiency. These results are consistent with the direct ozonation rate constant of each 

antibiotic: MNZ reacts with ozone two orders of magnitude slower (3.1 103 M−1·s−1 in 

Rosal et al., 2010) than the rest of the studied antibiotics (≥105 M−1·s−1 in Huber et al., 

2003, Dodd et al., 2006, Rivas et al., 2010, Huang, 2011 and Márquez et al., 2013). 

The evolution of DOC, SUVA254 and carboxylic acids was also monitored during 

ozonation as shown in Fig. 6.2. DOC decreased steadily with increasing ozone supply, 

achieving a mineralization of 13% for 32 mg O3·L−1. An additional ozone exposure of 

13 mg·L−1 more led only to an extra 2% organic carbon depletion. Despite the limited 

extent of mineralization (15%), partial oxidation reactions of aromatic compounds took 

place as indicated by the strong reduction of 65% in SUVA254 (i.e., the specific UV 

absorbance of the effluent at 254 nm). It is well known that ozone has the ability to 

cleave ultraviolet absorbing moieties in organic molecules (Wert et al., 2009). The 

reaction of ozone with unsaturated bonds or aromatic rings leads to oxygenated 

saturated functional groups, such as aldehydic, ketonic and especially carboxylic groups 

(van Geluwe et al. 2011). In fact, the concentration of carboxylic acids (mesoxalic, oxalic, 

acetic and formic acids) increased with ozone dosage up to 3.6 mg C·L−1, which 

corresponds to 40%  of the remaining DOC. Oxalic acid, formed mainly by the destruction   
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Fig. 6.1 Evolution of dimensionless antibiotic concentration (C/C0) for different ozone dosages. 
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Fig. 6.2 Evolution of DOC (●), SUVA254 (Δ) and carboxylic acids (■, sum of mesoxalic, oxalic, acetic and 
formic acids) for different ozone dosages. 
 

of aromatic rings by ozone (van Geluwe et al. 2011), was by far the predominant 

carboxylic acid (maximum concentration of oxalic acid: 7.6 mg·L−1). Due to the fact that 

the spiked antibiotics were not the only organic compounds in the STP effluent, and 

taking into account that the maximum amount of organic carbon mineralized in raw 

wastewater was 1 mg·L−1, the highest mineralization degree of the antibiotic mixture 

could be estimated as 26%. This value represented close to twice the overall 

mineralization extent of the effluent. Mineralization is not a single chemical process and 

represents a series of reactions that are slow for highly oxidized molecules such as 

carboxylic acids (Rosal et al., 2008 and Petre et al., 2015). It has been stated that the 

mineralization that takes place during ozonation is mainly due to the reaction of high 

molecular weight compounds rather than to the depletion of the lighter carboxylic acids 

(van Geluwe et al., 2011). This fact is in good agreement with the well-known refractory 

character of the ozone by-products detected and the reason why their concentrations 

increased in the reaction mixture (von Sonntag and von Gunten, 2012 and Hübner et al., 

2015). 
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3.2. Aquatic toxicity assessment 

3.2.1. Single-species tests 

The results of aquatic toxic tests for P. putida and P. subcapitata in spiked STP 

effluent and its evolution throughout different ozone dosages are shown in Figs. 6.3A 

and B. Raw wastewater, before spiking, displayed no toxicity for both standardized 

single-species tests. On the contrary, both P. putida and P. subcapitata were sensitive to 

the presence of antibiotics, with growth inhibition of 87 and 60%, respectively. These 

toxic effects of whole-mixture were sharply reduced with ozone up to its total depletion 

for a dosage of 4.8 mg O3·L−1, in spite of certain remaining concentration of antibiotics in 

the tested sample (Table 6.5). Above 4.8 mg O3·L-1, the growth rate for both 

microorganisms was not significantly different than that of the controls. The toxicity 

decreased with increasing ozone dosage following a similar profile as antibiotics 

concentration. This fact supports the prediction of mixture toxicity of treated STP 

effluent using component-based approach. 

Figs. 6.3C and D represent aquatic toxicity of predicted mixture toxicity values by 

component-based approach and whole mixture experimental data. The component-

based approach is based on Concentration Addition (CA) concept, which has been 

proposed as a precautionary first tier in the environmental risk assessment of mixture 

(Backhaus and Faust, 2012), was calculated for each ozone dosage using the remaining 

concentration of antibiotics (Table 6.5) and their single 𝐸𝐶50 values (Table 6.4). The 

application of CA can be criticized for violating the assumption of similar mode of action 

for the antibiotics used in this work. As explained before, the maximum departure from 

CA on benefit of IA was estimated according to Eq. (6.4) (Junghans et al., 2006). The 

results showed that the maximal factor by which CA may predict a lower 𝐸𝐶50 than IA 

can be between 1.0 (P. putida from 2.7 mg O3·L−1) and 1.4 (P. subcapitata at 

2.7 mg O3·L−1), which are significantly lower than 2. Assuming, that IA and CA indeed 

describe the two extreme situations of expectable mixture toxicity (i.e., whenever the 

mixture components do not interact), the maximum error that might occur from the sole 

use of CA can be considered acceptable (Backhaus and Karlsson, 2014). Thus, CA seems 
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to be a reasonable approach for the prediction of mixture toxicity on the basis of 

individual 𝐸𝐶50 values in all analysed scenario (Junghans et al., 2006). Experimental and 

predicted toxicity values followed the same toxicity pattern for increasing ozone 

dosages. This suggests that the antibiotic parent compounds were the main source of 

toxicity, whereas the formation of TPs did not significantly contribute to mixture toxicity. 

Similar behaviour was observed on the toxicity to P. putida and P. subcapitata of 

ozonated STP effluent spiked with OFX (Carbajo et al., 2015). 

Table 6.5 Antibiotics concentration (µg·L−1) of water samples, whose toxicity has been performed using 
single-species test and natural communities biofilms (wastewaters were 10 times diluted in the test 
medium of each bioassay to obtain the concentration shown below). 

Antibiotic 
Ozone dosage (mg·L−1) 

0 2.7 4.8 8.8 13 21 32 46 
 

Doxycycline 
 

4.2 
 

0.91 
 

0.84 
 

0.17 
 

<LOQ 
 

<LOQ 
 

<LOQ 
 

<LOQ 

Erythromycin 49.1 9.0 4.6 2.8 1.1 0.46 <LOQ <LOQ 

Metronidazole 11.7 8.2 7.1 5.3 3.5 1.7 0.59 0.19 

Ofloxacin 292 80.0 38.4 13.7 0,3.5 0,00.0.58 000.17 0,00.13 

Sulfamethoxazole 32.0 18.0 6.0 2.2 0.60 0.10 <LOQ <LOQ 

Trimethoprim 14.0 3.7 1.7 0.58 0.14 <LOQ <LOQ <LOQ 

 

Taking for granted that parent compounds were the principal source of toxicity, it 

was possible to quantify the fraction of effect explained by each one and whether or not 

some of them dominated the mixture effects (Tang et al., 2014). The distribution of the 

relative toxic units according to the component-based approach is shown in the inset of 

Figs. 6.3C and D for ozonated STP effluents with significant toxicity values (i.e., >0.1 TUs). 

The plots allow an easy identification of the relative importance of individual antibiotics 

for treated wastewater at ozone dosages lower than 10 mg·L−1 and for each 

microorganism (Backhaus and Karlsson, 2014). The figure clearly shows that only one 

antibiotic was responsible to most to the joint predicted toxic effects, with many of the 

rest had a negligible contribution to STUs. The data revealed that OFX for P. putida 

(contribution >95% in all scenarios) and ERY for P. subcapitata (contribution >70% in all 

scenarios) were the toxicological drivers for the toxic ozonated effluents (oxidized 

mixture). 
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Fig. 6.3 Evolution of experimental (●, mean ± 95% confidence interval) and CA-predicted (□) toxicity of 
treated wastewater for different ozone dosages to single-species tests. Insets (C,D) represent the 

contribution to STU according to Concentration Addition. Doxycycline ( ), erythromycin ( ), 

metronidazole ( ), ofloxacin ( ), sulfamethoxazole ( ) and trimethoprim ( ). 
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3.2.2. Natural biofilm community assay 

The aquatic toxicity of wastewater samples was also assessed using the 

heterotrophic and the phototrophic part of natural biofilm communities. Figs. 6.4A and 

B show the toxicity evolution of ozonated STP effluent for different ozone dosages. The 

effects on the periphytic algal communities were described by means of the total 

pigment content as first overall indicator for biomass (Porsbring et al., 2007). Non-toxic 

effects were observed in raw wastewater or spiked STP effluent in line with the 

corresponding 𝐸𝐶50 values of the studied antibiotics (Table 6.4). Ozonation caused a 

slight stimulation on the natural algal communities for all ozone dosages (Fig. 6.4B). 

