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Abstract 

 

The scarcity of adequate water has been historically a complex policy challenge in 

Mediterranean basins. The conventional response to this problem has focused on 

the construction and exploitation of water works to meet the increasing water 

demand and, when that was not enough, on the regulation of water demand through 

command and control policies. Yet, the evident technical success in harnessing the 

potential of water for economic growth in the past has come along with new 

significant challenges. Coupled with production and population growth, the demand 

of water services has soared up. Besides, climate-change has significantly altered 

water availability, giving rise to a water supply crisis which is perceived by many 

experts to be one of the top global risks.  

Conventional policy making seemed incapable to overcome these challenges and 

demanded some innovations. However, path dependency, the transaction costs of 

policy reforms and other constraints have resulted in policy makers insisting upon 

conventional water policy. Supply policies have escalated, regulatory policies have 

become more complex (and more difficult to enforce) and the water crisis has been 

aggravated. Abundant evidence suggests that this policy mix has ended up 

increasing water demand, reducing water availability and undermining the 

robustness and resiliency of the system and its ability to cope with the water crisis. 

Considering its failure, the longevity of conventional water policy is striking. In many 

areas, only the exhaustion of traditional supply sources has been able to stop it. 

Eventually, the financial and environmental costs of developing new water works 

have begun to exceed the economic benefits in the marginal uses of existing supply 

in many basins, and this has made conventional policies unviable. Also, budgetary 

constraints as a result of the financial crisis have increased the opportunity costs of 

water infrastructures, preventing or delaying further water works.  

It is increasingly accepted that this vacuum in water policy needs to be filled in with 

innovative policies that help achieve water policy objectives through an effective and 

efficient management of water demand. However, achieving the collectively agreed 

goals of water policy through the actions of individuals is a challenging task. 

Experience shows that individuals with common objectives cannot be always 
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counted on to act voluntarily to achieve them (this explains the non-compliance 

problems of regulatory instruments). Therefore, the challenge is to find suitable tools 

that motivate collective action through the use of incentives.  

Evidence in other environmental fields has shown that the best way to manage 

incentives is through economic instruments. Economic instruments replace the 

traditional notions of control and government-led planning by those of incentives, 

motivation and multi-level governance. If successfully combined with conventional 

policies, economic instruments may help to progressively overcome the current 

water crisis. However, developing an effective and efficient economic instrument for 

water management is not an easy task: whereas science has developed technical 

water management to a very large extent, considerations of social, political, 

institutional and financial order (i.e., economics) are still treated in an incipient form, 

with major problems persisting. 

This thesis wants to help bridge this gap and presents a series of methodologies 

and stylized facts that are used to assess the contribution that economic 

instruments can make to water policy in Mediterranean basins. This is done through 

six scientific papers illustrated with applications to different areas located in 

Mediterranean river basins in Spain. First, the thesis assesses the reasons that 

explain the exhaustion of the traditional supply-side approach, as well as the key 

factors behind the rise and failure of the extensive command and control based 

policy that came precisely to complement it. Then, this work examines the role that 

economic instruments may play, in conjunction with conventional policies, in 

reverting the negative trends observed under the current water crisis. It is concluded 

that economic instruments have the potential to improve the status of overexploited 

water bodies, but they are not a panacea: an adequate design, institutional setup 

and policy mix are also needed to start paving the road out of the water crisis. 
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Resumen 

 

La escasez de agua ha sido un reto histórico para el desarrollo de las cuencas 

mediterráneas. Tradicionalmente, la respuesta a este problema ha consistido en la 

construcción y el aprovechamiento de obras hidráulicas que permitieran 

incrementar la oferta y satisfacer así la creciente demanda. Cuando esto ha 

resultado insuficiente, la ingeniería ha venido acompañada de herramientas legales 

que regulaban el uso del recurso. No obstante, el evidente éxito de estas políticas 

convencionales en la gestión técnica del agua y en su aprovechamiento para 

promover el desarrollo económico de las cuencas mediterráneas ha venido 

acompañado de importantes desafíos. Por un lado, el crecimiento económico y el 

aumento de la población han incrementado la demanda de agua. Por otro lado, el 

cambio climático ha generado incertidumbres en torno a la disponibilidad del 

recurso, dando lugar a una crisis de oferta que muchos expertos sitúan entre los 

mayores riesgos ambientales a nivel global.  