Non-remarkable changes in algal community structure were observed according to the 

analysis of community pigment profiles. 

The general response of bacterial communities as a function of the ozone dosage 

was also assessed using the average well colour (AWC) (Fig. 6.4A). Raw wastewater 

caused a slight stimulation effect on the metabolic activity of the heterotrophic part of 

the natural biofilm (-7%), while spiked STP effluent provoked 61% inhibition with respect 

to the controls. The toxic effects steadily reduced with increasing ozone dosage up to 

their total depletion at 4.8 mg O3·L−1. Higher ozone exposures stimulated the metabolic 

activity of bacterial communities. Stimulation of treated STP effluent for ozone dosage 

higher than 8.0 mg·L−1 reached values near 25%. Fig. 6.4C represents the aquatic toxicity 

from whole mixture experimental data and the predicted toxicity from component-

based approach. In spite of CA predicted higher toxicity than the experimental data in 

line with the results obtained in Chapter 4, prospective and experimental profiles 

displayed the same pattern for ozone dosages lower than 7 mg·L−1. According to 

component-based approach, OFX was the driver of treated STP effluent for low ozone 

dosages (contribution >95% in all scenarios, inset Fig. 6.4C). The result was coincident 

the findings reported before for P. putida, which was also a prokaryotic-based test. 

For ozone dosage higher than 7 mg·L−1, the significant stimulating effects 

observed on natural bacterial communities can be attributed to the formation and 

accumulation  of  refractory  ozonation  products  (Hammes  et  al.,  2006  and  Hübner  et  al.  
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Fig. 6.4 Evolution of experimental (●, mean ± 95% confidence interval) and CA-predicted (□) toxicity of 
treated wastewater for different ozone dosages to natural biofilm communities. Inset plot C represents 

the contribution to STU according to Concentration Addition. Doxycycline ( ), erythromycin ( ), 

metronidazole ( ), ofloxacin ( ), sulfamethoxazole ( ) and trimethoprim ( ). 
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2015). Ozone degrades macromolecular organic compounds (low O/C and low H/C ratio) 

into smaller compounds (high O/C and high H/C ratio) such as aldehydes, ketones and 

especially carboxylic acids, whose concentration explains up to 40% of DOC remaining in 

ozonated wastewater (Fig. 6.2). These ozone-refractory compounds are generally 

biodegradable organic matter (Hammes et al., 2006). They are the reason why ozonation 

is able to increase assimilable organic carbon (AOC) up to a factor of 6 in treated 

wastewater compared to raw effluents (Zimmermann et al., 2011). AOC refers to 

carbonaceous compounds that are rapidly metabolized by microorganisms leading to an 

increase in biomass: 1 μg of consumed AOC equivalent to an increase of 107 cells of 

natural microbial consortium used as inoculums (Hammes and Egli, 2005). Readily 

biodegradable DOC enrichment has been shown to enhance biomass and the metabolic 

activity of natural microbial communities (Olapade and Leff, 2006 and Johanson et al., 

2012). Sun et al. (1997) also suggested that aliphatic carbon is the principal form of 

carbon being utilized by bacteria in fluvial ecosystems and that their ability to use DOM 

increases as the aliphatic carbon content (H/C ratio) of DOM increases. However, highly 

oxidized DOM (high O/C ratio), with higher carboxylic content, was found to decrease 

the bioavailability of aliphatic DOC (Sun et al., 1997). 

In order to gain further insight into the characterization of the change induced on 

bacterial communities by ozonated wastewater and to determine the potential impact 

on their biodiversity, we also analysed the responses of each individual carbon source by 

calculating the area under the curve (AUC). AUC gives a measure of time-integrated 

effects on the metabolization of each individual carbon source. The results showed that 

the metabolic activity was unevenly distributed between the 31 carbon sources present 

on the EcoPlates (Table 4.4 in Chapter 4), and that not all carbon sources were used by 

the heterotrophic communities. Three carbon sources never reached a corrected 

absorbance of 0.05 or lower (C11 (i-erythritol), C19 (2-hydroxy benzoic acid), C21 (γ-

hydroxybutyric acid) and C30 (glycyl-L-glutamic acid)) and were classified as inactive. 

The AUC values of individual carbon sources allow for a multivariate data 

exploration and the corresponding nonmetric multidimensional scaling (nMDS) plot 

shown in Fig. 6.5. Raw wastewater, the antibiotic mixture and the spiked STP effluent 
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gave rise to changes in bacterial communities with respect to the controls as 

demonstrated by their distance in the graph. Concerning ozonated wastewater samples, 

the main trend was the general movement from the right-up to the left-down side of the 

plot for increasing ozone dosage. This trajectory can be explained by the removal of 

antibiotics, particularly OFX, which was the main source of toxicity towards periphytic 

bacterial communities. As previously shown in Fig. 6.1, a notable abatement of the 

antibiotic mixture was observed for ozone exposure of 4.8 mg·L−1 (84% for the mixture 

and 87% for OFX). This fact can also be observed in Fig. 6.6, which represents the 

relative AUC of individual carbon sources and the corresponding AWC inhibition with 

increasing ozone dosage. For ozone dosage higher than 4.8 mg·L−1, no major re-

arrangement of carbon source utilization was observed by bacterial communities. Under 

the assumption that differences in relative carbon source utilization are indicative of 

changes in community biodiversity (species composition and physiological activity of 

each species), it can be concluded that increased concentration of AOC without 

significant  occurrence  of  toxic  compounds  (i.e., ozone  dosage  higher  than  7 mg·L−1)  may  

 

Fig. 6.5 Nonmetric multidimensional scaling (nMDS) showing effects on metabolic activity (analysis under 
the curve, AUC) differences (Manhattan Distances) for the bacterial part of natural biofilm communities 
using PROXSCAL algorithm. O3_X: Treated STP effluent with ozone dosage X mg·L−1 (PROXSCAL algorithm: 
Normalized Raw Stress = 0.0169; Stress-I = 0.0000 and Stress-II = 0.0000 with optimal scaling 
factor = 1.017; S-Stress = 0.0000 with optimal scaling factor = 0.983; Dispersion Accounted For = 0.0000 
and Tucker’s Coefficient of Congruence = 0.0000). 
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have an influence on the bacterial biodiversity of the natural biofilm communities. This 

fact is consistent with Judd et al. (2006), who demonstrated that the bacterial 

community composition is controlled by the nature of the organic matter available. It is 

also interesting to note that all of ozonated wastewater samples induced changes on the 

biodiversity of bacterial communities and consequently, any ozone dosage contributed 

to the preservation of the original state of natural communities, even for ozone dosages 

for which antibiotics were not significantly removed. 

 

 
Fig. 6.6 Evolution of analysis under the curve (AUC) of individual carbon sources and the corresponding 
inhibition of average well colour (AWC) for the bacterial part of natural biofilm communities at different 
ozone dosages. 

 

When comparing the toxicity of STP effluents to natural biofilm communities, to 

the bacterium P. putida and to the alga P. subcapitata, it becomes evident that 

untreated and ozone treated wastewater showed a comparatively lower toxicity 

towards limnic periphyton. Although the differences might be at least partly caused by 

the different endpoints employed, the higher tolerance of natural communities fits 

expectation considering their intrinsic biodiversity (Kümmerer, 2009b), and the 

numerous mechanisms of resistance to antibiotics displayed by biofilms (Russell, 2003).  
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4. Conclusions 

The continuous ozonation is a suitable technology for the abatement (≥98%) of 

six antibiotics frequently detected in an STP effluents for ozone dosages below 

4.3 mg·L−1. However, the limited extent of mineralization (<30%) demanded an in-depth 

aquatic toxicological assessment of ozone treated wastewater. 

The toxicological evaluation showed that ozonation totally removed whole-

mixture toxic effects measured by the growth rate of P. putida and P. subcapitata and 

the metabolic activity of natural bacterial communities. The toxic effects were caused 

predominantly by antibiotic parent compounds, whereas the formation of degradation 

products did not significantly contribute to mixture toxicity. This fact allows predicting 

mixture toxicity by means of a component-based approach. A predictive approach, 

based on CA, showed a slight overestimation of the toxic effects of ozone treated STP 

effluent. 

Ozonated wastewater samples induced changes on the biodiversity of bacterial 

communities. This finding suggests the need to introduce structural endpoints such as 

microbial population composition, in the evaluation of wastewater treatment 

technologies, which would allow identifying effects overlooked otherwise. 
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INFLUENCE OF WATER MATRIX ON COPPER-CATALYSED 

OZONATION AND RELATED ECOTOXICITY 

 

Abstract 

The continuous ozonation of a mixture of carboxylic acids (formic, acetic, oxalic 

and maleic) has been performed under non-catalytic and copper-catalysed ozonation 

using a synthetic water matrix and a real sewage treatment plant (STP) effluent. The aim 

was to study the effect of water matrix on catalytic performance, particularly 

considering the toxicity of treated water to aquatic organisms. The non-catalytic 

ozonation of carboxylic acids in synthetic water resulted in a low reduction (36%) of the 

total organic carbon (TOC), the main feature being the accumulation oxalic acid due to 

the partial oxidation of maleic acid. Catalytic ozonation, adding copper concentration of 

20 μg·L−1, achieved a TOC reduction of 75%, mainly due to the total depletion of oxalic 

acid. In wastewater effluent, the same general pattern was found with oxalic acid as the 

main by-product and its almost complete removal in catalytic ozonation. However, to 

attain the latter it was necessary to use copper concentrations as high as 100 μg·L−1. 

Copper proved to be a good catalyst for the oxidation of oxalic at near neutral pH, with 

short reaction times and matrix with high scavenging rate. The aquatic toxicity of treated 

mixtures was studied by means of five single species placed on different trophic levels: 

Vibrio fischeri, Pseudomonas putida, Tetrahymena thermophila, Pseudokirchneriella 

subcapitata and Daphnia magna. The results showed that copper in STP effluent was 

less toxic than in synthetic water, an effect attributed to copper complexation with 

organic and inorganic compounds present in the matrix. The reduced biological 

availability could also explain the lower catalytic effect observed in real wastewater. 

  

258 



 

Influence of water matrix on copper-catalysed continuous ozonation and related ecotoxicity 

 

1. Introduction 

Ozone is widely used in drinking water and wastewater reclamation treatments 

due to its high disinfection power and oxidation potential (von Sonntag and von Gunten, 

2012). The direct ozonation of organic compounds results in many refractory oxidation 

by-products, particularly carboxylic acids (von Gunten, 2003). Different ozone-based 

processes have been developed to improve ozone oxidation performance in order to 

increase the degree of mineralization. These technologies include O3/OH−, O3/H2O2, and 

O3/UV and belong to the group of advanced oxidation process (AOP) based on the 

generation of hydroxyl radicals (OH•). Contrary to ozone, OH• reactions are not selective, 

but their concentration depends on the scavenging rate of the water matrix (Kasprzyk-

Hordern et al., 2003, Katsoyiannis et al., 2011 and Zhang et al., 2012). 

Catalytic ozonation has also been proposed to increase the degree of 

mineralization and reduce ozone consumption (Centi and Perathoner, 2005 and 

Nawrocki and Kasprzyk-Horden, 2010). Different transition metals and oxides have been 

studied as ozonation catalysts (Kasprzyk-Hordern et al., 2003). Among them, copper has 

shown a significant catalytic effect in the degradation of carboxylic acids (Pines and 

Reckhow, 2002, Pi et al., 2003, El-Raady and Nakajima, 2005, Beltrán et al., 2005, Zhang 

et al., 2012 and Petre et al., 2013). It has been noted that the performance of catalytic 

ozonation strongly depends not only on the catalyst itself, but on the composition of 

water matrix (von Gunten, 2003 and Petre et al., 2013). Moreover, most catalytic 

ozonation studies have been carried out in batch or semi-batch conditions, but more 

relevant data would be obtained from continuous ozonation devices. Contrary to batch 

processes in which a well-defined reaction time is established, continuous treatments 

display a statistical distribution of residence times (Beltrán, 2004). 

Catalytic ozonation is able to remove certain pollutants, but can generate new 

compounds as oxidation by-products and from the leaching of catalyst active phases, 

which may be more hazardous than the original mixture (Centi and Perathoner, 2005 

and Petala et al., 2008). Treated water is a complex mixture of organic and inorganic 

compounds, whose ecotoxicological impact cannot be predicted by simple chemical 
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determinations due to the potential interactions among pollutants (Petala et al., 2008). 

The chemical analyses in which regulations are based identify and quantify trace metals 

in an aquatic environment. However, they do not provide direct indication of the 

potential effects of the metals on the biota (Rodríguez-Mozaz et al., 2006). Thus, 

ecotoxicological bioassays are required to provide a holistic direct estimation of the 

environmental hazard of a given mixture. In particular, metal ecotoxicity is directly 

affected by physico-chemical parameters such as pH, alkalinity, hardness and dissolved 

organic and suspended matter, which alter its speciation and bioavailability (Girling et 

al., 2000 and Wilde et al., 2006), and, indirectly, through synergistic or antagonistic 

effects (Mowat and Bundya, 2002 and Gallego et al., 2007). Therefore, aquatic toxicity 

assessment should include a battery of different species representative of the different 

taxa in the trophic chain (Okamura et al., 2000), with emphasis on organisms placed at 

the bottom, like phytoplankton and zooplankton, where damage caused by metals 

primarily occur (SEPA, 2000). Many ozonation catalytic studies have been carried out in 

ultrapure water neglecting the effects on catalyst performance of the organic and 

inorganic species present in real matrices. Similarly to the influence of water matrix 

composition over metal ecotoxicity through the bioavailability concept, the same 

behaviour could be applied to the influence of water matrix on copper catalytic 

availability. 

The aim of this study was to explore the effect of the water matrix on the non-

catalytic and copper-catalysed continuous ozonation of a mixture of carboxylic acids 

(formic, acetic, oxalic and maleic acid). These compounds are present in ozonated water 

as reaction intermediates or final ozone-refractory by-products. It was used 

homogeneous catalyst due to simplicity of application in continuous processes, but in 

view of the low concentration used, the results could be extrapolated to the effect of 

active phase leaching in heterogeneous catalysis. The ecotoxicity of ozonated water was 

tracked using a battery of bioassays composed of five single-species tests: Vibrio fischeri, 

Pseudomonas putida, Tetrahymena thermophila, Pseudokirchneriella subcapitata and 

Daphnia magna. 
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2. Materials and methods 

2.1. Materials 

Formic, acetic, oxalic and maleic acid and copper (Cu(NO3)2·3H2O) of analytical 

degree were purchased from Fluka. The initial carboxylic acid mixtures were prepared 

with a concentration of 7 mg·L−1 each. These organic acids and concentrations have 

been chosen because they have been previously identified and quantified as the main 

final ozonation by-products in a previous work dealing with the ozonation of 

pharmaceutical and personal care products in the same STP effluent (Rosal et al., 2008). 

These acids were the main responsible of the relative low mineralization degree 

achieved in direct ozonation runs. 

In order to study the effect of the water matrix over the ozonation performance, 

two different matrices were used: a synthetic matrix and wastewater from the effluent 

of a sewage treatment plant (STP) located in Alcalá de Henares (Spain). Synthetic water 

was prepared with the required amount of sodium bicarbonate in ultrapure water to 

equal the alkalinity and pH values of the STP effluent. Ultrapure water was obtained 

from a Millipore Milli-Q system with a resistivity of at least 18 MΩ·cm at 25ºC. The STP 

treats a mixture of domestic and industrial wastewater from facilities located near the 

city (374 000 population equivalent) and has a nominal capacity of 3 000 m3·h−1 of raw 

wastewater. Details on wastewater characterization are included in Table 7.1. 