Las políticas convencionales no ofrecen suficiente capacidad de respuesta ante 

estos desafíos. No obstante, existen restricciones (path dependency, costes de 

transacción) que han dificultado las reformas necesarias para lograr una transición 

hacia una nueva política del agua. Como resultado, a menudo se ha insistido en las 

políticas de oferta y regulación: se han incrementado las dimensiones de las obras 

hidráulicas y se han aprobado normativas cada vez más complejas y ambiciosas, 

pero también más difíciles de hacer cumplir. La evidencia científica sugiere que 

esta combinación de políticas ha incrementado la demanda de agua, ha reducido la 

oferta y ha hecho al sistema menos resiliente y robusto, socavando su capacidad 

para afrontar la crisis del agua.   

No obstante, este modelo de gestión ha demostrado ser sorprendentemente 

longevo, y solo el progresivo agotamiento de las fuentes de agua tradicionales ha 

frenado el desarrollo de nuevas obras hidráulicas. Como resultado de la 

sobreexplotación, los costes marginales de desarrollar nuevos proyectos han 

superado los ingresos marginales, haciendo estas políticas inviables en numerosas 

cuencas. Además, las restricciones presupuestarias consecuencia de la crisis 

financiera han incrementado el coste de oportunidad de desarrollar estos proyectos, 

paralizando o retrasando numerosas obras.  
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La gestión futura del agua pasa por un uso eficaz y eficiente de políticas de 

demanda innovadoras. No obstante, alcanzar los objetivos colectivos de la política 

del agua a través de acciones individuales no es tarea fácil. La experiencia 

demuestra que incluso los individuos que comparten objetivos comunes no siempre 

llevan a cabo de manera voluntaria las actuaciones necesarias para alcanzarlos (un 

claro ejemplo es el incumplimiento de numerosas regulaciones ambientales). Por 

tanto, el reto en la gestión del agua consiste en desarrollar instrumentos que 

motiven la acción colectiva a través del uso de incentivos. 

La evidencia científica en otros campos de investigación ambiental ha mostrado 

que la mejor manera de gestionar los incentivos es a través del uso de instrumentos 

económicos. Los instrumentos económicos sustituyen los conceptos de regulación 

y toma de decisiones centralizada por los de una gestión multi-nivel, basada en la 

motivación, los incentivos y las decisiones voluntarias. Si se combina de manera 

adecuada esta herramienta con las políticas convencionales, los instrumentos 

económicos pueden contribuir a la solución de la actual crisis del agua. No 

obstante, crear instrumentos económicos eficaces y eficientes no es sencillo: 

mientras la gestión técnica del agua se ha desarrollado en gran medida durante las 

últimas décadas, la gestión social, política, institucional, ambiental y financiera del 

recurso (esto es, económica) se trata todavía de una manera incipiente.    

Esta tesis pretende contribuir al desarrollo de instrumentos económicos que 

permitan una mejor gestión del agua en las cuencas mediterráneas. A través de 

seis artículos científicos que contienen estudios de caso en cuencas mediterráneas 

españolas, se presentan una serie de metodologías y hechos estilizados con dos 

objetivos fundamentales: en primer lugar, analizar los motivos que explican el 

agotamiento de las políticas convencionales, tanto de oferta como de regulación; en 

segundo lugar, examinar el rol que los instrumentos económicos pueden jugar 

complementando a las políticas convencionales en la solución de la actual crisis del 

agua.  