Table 7.1 Main physico-chemical parameters of STP effluent. 
pH 7.24  Na+ (mg·L−1) 67.5  Al (µg·L−1) 20.5 
Conductivity (µS·cm−1) 800  NH4

+ (mg·L−1) 0.34  Cr (µg·L−1) 1.1 
TSS (mg·L−1) 30  K+ (mg·L−1) 13.9  Mn (µg·L−1) 101 
Turbidity (NTU) 0.40  Mg2+ (mg·L−1) 20.1  Fe (µg·L−1) 453 
COD (mg·L−1) 14.3  Ca2+ (mg·L−1) 52.8  Co (µg·L−1) 1.3 
TOC (mg·L−1) 5.12  Cl− (mg·L−1) 88.2  Ni (µg·L−1) 15.4 
BOD5 (mg·L−1) 2.31  NO2

− (mg·L−1) 0.49  Cu (µg·L−1) 1.2 
BOD5/COD 0.16  NO3

− (mg·L−1) 36.8  Zn (µg·L−1) 48.2 
Phenols (mg·L−1) 0.08  PO4

3− (mg·L−1) 3.31  Cd (µg·L−1) 0.10 
SUVA254

* (L·mg C−1·m−1) 2.06  SO4
2− (mg·L−1) 68.8  Hg (µg·L−1) 0.15 

Alkalinity (mgCaCO3·L−1) 155  HCO3
− (mg·L−1) 189  Pb (µg·L−1) 0.24 

 

 

*Specific ultraviolet absorption at 254 nm 
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2.2. Experimental procedure 

The experiments were carried out in continuous mode in a cylindrical reactor 

made of Pyrex (internal diameter of 6 cm and working height of 51 cm) with a total 

working volume of 1.44 L operated in co-current mode (Scheme 7.1). Water flow rate 

was 142 mL·min−1 (Gilmont rotameter) and gas flow was 390 mL·min−1 (Aalborg mass 

flow controller) with different inlet ozone concentrations (Anseros ozone generator 

COM-AD-02). Inlet and outlet ozone gas concentration (Anseros ozone GM-PRO 

analyser), dissolved ozone in the reactor exit (Mettler Toledo-Thomton dissolved ozone 

sensor), pH and temperature (Easyferm Plus VP 120 Hamilton pH sensor) were 

constantly monitored and recorded (Keithley 2700 Data Acquisition System). Copper 

solution was continuously added to the inlet stream at different flows (Harvard 11 plus 

infusion pump) to achieve the desired final concentration. In order to ensure 

homogeneity a nine-loop glass coiled pipe was used. The dilution ratio was always lower 

than 1%. 

2

4

7

9

8

10

15

16

11

6

12

5

1

2 3

13

14

 
Scheme 7.1 Experimental set-up. (1) oxygen cylinder, (2) mass flow controller, (3) ozone generator, (4) 
peristaltic pump, (5) syringe pump, (6) nine-loop coil, (7) bubble column, (8) ozone gas analyser, (9) 
dissolved ozone sensor, (10) dissolved ozone transmitter, (11) needle valve, (12) rotameter, (13) pH 
sensor, (14) pH transmitter, (15) data acquisition system, (16) computer. Water line is represented as 
solid line, gas line as dashed line and electrical wiring as dotted line. 
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For every set of working conditions, samples were withdrawn for analysis at the 

column outlet once the stationary state was reached. This was accomplished after 

circulating four times the hydraulic retention time after a constant ozone value was 

obtained both in liquid and gas phases at the column outlet. The retention time 

distribution curve yielded an average retention time of 10.3 min and was analysed using 

the continuous stirred tank reactor (CSTR) in series model according to the procedure 

described in the literature (Burrows et al., 1999). The equivalent value of 1.13 tanks 

obtained indicated that the column can be approached to a perfect CSTR. It is generally 

accepted that short columns with intense gas phase hydrodynamics can be assimilated 

to a CSTR due to the bubble back mixing (Asenjo and Merchuck, 1995). Assuming CSTR 

behaviour, the amount of ozone consumption at the stationary state (𝑑𝐶𝑂3
𝑙𝑖𝑞 𝑑𝑡⁄ = 0) can 

be obtained from the following mass balance (Eq. (7.1)): 

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑂3 = 𝐹𝑂3
𝑔𝑎𝑠,𝑖𝑛 − 𝐹𝑂3

𝑔𝑎𝑠,𝑜𝑢𝑡 − 𝐹𝑂3
𝑙𝑖𝑞,𝑜𝑢𝑡 (7.1) 

 

in which 𝐹𝑂3 is the rate of ozone entering the system in the gas phase (gas, in) or existing 

either in the exhaust gases (gas, out) or dissolved in water (liq, out). Further details 

about experimental set-up are given in Chapter 3 (section 2.2). 

 

2.3. Analytical methods 

The concentration of organic acids was measured using a Dionex DX120 Ion 

Chromatograph (IC) with conductivity detector. Oxalic and maleic acid concentrations 

were determined using an IonPac AS9-HC analytical column (4 × 250 mm) with ASRS-

Ultra suppressor, whereas acetic, glyoxalic and formic acids were measured with an 

IonPac ICE-AS6 analytical column (9 × 250 mm) with AMMS ICE II suppressor. Total 

organic carbon (TOC) analyses were performed on a Shimadzu TOC-VCSH total carbon 

organic analyser equipped with an ASI-V autosampler. The concentration of copper was 

determined by Agilent 7700× ICP-MS operating at 3 MHz in helium cell gas mode. 
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2.4. Procedures for aquatic toxicity tests 

The ecotoxicity of water samples was assessed by means of five bioassays using 

V. fischeri, P. putida, T. thermophila, P. subcapitata and D. magna. The battery of tests 

allowed the combination of acute and chronic assays and the combined use of 

prokaryotes and eukaryotes at several trophic levels. 

Bacterial toxicity assessment was performed with V. fischeri and P. putida. V. 

fischeri acute test measure the decrease in bioluminescence induced in the cell 

metabolism due to the presence of a toxic substance. The bacterial reagent (V. fischeri 

NRRL-B 11177, a commercially available BioFix®Lumi test from Macherey-Nagel, 

Germany) is supplied freeze-dried and was reconstituted and stored at 3ºC for an 

interim period of 5 min before use. Water samples were prepared according to 

ISO 11348-3 standard protocol (ISO, 2007). The bioassay was carried out in 96-well white 

polypropylene microplate. 100 µL of test solution was pipetted into each well, which 

were supplemented with 100 µL of bacterial suspension. Light was measured at 15 ± 1ºC 

after 30 min by means of a Fluoroskan Ascent FL microplate luminometer (Thermo 

Scientific). P. putida test determines the inhibitory effect of a substance on the bacteria 

(P. putida NCIB 9494 from CECT, Spain) by means of cell growth inhibition. This bioassay 

was performed according to ISO guideline 10712 (ISO, 1995). Bacterial cultures were 

exposed to test solutions at 23 ± 1ºC for 16 h in 10 mL glass incubation vials which were 

constantly shaken in the dark. The cell growth was determined by optical density 

(λ 600 nm) in 96-well clear microplate (200 µL test suspension per well) using a Rayto 

RT-2100C microplate reader. 

Chronic growth inhibition assay with the ciliate protozoan T. thermophila was 

performed according to the Standard Operational Procedure Guideline of Protoxkit FTM 

(1998). The test is based on the turnover of substrate into ciliate biomass. Substrate and 

reconstitution medium were purchased from MicroBioTest Inc. (Belgium) whereas T. 

thermophila (SB 210) was kindly supplied by D. Cassidy-Hanley (Tetrahymena Stock 

Center, USA). Ciliates were incubated in test vessels, with water samples and food 

suspension, at 30 ± 1ºC for 24 h in the dark. All assays were carried out with initial cell 
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concentration of 100 cell·mL−1, which was quantified by use of Coulter Z2 particle 

counter using Isotone® as dilution medium. Growth inhibition was determined on the 

basis of turbidity changes (OD at λ 440 nm), at the beginning and at the end of the test. 

The algal growth inhibition test was carried following the procedure described in 

the European Guideline OECD TG (Guideline) 201 open system, using P. subcapitata 

(OECD, 2011). The algal stock culture for inoculation was taken from commercial test kit 

Algaltoxkit FTM (MicroBioTest Inc., Belgium). Microalgae cells were exposed to water 

samples at 23 ± 1ºC for 72 h in 10 mL glass incubation vials, which were constantly 

shaken and illuminated in a chamber (∼100 μmol foton·m−2·s−1) to ensure exponential 

algal growth. All assays were performed with initial algal cell concentration of 10 000 cell 

mL−1 and algal biomass was measured daily by chlorophyll a fluorescence. Chlorophyll 

extraction was carried out as following: 50 μL culture samples were transferred to a 96-

well black polypropylene microplate, 200 μL of ethanol was added to each well and the 

plate was shaken for 3 h in the dark. Thereafter the fluorescence was measured using a 

Fluoroskan Ascent FL microplate fluorometer (Excitation 450 nm, Emission 672 nm) from 

Thermo Scientific. 