Se concluye que si bien los instrumentos económicos tienen la capacidad de 

mejorar el estado ecológico de las masas de agua sobreexplotadas, no constituyen 

ni mucho menos una panacea: un correcto diseño, una adecuada combinación de 

políticas y la adaptación al marco institucional son requisitos necesarios para lograr 

una gestión sostenible del agua.  
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1 Introduction 

 

1.1 A Primer on water economics 

 

Fresh water is a finite and vulnerable resource that is essential for sustaining life, 

development and the environment (ICWE, 1992). The essentialness of water is 

based on the fact that no production (agricultural, industrial, tertiary and even 

ecological) is possible if this input is lacking (Hanemann, 2006) and on the absence 

of any substitutive good for its final consumption (Savenije, 2002). This 

essentialness is relevant for economics because water is also a finite good. All 

water stems from rainfall, and rainfall is limited by the amount of water that 

circulates through the atmosphere on an annual basis. This combination explains 

why water cannot fully satisfy demand for its alternative uses in some areas 

(therefore, it is scarce) and strengthens the argument that water is an economic 

good (Zaag and Savenije, 2006). In fact, the scarcity of adequate water
1
 to satisfy 

water demand is becoming the most important environmental problem in several 

regions worldwide, especially in those located in arid and semi-arid Mediterranean 

areas. In the face of a potential environmental collapse, what can we expect from 

economics? 

Although economics has been playing an increasingly relevant role in water 

management since the beginning of the XX
th

 century, water was not formally 

catalogued as an economic good until the Dublin Conference on Water and the 

Environment in 1992
2
. The fourth Dublin Principle states: “water has an economic 

value and should be recognized as an economic good, taking into account 

affordability and equity criteria” (ICWE, 1992). However, there is substantial 

confusion about the practical meaning of the statement that water is an “economic 

good” (Hanemann, 2006; Savenije, 2002; Zaag and Savenije, 2006). More 

shockingly, some have even asserted that there is little agreement on what this 

means in theory (Briscoe, 1996). In the midst of this debate, two different schools of 

                                                           
1
 With adequate water we are referring to a certain quantity of water fulfilling some quality 

standards.  
2
 This followed up the 1977 United Nations Water Conference in Mar del Plata, Argentina, 

in which the water crisis was addressed for the first time at an intergovernmental level.  
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thought have appeared. The first school (market proponents) maintains that water 

should be priced through the market and that the economic value of water would 

arise spontaneously from the actions of willing buyers and willing sellers, therefore 

ensuring that water is allocated to uses that are valued highest. On the other hand, 

the second school defends an integrated decision making on the allocation of scant 

water resources, which does not necessarily involve financial transactions 

(Hanemann, 2006; Zaag and Savenije, 2006). 

Free competition in a market is often viewed as the most efficient system for 

allocating resources. Therefore, if water is a commodity and the economic system in 

which water is used meets the preconditions for a market system, government 

interventions could be in principle limited to the establishment of property rights and 

the enforcement of contracts (Briscoe, 1996; Hodgson, 1988). From this point of 

view, markets can be used as a way to reallocate water from lower to higher value 

productive activities. For example, Chong and Sunding (2006) have shown that 

urban users can pay up to 10 times more for water than agricultural users.  

However, market economies experience shortcomings called market failures. 

Market failures occur when the allocation of goods and services by a free market is 

not Pareto-efficient, i.e., when it is possible to make a market participant better-off 

without making someone else worse-off. In other cases, even efficient markets may 

not meet societies' equity criteria and public intervention is necessary to 

compensate for distributional disparities. In the particular case of water, market 

failures tend to multiply due to the unique combination of characteristics of this 

resource (Hanemann, 2006; Zaag and Savenije, 2006). Apart from being essential 

and finite, water is also fugitive but bulky, private and public at the same time and 

variable along space and time. It has several roles, environmental, social and 

financial. Interspersed water bodies are interconnected at a basin level as part of a 

complex system, and therefore water uses are interrelated and affect each other. In 

addition and as a result of all the characteristics above, water is a heterogeneous 

good; this means that we cannot strictly speak about a single water market, but 

about different water markets.  

Despite all these problems, the reasoning of market proponents has become 

widespread and has received the support of international institutions such as the 

World Bank (Briscoe, 1996). Water markets with very limited government 

intervention were designed in water scarce countries like Australia and Chile. Also in 

the EU and the US water markets have been introduced, although the regulation in 

these areas is more restrictive. Allegedly, the (so-called) right price stemming from 

free competition markets would encourage not only a more efficient water allocation, 
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but also water conservation (partially through the spontaneous adoption of more 

advanced water technologies), lower expenditures in civil water works and the 

internalization of the opportunity costs of water use (Tarlock et al., 2009). However, 

market proponents seem to ignore a basic economic principle: market prices are not 

the same as economic value. In fact, observed market prices are only a rough 

indicator of the marginal value of water and they do not reflect non-market water 

uses and third-party impacts of market activities (Colby and Bush, 1987; Colby, 

1987; Hanemann, 2006). This distinction between prices and economic value dates 

back to Adam Smith and was firstly formulated by Dupuit (1844) and Marshall 

(1879) and fully integrated into the economic theory in the 1970s. As a result, the 

advantages above are only feasible if the market is designed in such a way that 

prices become close to the actual value of the resource. In reality, the difficulties to 

make this happen are many, especially in the case of water (Hanemann, 2006). 

Consequently, in spite of their relative financial success, there are many examples 

in the literature concerning the negative environmental and economic impact of 

water markets (Colby, 1990; Donoso, 2011; Hanak et al., 2011; Howe, 2000; Young, 

2010).  

The negative environmental performance of water markets in areas such as Chile 

and Australia has done much damage to water economics, up to a point where 

some regard this field as part of the problem instead of the solution
3
. Critics argue 

that economics fails to internalize all the sources of value of water and therefore 

may be unsuitable to address the problems at stake (Savenije, 2002). However, this 

criticism is narrowly focused on the negative environmental performance of (some) 

water markets and ignores major economic achievements, such as the role of 

positive economics in supporting decision making, with tools such as Cost Benefit 

Analysis or Cost Effectiveness Analysis. 

 

Economics is not the same as markets. While markets focus on the financial 

outcome, the objective of economics is to increase the total welfare or utility. This 

can be done by maximizing the total economic value and minimizing the total 

economic cost. Accordingly, in spite of the confusion that may arise on the practical 

implications of managing water as an “economic good”, economic theory is rather 

standard and straightforward: water economists have to look for those instruments 

                                                           
3
 As a result, a number of disclaimers were added to the classification of water as an 

economic good, stating that water is also a “social” good and that water should be 
affordable to the poor (Zaag and Savenije, 2006), even though this is already included in the 
very notion of “economic good”.  
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that maximize welfare from a social, environmental and financial perspective (i.e., 

from an economic perspective). In some cases, these instruments may be water 

markets and prices. In other cases, the use of water markets per se may be 

insufficient, unviable or even counter-productive, and other economic instruments 

(or a combination of them) can be advanced. In this complex context, economics 

should focus on providing the necessary information and advice for conducting an 

adequate decision making process. Contrary to the arguments of market 

proponents, economics cannot be strictly normative and should never become a 

substitute for policy making: it is just a tool. 

 

1.2 Water policy and economics 

 

For millions of years, hunters and gatherers depended on the wild plants and 

animals sustained by rainfall, which varied significantly from one place to another, 

but was on the whole insufficient to provide food for large, dense, settled 

populations. Over time, families began settling near springs, lakes and rivers to 

supply livestock and crops with water, gradually developing technologies to divert 

water for irrigation and domestic purposes. Many civilizations, from Babilonian to 

Chinese, Mayan or Roman, constructed water delivery systems such as aqueducts 

to carry water to cities (Hassan, 2010; Yevjevich, 1992). Although water demand 

continuously increased and the growing number of water infrastructures made 

possible the supply of increasing amounts of water, most societies were able to 

meet their growing water needs by capturing reliable and relatively inexpensive 

resources until the middle of the XX
th

 century. Consequently, throughout all this 

period, comprising most of humankind’s history, water management was 

approached primarily as an engineering problem. Water demand was in most of the 

places and during most of the time below the threshold that would deem water as a 

scarce good. Therefore, the role of economics in water policy was limited.  