Finally, acute toxicity tests with the crustacean D. magna were carried out 

according to the standard protocol described in the European Guideline OECD TG 202 

(OECD, 2004), using the commercially available kit format Daphtoxkit FTM 

(MicroBioTest Inc., Belgium). Test plates with D. magna neonates were incubated for 

48 h at 20 ± 1ºC in the dark and immobilization of the organism was used as the toxicity 

endpoint. 

ZnSO4·7H2O for V. fischeri test, 3,5-dichlorophenol for P. putida and K2Cr2O7 for 

the rest of bioassays were used as reference substances in order to check each test 

procedures. Three independent experiments with duplicate samples were carried out to 

ensure reproducibility. All aquatic toxicity data are expressed as mean ± 95% confidence 

intervals and data analysis were performed using a nonlinear-regression sigmoidal dose-

response curve model provided in the GraphPad Prism 6.0 software (GraphPad software 

Inc., San Diego, USA). 
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3. Results and discussion 

3.1. Synthetic water 

3.1.1. Non-catalytic ozonation 

The non-catalytic ozonation of carboxylic acids in the synthetic matrix was 

studied by keeping a constant flow of water and ozonating gas and changing the 

concentration of ozone. The amount of ozone per litre of water introduced varied with 

the purpose of determining the efficiency of ozone usage from 4.5 mg·L−1 

(0.44 g O3·g TOC−1), a low concentration at which ozone acts as a limiting reagent, to 

93 mg L−1 (9.0 g O3·g TOC−1). Fig. 7.1A represents the evolution of TOC and consumed 

ozone as a function of the amount of ozone supplied. Up to 46 mg·L−1, TOC declined with 

ozone dosage up to a value for which it remained essentially constant. This initial zone 

(zone 1) corresponded with the reaction of the more readily oxidizable acids. In it, ozone 

was the limiting reagent and the reaction was mass-transfer controlled as revealed by 

the fact that no dissolved ozone (<0.01 mg·L−1) was detected in solution. In zone 2, 

ozone consumption slightly increased up to a value of 71 mg·L−1. In this intermediate 

zone, TOC depletion stabilized and the increased consumption of ozone indicated the 

presence of organic matter oxidized but not mineralized. This zone corresponded to 

chemical control and, accordingly, an increase in the concentration of dissolved ozone 

concentration was detected. At higher ozone dosages, above 71 mg·L−1 (zone 3), ozone 

consumption was almost constant and in parallel the concentration of ozone at the 

reactor outlet increased. This value was considered the upper operational limit. The 

maximum TOC depletion with non-catalytic ozonation was low, at about 35%, a figure 

that corresponds with the well-known behaviour of direct ozonation processes (von 

Gunten, 2003). 

Fig. 7.1B represents the evolution of the concentration of individual carboxylic 

acids with ozone dosage. A good agreement was observed between the experimental 

TOC and the theoretical TOC calculated from the concentration of the acids detected 

with ion chromatography (>90%). Other organic reaction by-products were not 

detected. Maleic and formic acids were completely removed, acetic acid concentration 
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was slightly reduced and the amount of oxalic acid increased during treatment, the 

latter being the main component of the final mixture (around 60% TOC). Glyoxalic acid, 

an acid not present in the initial mixture, was detected as a reaction by-product. The 

glyoxalic acid concentration was detected for low ozone dosages to further reach a 

plateau and decrease thereafter with increased ozone input. 

 

 

 

Fig. 7.1 Evolution of (A) TOC (■), consumed (●) and dissolved ozone (○) and (B) the concentration of 
acetic (□), glyoxalic (◊), formic (▲) maleic (♦) and oxalic acid (Δ) for different ozone dosages in the 
synthetic water matrix. 

 

A) 

B) 
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Maleic acid was the most reactive component and it was the only one oxidized 

for the lowest ozone dosages with the simultaneous evolution of glyoxalic acid. Under 

these conditions, maleic acid depletion (30.2 μmol·L−1) generated 30.3 μmol·L−1 of 

glyoxalic acid, displaying an almost stoichiometric conversion. This oxidation from maleic 

to glyoxalic acid has been previously reported together with the formation of formic acid 

(El-Raady and Nakajima, 2005, Sun et al., 2006 and Leitzke and von Sonntag, 2009). In 

this study, a TOC reduction of 69.2 μmol·L−1 (almost two-fold maleic depletion) was 

observed. These facts suggest that roughly half of the maleic acid was converted to 

glyoxalic acid, with the rest being mineralized to CO2. A tentative reaction pathway is 

presented in Scheme 7.2. 

 
Scheme 7.2 Proposed maleic acid ozonation pathway. 
 

At a higher ozone dosage, other reactions took place, such as the depletion of 

formic acid. Maleic and formic acids totally disappeared after dosing 46 mg·L−1 of ozone, 

after which no further TOC depletion took place (Fig. 7.1A). Final TOC removal, 

3.41 mg·L−1, was in good agreement with the total mineralization of formic acid, 

6.57 mg·L−1 (1.75 mg TOC·L−1), and the above-explained elimination of two CO2 moles 

per mol of maleic acid depleted (1.67 mg TOC·L−1), suggesting that both acids essentially 

account for all TOC reduction. In spite of the reaction of glyoxalic acid, the concentration 

of which was reduced, it was not mineralized but rather oxidized to oxalic acid. This fact 

is well-documented and explains the fate of both acids (Rice and Browning, 1980, Caprio 

et al., 1987 and El-Raady and Nakajima, 2005). Initially, glyoxalic concentration increased 

due to maleic acid oxidation, reducing at higher ozone dosages due to its oxidation to 

oxalic acid (Scheme 7.2). Acetic, glyoxalic and, particularly, oxalic acid were the main 
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contribution to final TOC in treated water (>90%), which is compatible with their well-

known refractory character (Hoigné and Bader, 1983, Andreozzi et al., 2000 and Rosal et 

al., 2008). 

 

3.1.2. Catalytic ozonation 

Copper-catalysed continuous ozonation was carried out with increasing amounts 

of copper (from 1 to 250 μg·L−1) for a fixed ozone dosage of 71 mg L−1, which 

represented the maximum conversion obtained with non-catalytic ozonation. Fig. 7.2 

displays TOC reduction as copper concentration increased. A remarkable TOC depletion 

was observed even with the lowest concentration (1 μg·L−1), which increased with 

increasing copper concentration up to 20 μg·L−1, for which TOC removal reached around 

75% (two-fold higher than that observed in non-catalysed reaction). Fig. 7.2 also 

represents the concentration of individual carboxylic acids. The strong influence of 

copper is apparent over oxalic and glyoxalic acids, the concentration of which decreased 

with the amount of added copper and became completely removed for 20 μg·L−1 of the 

catalyst. The depletion of both acids fitted well with the observed TOC reduction 

indicating  the  mineralization  of  both  acids.  After  the  removal  of  these  acids,  no  more  

 

Fig. 7.2 Evolution of TOC (■) and the concentration of acetic (□), glyoxalic (◊) and oxalic (Δ) acid with 
added copper in the synthetic water matrix. Ozone dosage 71 mg·L−1 
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TOC depletion took place and the only acid detected was acetic acid, whose contribution 

to final TOC was essentially 100%. Oxalic acid accumulated in direct ozonation and got 

depleted in catalytic ozonation due the ability of copper in catalyzing its decomposition. 

The two major mechanisms proposed in the literature for the homogeneous 

catalytic ozonation are the decomposition of ozone by metal ions leading to the 

generation of radicals and the formation of complexes between catalysts and the 

organic molecule followed by the oxidation of the former (Nawrocki and Kasprzyk-

Horden, 2010). In order to elucidate the reaction pathway of copper oxalate, catalytic 

ozonation runs were carried out using 𝑡-butanol (30 mM) as a radical scavenger. The 

presence of 𝑡-butanol did not inhibit oxalate depletion, confirming that the catalysed 

reaction does not proceed by radical pathway but via complex formation (Nawrocki and 

Kasprzyk-Horden, 2010). Some authors claim that oxalic acid reacts relatively slow with 

hydroxyl radicals (Pines and Reckhow, 2002 and Petre et al., 2013). Other works suggest 

that the catalytic ozonation of oxalate occurs via complex formation, which is in good 

agreement with our findings (Pines and Reckhow, 2002 and Beltrán et al., 2005). 