In the last decades, population growth and the improvement of living standards 

brought about by development have generated an unprecedented increase in water 

demand (either in agriculture, manufacturing, tourism, energy production or 

households), exceeding the limits of water supply for the first time in history in many 

areas worldwide (Molden and Sakthivadivel, 1999). In addition, climate-change 

induced alteration of rainfall pattern (form, intensity and timing of rainfall) has 

significantly modified water availability and the frequency and intensity of extreme 



CHAPTER 1: INTRODUCTION 

7 

events such as floods and droughts, up to a point where this water supply crisis is 

perceived by many experts to be one of the top global risks (OECD, 2013). This 

combination of increasing pressures over water bodies and volatile water supply are 

in the origin of the current water crisis. The effects of this water crisis have been 

particularly visible during the last years, as a result of the aggravation of the climate 

change and water demand trends (OECD, 2013) and especially as a consequence 

of poorly designed water policies since the 1950s.  

 

Water policy since the beginning of the crisis has largely ignored the overcoming of 

water supply limits by water demand and has continued focusing on the construction 

of major infrastructures to guarantee water supply. From aqueducts, reservoirs and 

traditional irrigation systems, water works have escalated to inter-basin water 

transfers, major dams, modern irrigation devices, wastewater treatment plants and 

desalination plants, among others (Hassan, 2010). This is a consequence of the 

prevailing political consensus, which still considers that water management policies 

must play an instrumental role aimed at providing a package of services, which are 

either essential for life or strategic for the economy. Besides that, it was believed for 

a long time that water demand should be taken as exogenously defined outside the 

field of water management policy (Dinar and Saleth, 1999). In this context, the 

limited capacity to support the increasing water resource abstraction and discharge 

rates has led to a growing demand for major infrastructures and increased public 

support to put larger amounts of water services available to users. In turn, the 

positive response of water authorities to this demand has led to unrealistic 

expectations concerning the capacity of the system to absorb additional pressures. 

This perverse dynamics has ended up increasing water demand, reducing water 

availability and undermining the robustness and resiliency of the system and its 

ability to cope with the water crisis (Anderies et al., 2004; Ruttan, 2002). 

As time has passed and this sort of path dependency has prevailed, water 

authorities worldwide have progressively found themselves facing a potential water 

catastrophe. Yet, managing water is a very complex societal issue that needs to 

involve legal, environmental, technological, financial and political considerations that 

are difficult to co-ordinate in an effective manner. For a long time, this complexity 

has often implied that the political decisions have overshadowed and prevailed over 

other considerations (Martin et al., 2008). In other words, the relevance of 

transaction costs (especially the bargaining costs required to come to an acceptable 

agreement with all the parties involved) has been often magnified while that of 
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environmental costs has been reduced, thus delaying the necessary water policy 

reform. This follows a basic economic principle: as long as the transaction costs of 

the water policy reform are perceived to be larger than the opportunity costs of the 

statu quo, the former will not be implemented (Dinar and Saleth, 1999). 

However, as the water crisis has been aggravated this policy framework has 

become difficult to sustain. Eventually, the financial and environmental costs of 

developing new water works have begun to exceed the economic benefits in the 

least productive (marginal) uses of existing supplies in many basins (Randall, 1981). 

In addition, tighter public budgets and especially water supply limits have increased 

the opportunity costs of supply policies and have made impossible to maintain the 

pace of investments in water works. Therefore, water authorities have been forced 

to alter their policy action and to focus also on water demand. This has been largely 

made through a more intensive use of Command and Control (C&C) policies.  