MINTEQ chemical equilibrium model was used to calculate the chemical speciation of 

copper (Gustafsson, 2013). The modelling results of the synthetic water matrix showed 

that most copper concentration was present as oxalate complexes in the initial mixture 

(13 out of 20 μg·L−1, see Table 7.2), which displaced bicarbonate, the predominant 

complexing anion in the absence of oxalate. This fact is interesting because of the 

ubiquitous presence of radical scavengers in natural water and wastewater (mainly 

carbonates and bicarbonates), which could hamper the oxidation through hydroxyl 

radicals (Beltrán et al., 2005 and Katsoyiannis et al., 2011). Copper catalyst is highly 

active for the depletion of oxalic acid and, contrary to other transition metals, it is active 

at the natural pH of most surface waters and wastewaters (Beltrán et al., 2005 and 

Nawrocki and Kasprzyk-Horden, 2010). It is also interesting to point out that the low 

concentration of homogeneous copper necessary for oxalic depletion should be taken 

into account while testing heterogeneous copper catalysts because a small leaching of 

the active could represent an important contribution. 
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Table 7.2 Predicted copper species concentration (µg·L−1) at different added copper concentration in 
synthetic water matrix as calculated by Visual MINTEQ 3.1. 

Copper species 
Added copper (µg·L−1) 

1 5 10 20 50 100 250 
 

Cu2+ 
 

0.01 
 

0.04 
 

0.08 
 

0.16 
 

0.40 
 

0.80 
 

2.08 

CuOH+ 0.01 0.06 0.13 0.26 0.65 1.31 3.40 

CuCO3(aq) 0.31 1.57 3.15 6.32 15.92 32.23 83.44 

Cu-(Oxalate)2
2− 0.47 2.33 4.65 9.29 23.08 45.72 110.96 

Cu-Oxalate (aq) 0.19 0.93 1.85 3.71 9.27 18.56 46.54 

 

3.2. Wastewater matrix 

3.2.1. Non-catalytic ozonation 

In this study we used real biologically treated wastewater as an alternative 

matrix for the carboxylic acids ozonation. The organic compounds present in the matrix 

before adding the organic acids were essentially refractory to ozonation under the 

working condition used in this study, achieving a mineralization value lower than 5% 

(Fig. 7.3). However, ozone was consumed up to 15 mg·L−1 as a result of partial oxidation 

reactions, which can be traced by the reduction (65%) of the specific ultraviolet 

absorption at 254 nm (SUVA254); the parameter that provided an indirect measure of the  

 

Fig. 7.3 Evolution of TOC (■), SUVA254 ( ), consumed (●) and disolved (○) ozone for different ozone 
dosages in STP effluent. 
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aromaticity of the dissolved organic matter. The refractory character of wastewater TOC 

was previously reported (Rosal et al., 2008). 

The evolution of TOC and the ozone consumption during ozonation in the 

wastewater matrix spiked with organic acids are represented in Fig. 7.4A. A similar 

behaviour to the synthetic matrix (Fig. 7.1A) was observed. For lower ozone dosages 

(zone 1)  TOC  decreased  with  increasing  ozone  up  to  a  value  of  47 mg·L−1
  for  the  latter  

 

 

Fig. 7.4 Evolution of (A) TOC (■), consumed (●) and dissolved ozone (○) and (B) the concentration of 
acetic (□), glyoxalic (◊), formic (▲) maleic (♦) and oxalic acid (Δ) for different ozone dosages in STP 
effluent. 

A) 

B) 
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and remained constant afterwards. After the ozone dosage of 81 mg·L−1 mineralization 

did not further proceed. This value was taken as a reference for the treatments in the 

wastewater matrix described below. The maximum TOC removal was 22%, considerably 

lower than that observed in the synthetic matrix. Taking into account the refractory 

character of organic natural matter present in wastewater, it can be argued that TOC 

removal corresponded essentially to the depletion of the acids added to the matrix. 

Maximum ozone consumption was 37 mg·L−1, which was higher than the value obtained 

in the synthetic matrix and close to the sum of consumed ozone by the matrix, 15 mg·L−1 

(Fig. 7.3), and by the depletion of carboxylic acids, 20 mg·L−1 (Fig. 7.1A). Fig. 7.4B 

represents the evolution of individual acids with increasing ozone dosage. The pattern 

was similar to that found in the synthetic water matrix with maleic acid being readily 

eliminated. Glyoxalic acid also appeared as an oxidation by-product and was further 

oxidized to oxalic acid, which accumulated steadily in treated wastewater. The final 

concentration of glyoxalic acid was noticeably higher in STP effluent and contrary to the 

synthetic matrix, formic acid was only partially removed. 

 

3.2.2. Catalytic ozonation in wastewater 

The catalytic ozonation in wastewater was carried out using copper 

concentrations ranging from 10 to 500 μg·L−1 and a fixed ozone dosage of 81 mg·L−1. 

Fig. 7.5 displays the evolution of TOC with the increasing copper concentration. Similarly 

to the synthetic matrix, a strong improvement of TOC depletion (around 45%) was 

achieved with the increasing catalyst concentration. The evolution of TOC can be 

explained as following that of individual acids also shown in Fig. 7.5. The concentration 

of glyoxalic acid increased initially to decrease when a higher amount of copper was 

added. The concentration of formic acid slightly increased with the copper 

concentration probably indicating that formic acid is a by-product of the oxidation of 

organic matter present in wastewater. Nevertheless, the main contribution to TOC 

depletion was due to the removal of oxalic acid. It is noteworthy that total oxalic acid 

depletion was not achieved even at the highest copper concentration (500 μg·L−1). No 

improvement was found in oxalic acid depletion for copper concentration above 
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100 μg·L−1, which is five-fold the concentration required in the synthetic water matrix. 

The chemical copper speciation (MINTEQ model) in STP effluent using the available data 

(see Table 7.1) and common assumptions on the nature of organic matter in wastewater 

effluents (Pernet-Coudrier et al., 2008), leads to a concentration of copper-oxalate 

complexes of 12 μg·L−1 at operational copper concentration of 100 μg·L−1 (Table 7.3). 

This value was near to the amount of copper-oxalate complexes (13 μg·L−1) obtained for 

the synthetic matrix adding 20 μg·L−1of copper. 

 

Fig. 7.5 Evolution of TOC (●) and the concentration of acetic (□), glyoxalic (◊), formic (▲) and oxalic (Δ) 
acid with added copper in STP effluent. Ozone dosage 81 mg·L−1. 

 

Table 7.3 Predicted copper species concentration (µg·L−1) in STP effluent at different added copper 
concentration in STP effluent as calculated by Visual MINTEQ 3.1. 

Copper species 
Added copper (µg·L−1) 

10 20 50 100 250 500 

Cu2+ 0.01 0.07 0.57 2.14 9.08 23.2 

CuOH+ <0.01 0.03 0.22 0.81 3.43 8.76 

CuCO3(aq) 0.10 0.56 4.37 16.32 69.14 176.41 

Cu-(Oxalate)2
2− 0.03 0.15 1.14 4.23 17.58 43.15 

Cu-Oxalate (aq) 0.04 0.25 1.95 7.26 30.46 76.27 

Cu-EfOMa 9.81 18.91 41.50 68.32 116.41 162.18 
 

a EfOM: STP effluent organic matter 
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3.3. Aquatic toxicity assessment 

The minimum amount of copper used in this work which achieved the highest 

TOC depletion for synthetic matrix and STP effluent, 20 and 100 μg·L−1, were well below 

the standard water quality regulated or recommended for different uses of reclaimed 

water. US EPA recommends a maximum of 200 (long-term) or 5000 μg·L−1 (short-term) 

of copper in water reused for irrigation (US EPA, 2004). Nonetheless, in spite of the good 

activity of copper catalysts in ozonation processes, concern about toxicity of treated 

water must be addressed in order to ensure the absence of negative impacts on 

receiving water bodies. 