C&C policies are regulatory instruments that specify a particular type of behavior 

that agents have to comply with. C&C policies are not new in water policy, but 

during the last decades they have evolved from simple rules that restricted the 

pressures over water bodies and that were only casually enforced to more complex 

and foresighted water management plans (see for example EC, 2008 and NDMC, 

2013). However, the effectiveness of C&C tools is often threatened by non-

compliance of water users, and this demands a high level of enforcement. 

Considering the powerful incentives in the economy leading to increased use of 

water in the short term, one of the main critiques to these policies is the expense of 

enforcement (or alternatively, the extensive non-compliance), especially when a 

complex system of rules has been developed (Pahl-Wostl et al., 2010). This is the 

case for example of the EU Drought Management Plans (Gómez and Pérez-Blanco, 

2012).  

 

Noteworthy, C&C policies are applied by legislation and do not use economic 

incentives; therefore, although C&C tools serve to control water demand, they owe 

little to economic theory. In reality, the role of economics in water policy until recent 

years has been limited and largely consisted in assessing the economic viability of 

projects designed by engineers. This role of economics as an assessor was also 

common in other areas involving projects with environmental impact. As a result, 

environmental economics has been largely focused during the last decades on the 

development and the improvement of techniques to estimate non-market 
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(environmental) values. This initially responded to the need to put a value to non-

market goods and services in Cost Benefit Analysis (CBA).  

CBA is a systematic process for calculating and comparing benefits and costs of a 

project, decision or government policy. Since the 1950s, several valuation methods 

have been developed and subsequently refined to improve the results offered by 

CBA. Some of these methods have even moved from being “experimental” to 

business-as-usual (Freeman, 2003). The results obtained during all these decades 

have shown that environmental benefits are significant and sometimes can greatly 

outweigh commercial benefits (Campos et al., 2008, 2007; Hanemann, 2006), thus 

enhancing the role of economics in water policy.  

However, environmental valuation faces many challenges
4
 (Azqueta, 1994; 

Freeman, 2003). In particular it is feared that traditional CBA may, in its calculation 

of the expected net present value, attribute relatively minor importance to a possible 

future disaster with major economic implications. Consequently, we may have the 

paradoxical outcome of a project with an expected positive welfare gain turning into 

catastrophic losses.  

Bishop (1978) remedies this by proposing that safe minimum standards are 

introduced unless the cost to society is unacceptably high. This precautionary 

principle is rapidly integrated into environmental policy and in the Rio Declaration on 

Environment and Development it is stated that: “In order to protect the environment, 

the precautionary approach shall be widely applied by States according to their 

capabilities. Where there are threats of serious or irreversible damage, lack of full 

scientific certainty shall not be used as a reason for postponing cost-effective 

measures to prevent environmental degradation” (UN, 1992). In the case of EU 

water policy, the precautionary principle becomes a key element in the design of the 

Water Framework Directive (WFD) (EC, 2000). This directive represents a turning 

point in the relationship between water policy and economics in the EU.  

The objective of the WFD is the attainment of a good ecological status in all surface 

and groundwater bodies by 2015
5
. The precautionary principle underlying the WFD 

                                                           
4
 The prevailing stated preferences methods have problems addressing income constraints. 

Also, it is not clear whether or not values respond accurately to variations in the scope or 
amount of the environmental good in question when a wide range of measures or policies 
are involved. In addition, a major challenge remains in translating sound research results 
into practical and understandable policy advice. 
5
 In accordance to the precautionary principle (Bishop, 1978), there may be some 

exemptions to the general objectives that allow for less stringent objectives, extension of 
deadline beyond 2015, or the implementation of new projects, provided a set of conditions 
are fulfilled (EC, 2000). 
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is that water ecosystems constitute a collective heritage that must be preserved by 

ensuring water uses to be compatible with the preservation of these ecosystems 

(EC, 2000). This makes unnecessary the calculation of environmental benefits for 

the purpose of achieving the goals of the WFD. Accordingly, CBA is replaced by 

Cost-Effectiveness Analysis (CEA). CEA is a proactive decision-support tool that 

enables the assessment of the cost and the effectiveness of alternative policy 

options in realizing a preset objective (i.e., the good ecological status). In brief, it 

aims at identifying a combination of mitigation measures for achieving a given water 

policy goal at the least economic cost. It is in this setting in which economic 

instruments for water management develop.  