Aquatic toxicity data show that both water matrices, the mixture of organic acids 

and non-catalytically ozonated water did not present noticeable toxic effects on single-

species tests (Table 7.4). On the contrary, the studied organisms were sensitive to 

copper presence as demonstrated by the low 𝐸𝐶50 values in the three water matrices: 

Milli-Q water, synthetic matrix (i.e., Milli-Q water with 276 mg·L−1 of NaHCO3) and STP 

effluent. For ultrapure water, the reported aquatic toxicity values are in agreement with 

the data in the literature for V. fischeri (𝐸𝐶50 = 640 μg·L−1 in Heinlaan et al. (2008) and 

740 μg·L−1 in Lappalainen et al. (2001)), T. thermophila (𝐸𝐶50 = 470 μg·L−1 in Gallego et al. 

(2007)), P. subcapitata (𝐸𝐶50 = 16.5 μg·L−1 in Heijerick et al. (2002) and 20 μg·L−1 in 

Aruoja et al. (2009)) and D. magna (𝐸𝐶50 = 18 μg·L−1 in Kim et al. (2006) and 24 μg·L−1 in 

Postma et al. (2009)). 

The evolution of the effects of catalytically ozonated samples for different 

amounts of copper in synthetic water and STP effluent on the battery of biotests are 

presented in Fig. 7.6. Increased concentration of copper caused an increase in the toxic 

effects of studied organisms except for V. fischeri. These data suggest that, regardless of 

the possible combined effect of other compounds present or formed during ozonation, 

copper appeared to be the main source of toxicity. It is also interesting to note that very 

low amounts of copper led to a hormetic effect on both matrices with remarkable 

stimulation on P. putida and P. subcapitata growth, most probably due to the 
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assimilable organic matter (Thayanukul et al., 2013), bicarbonate (Luzhøft et al., 1999) 

and/or extra amounts of nitrate and phosphate (Selivanovskaya et al., 2004). 

Table 7.4 Effects of acid mixture addition and copper 𝐸𝐶50 in three water matrices for the bioassay battery 
(mean ± 95% confidence interval). 
 Bioassay  

Inhibition/ 
immobilization (%) V. fischeri P. putida T. thermophila P. subcapitata D. magna 
 

Synthetic matrixa 
 

-2 ± 1 -10 ± 3 8 ± 1 -10 ± 1 6 ± 2 

STP effluent 
 

13 ± 4 -21 ± 1 15 ± 3 -40 ± 5 3 ± 1 

Acid mixture in        
MQ waterb 
 

4 ± 1 -5 ± 1 5 ± 3 5 ± 2 12 ± 3 

Acid mixture in 
synthetic matrix 
 

-8 ± 1 -13 ± 4 10 ± 1 -12 ± 2 5 ± 1 

Acid mixture in STP 
effluent 
 

5 ± 2 -17 ± 3 9 ± 3 -45 ± 4 0 ± 1 

Ozonated acid mixture 
in synthetic matrixc 
 

-14 ± 5 9 ± 6 8 ± 3 -15 ± 7 10 ± 3 

Ozonated acid mixture 
in STP effluentd 
 

5 ± 3 -16 ± 4 6 ± 2 -42 ± 6 10 ± 2 

Copper 𝐸𝐶50 (µg·L-1) V. fischeri P. putida T. thermophila P. subcapitata D. magna 
 

In MQ water 
 

820 ± 90 
 

29.5 ± 3.5 
 

400 ± 38 
 

20.6 ± 2.6 
 

20.5 ± 3.9 

In synthetic matrix 1750 ± 180 21.9 ± 2.6 306 ± 41 29.8 ± 3.5 51.1 ± 8.8 

In STP effluent 1730 ± 210 19.1 ± 3.6 284 ± 50 53.9 ± 9.5 293 ± 33 
 

 

a Milli-Q water buffered with 276 mg·L−1 of NaHCO3. 
b Mixture of formic, acetic, oxalic and maleic acid with a concentration of 7 mg·L−1 each. 
c Ozone dosage in non-catalytic process 71 mg·L−1. 
d Ozone dosage in non-catalytic process 81 mg·L−1. 

 

As can also be seen in Fig. 7.6, copper-catalysed samples caused a considerably 

lower toxicity in STP effluent than in the synthetic matrix, with the water matrix effect 

ratio (the ratio in terms of added copper in STP effluent and synthetic matrix in order to 

obtain a 50% of inhibition/immobilization) in the interval 1.6–4.4 except for V. fischeri. It 

is important to stress that the impact of copper on aquatic organisms does not only 

depend on its nominal concentration, but also on its bioavailability, which is influenced 

by water quality parameters such as pH, hardness, alkalinity and dissolved organic 

matter.  Copper  has  been  described  as  presenting  high  complexation  capacity  with  both  
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Fig. 7.6 Evolution of the effects of catalytic ozonated samples for different amount of added copper in the 
synthetic water matrix (○) and STP effluent (■) (mean ± 95% confidence interval). White and black arrows 
represent the operational concentration of added copper for synthetic and STP effluent, respectively. 
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inorganic (Stumm and Morgan,  1996) and organic ligands (Sarathy and Allen, 2005 and 

Karlsson et al., 2006), which influences its effect on biological organisms. It has also been 

noted that the presence of natural organic matter considerably reduces copper toxicity 

to V. fischeri (Stauber, 2000 and Hsieh et al., 2004). Heijerick et al. (2002) revealed that 

copper toxicity in natural waters to P. subcapitata (32–245 μg·L−1) is mainly determined 

by the concentration of dissolved organic carbon. Naddy et al. (2002) and De 

Schamphelaere and Jansen (2002) showed that copper 𝐸𝐶50 values for D. magna in 

artificial media without organic matter vary between 4 and 57 μg·L−1. For natural water 

and wastewater, the presence of dissolved organic matter drastically decreases copper 

toxicity (34–1086 μg·L−1) as a consequence of copper-complexation (De Schamphelaere 

et al., 2004 and Pernet-Coudrier et al., 2008). Moreover, as the water matrix changes 

during the ozone treatment, the copper speciation also changes and consequently, so 

does the water toxicity. Thus, in the synthetic matrix, the sharp increase in the response 

curves (Fig. 7.6) started at a copper concentration of about 20 μg·L−1. For lower 

concentrations, oxalic and glyoxalic acid, whose copper complexation capacity is high 

(Petre et al., 2013), were present in the mixture and probably contributed to a reduced 

copper bioavailability. For increased amounts of copper the main organic acid was 

acetic, whose complexation capacity is low (Bryan et al., 2002), and a sharp toxicity 

increase was obtained accordingly. In STP effluent, the steep toxicity increase takes 

place at doses above 100 μg·L−1 except for P. putida and P. subcapitata, the organisms 

with higher sensitivity for copper in this water matrix. 

Focus on the effects of the minimum amount of copper used to achieve the 

highest TOC depletion on the single species tests (see arrows in Fig. 7.6); catalytic 

ozonation in the synthetic matrix adding 20 μg·L−1 generated treated water with no 

significantly different inhibition/immobilization with respect to samples obtained from 

non-catalytic ozonation, causing an inhibition/immobilization below 15% for all single 

species tests. Otherwise, catalytically ozonated water from STP effluent using 100 μg·L−1 

was notably toxic to P. putida (42% growth inhibition) and, particularly, to P. subcapitata 

(100% growth inhibition). For the rest of the species, the effect was below 15%. Despite 

adding an amount of catalyst five-fold higher in STP effluent than in synthetic water, the 
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toxicity was not affected in the same proportion as a consequence of the above-

explained matrix effects. 

 

4. Conclusions 

Copper-catalysed continuous ozonation significantly improves organic acid 

mineralization, mainly due to its high performance in oxalic acid depletion at near 

neutral pH, with short reaction time and in water matrices with high scavenging rate. 

The same copper concentration is less toxic in STP effluent than in the synthetic 

water matrix, an effect attributed to copper complexation with organic and inorganic 

compounds present in the wastewater that reduce its bioavailability. 

Catalytic ozonation is also strongly influenced by the water matrix. The copper 

catalytic reaction proceeds through a selective complex reaction pathway so that 

complexation with STP effluent organic matter reduces the availability of metal for 

catalysis. Thus, in wastewater, a five-fold copper concentration is necessary to achieve 

similar oxalic depletion to that obtained in the synthetic water matrix. 
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CONCLUSIONS AND OUTLOOKS 
 

8.1. Conclusions 

The current study set out to assess the potential environmental risks of emerging 

substances, such as personal care product preservatives and antibiotics, and to gain a 

deeper understanding of the continuous ozonation process for upgrading conventional 

STPs in order to minimize the discharge of these micropollutants to the receiving water 

bodies. Emerging pollutants enter into water bodies mainly through conventional STPs, 

where most of them are not efficiently removed. One way of minimizing the input of 

these micropollutants to the aquatic environment is to integrate additional treatment 

steps at STPs such as ozonation. The results highlight that: 

1. Considerable aquatic toxicity of preservatives and antibiotics were observed on 

indigenous biological communities. The toxic effects of these mixtures need to 

be carefully evaluated on biological communities and any potential risk 

management options should be studied. Special attention may be placed on 

benzalkonium chloride and ofloxacin, the risk drivers of the mixture, on which 

should be performed mitigation measures such as source control by targeted 

restrictions and/or conventional STP upgrading for improving removal 

efficiencies of these micropollutants. 
 

2. These risk driver emerging pollutants were effectively removed by continuous 

ozonation by means of the combined attack of ozone and hydroxyl radicals. 

Ozone treatment did not lead to a complete mineralization of the 

aforementioned micropollutants with the consequent accumulation of a mixture 

of intermediate transformation products and ozone-refractory compounds. 
 

3. Liquid chromatography coupled to mass spectrometry (LC-ESI-MS(TOF), LC-ESI-

MS(QTOF)) allows us to propose molecular structures for transformation 

products and degradation pathways for the removal of benzalkonium chloride 

and ofloxacin. The identified transformation products indicated that an 
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ozone/hydroxyl radical attack takes place on moieties directly responsible for the 

parent molecules’ biological activities as well as leading to more polar molecules. 
 

4. The further oxidation of intermediate transformation products gives rise to low 

molecular weight by-products such as carboxylic acids, which are accumulated in 

treated waters due to their refractory character towards ozonation. The copper-

catalysed continuous ozonation process significantly improves the mineralization 

of organic acids, mainly because of its high performance levels in oxalic acid 

depletion. 
 

5. Water matrix has a strong influence on both the ozone dose required for the 

removal of emerging pollutants and the optimum catalyst dose necessary to 

achieve a given degree of mineralization. Occurrence of dissolved organic 

carbon, suspended solids and reduced nitrogen species notably increases ozone 

dose as a consequence of competition reactions for ozone between water matrix 

components and target pollutants. Complexation of copper with STP effluent 

organic matter reduces the availability of metal for catalysis. 
 

6. In the present study, the toxic effects of wastewaters were reduced 

proportionally with the depletion of the parent compounds. Toxicity values of 

ozonated waters were caused predominantly by the parent compounds, whereas 

the formation of transformation products did not significantly contribute to 

mixture toxicity. Nevertheless, ozone treated samples induced changes on the 

biodiversity of natural bacterial communities, mainly caused by easily assimilable 

compounds generated in the ozonation process. On the other hand, the 

degradation of pollutants that interact with engineered nanoparticles present in 

wastewaters, such as benzalkonium chloride, might cause an increase in the 

toxic-metal leaching from the nanomaterial and consequently, a toxicity 

enhancement in treated water. 

As a general conclusion, it may be stated that continuous ozonation is clearly a 

suitable technology for upgrading conventional STPs, primarily due to its ability to 

minimise the release into receiving water bodies of emerging pollutants which pose a 
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risk to the freshwater ecosystem. For other emerging pollutants with potential 

environmental risks, the outline followed in the current study (risk assessment - 

continuous ozonation - chemical analysis - aquatic toxicity assessment) could be 

performed, with careful consideration given to any potential impacts on a case by case 

basis. 

 

8.2. Outlooks 

On the basis of the results from the present study several suggestions for the 

future research can be made, either to fill current knowledge gaps or to illustrate any 

emerging issues: 

1. Engineered nanoparticles, in similar fashion to other emerging substances, 

enter into STPs or the aquatic environment as a part of a complex mixture. 

Co-occurrence with other compounds can influence their fate and toxicity. 

Research is needed to determine effective methods to detect and quantify 

engineered nanoparticles in environmental media and gain deeper 

understanding of their toxic mode of action. This valuable information can be 

used to study the joint effects of chronic exposures of nanomaterials and the 

co-existing emerging substances to obtain a comprehensive understanding of 

their potential hazards and any risks on the process performance of activated 

sludge and the aquatic ecosystem. 

 

2. The overuse and/or misuse of antibiotics as well as their incomplete 

metabolization has led to the emergence and rapid spread of antibiotic-

resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Recent 

concerns about the effects of ARB and ARGs released from STPs need to be 

addressed. Further research is required including the roll-out of proper 

monitoring programs and risk assessment in order to better protect public 

health and the natural ecosystem. The application of ozonation for the 

complete inactivation/elimination of ARB and ARGs in STP effluents should be 

intensely studied in order to establish the optimum conditions for its use. 
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3. Aquatic toxicity assessment of ozonated wastewater has been widely 

performed using single-species tests based on physiological or population-

based parameters. Results of the present study suggest the need to use 

community assays based on structural endpoints for the continuous 

ozonation optimisation process in order to ensure adequate protection of the 

whole aquatic ecosystem. Further investigation on the chronic effect of 

ozone treated waters should be extended from single species testing to more 

complex experimental systems (e.g., microcosms), or onto field evaluations in 

natural ecosystems. 
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ABBREVIATIONS 

AF Assessment factor 
ARB Antibiotic resistant bacteria  
ARGs Antibiotic resistance genes 
AUC Area under the curve 
AOC Assimilable organic carbon 
AOX Adsorbable organic halogens 
AWC Average well colour 
BAC Benzalkonium chloride 
BNP Bronopol 
BOD Biochemical oxygen demand 
CA Concentration addition 
CAS Chemical abstracts service 
CI Combination index 
CMI/MI Methylchloroisothiazolinone and methylisothiazolinone 
COD Chemical oxidation demand 
CSTR Continuous stirred tank reactor 
𝐷𝑚 Median dose 
DBE Double bond equivalent 
DDD Defined daily dose 
DIU Diazolidinyl urea 
DOC Dissolved organic carbon 
DOM Dissolved organic matter 
DXY Doxycycline 
EC European Community 
𝐸𝐶𝑥 Effective concentration 
ECHA European Chemicals Agency 
EMEA European Medicines Agency 
EQS Environmental quality standards 
ERY Erythromycin 
ESI Electrospray ionization 
EU European Union 
𝑓𝑎 Fraction affected 
𝑓𝑢 Fraction unaffected 
FNU Formazin nephelometric unit 
HPLC  High-performance liquid chromatography 
IA Independent action 
IC Ionic chromatography 
IPBC Iodopropynyl butylcarbamate 
ICP-MS Inductively coupled plasma mass spectrometry 
ISO International Organization for Standardization 
IWW Industrial wastewater 
𝐾𝑂𝑊 Octanol water partition coefficient 
LC-MS Liquid chromatography coupled to mass spectrometry 
LOEC Lowest observed effect concentration 
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LOQ Limit of quantification 
MEC Measured environmental concentration 
MLSS Mixed liquor suspended solids 
MNZ Metronidazole 
nMDS Non-metric multidimensional scaling 
NOEC No observed effect concentration 
ND Not detected 
NTU Nephelometric turbidity units 
NPs Nanoparticles 
OD Optical density 
OECD Organisation for Economic Co-operation and Development 
OFX Ofloxacin 
PAC Activated carbon adsorption 
PEC Predicted environmental concentration 
𝑝𝐾𝑎 Acid dissociation constant 
PNEC Predicted no effect concentration 
POP Persistent organic pollutant 
PPB Propylparaben 
PPCP Pharmaceuticals and personal care product 
QAC Quaternary ammonium compound 
QTOF/MS Quadrupole time-of-flight mass spectrometry 
REACH Registration, Evaluation and Authorization of Chemicals 
RQ Risk quotient 
SDA Sequential deletion analysis 
SEPA Swedish Environmental Agency 
SMX Sulfamethoxazole 
SPE Solid phase extraction 
SRM Selected reaction monitoring 
STP Sewage treatment plant 
STU Sum of toxic unit 
SUVA Specific ultraviolet absorption 
TCS Triclosan 
TIS Toxicant-induced succession 
TMP Trimethoprim 
TOC Total organic carbon 
TOF/MS Time-of-flight mass spectrometry 
TP Transformation product 
TSQ/MS Triple-stage quadrupole mass spectrometry 
TSS Total suspended solids 
TU Toxic unit 
UNEP United Nations Environmental Programme 
US EPA United States Environmental Policy Agency 
VSS Volatile suspended solids 
WFD Water framework directive 
ZPT Zn pyrithione 
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