 

1.3 Economic Instruments for water management 

 

When the WFD was approved, it was already clear that the amount of water 

available in EU water bodies was not plentiful relative to water demand anymore. 

Water management challenges could not be solved through the capture of 

unclaimed water supply, like in the past, and demanded instead a sustainable water 

management of the existing resources. At this point, the growing marginal costs of 

supplying water and the increasing interdependencies among sequential water 

users had already generated conflicts that gave rise to the appropriation of 

environmental flows/stocks by private uses at high opportunity costs for the society. 

This tradeoff was largely tolerated by authorities until it was too evident that a 

collective action was needed in order to prevent irreversible effects over EU water 

bodies. The WFD came as a response to this need and took into account legal, 

environmental, political and technological considerations from the outset, while 

economics became the instrument to articulate all of them.  

The Article 9 of the WFD introduced for the first time economic instruments for water 

resources management in the EU. However, it did not include any formal definition 

for this term. In reality, although the WFD formally opened the door for the use of 

economic instruments in water resources management, it focused exclusively on the 

role that one particular economic instrument, water pricing, might have in reducing 

the pressures over water bodies: “[...] water-pricing policies provide adequate 



CHAPTER 1: INTRODUCTION 

11 

incentives for users to use water resources efficiently, and thereby contribute to the 

environmental objectives of this directive” (EC, 2000)
6
.  

Consequently, with the exception of water pricing, the implementation of economic 

instruments for water management has not been sufficiently encouraged from EU 

institutions. In addition, it remained unclear what an economic instrument for water 

management actually is.  To the best of our knowledge, the most accurate definition 

can be found in Strosser et al. (2013), according to which economic instruments for 

water management are “those incentives designed and implemented with the 

purpose of adapting individual decisions to collectively agreed goals (e.g. the 

environmental objectives of the WFD and of its “daughter” Directives)”.  

Following this definition, some of the economic instruments for water management 

implemented in the EU so far may include pollution taxes
7
 (Daugbjerg and 

Pedersen, 2004), water use tariffs and fees (Hellegers, 2001; Miniaci et al., 2008; 

OECD, 1999), water load fees (ÖKO Zrt. vezette Konzorcium, 2009), water markets 

(Albiac et al., 2006; Calatrava and Gómez-Ramos, 2009; Garrido and Calatrava, 

2009; Rey et al., 2011), voluntary agreements (Bratrich and Truffer, 2001; Gómez et 

al., 2013) and subsidies (Christensen et al., 2011; Institut für Umweltforschung, 

2002).  

According to the little evidence available, the environmental achievements of 

economic instruments for water management in the EU have been very limited so 

far. However, and this is the critical point, it is not clear whether these economic 

instruments actually pursued an environmental outcome and failed because of their 

poor design or if they were in reality a financial tool disguised as an environmental 

instrument to make it more acceptable (Strosser et al., 2013). In fact, those 

economic instruments that did not involve revenue-raising tools or that were 

implemented on a voluntary basis have been among the most successful of all 

(Bratrich and Truffer, 2001; Gómez et al., 2013). So far, the lack of ex-post data 

impedes obtaining more concluding evidence. Moreover, there is also a lack of ex-

ante assessments and many economic instruments with the potential to encourage 

a more sustainable water use have not been explored up to this point. As a result, 

the policy discussion regarding the implementability and the expected environmental 

outcome of most economic instruments is based on a mix of “theoretical and less 

rational arguments” (Strosser et al., 2013).  

                                                           
6
 More recently, the EU blueprint to Safeguard Europe's Water Resources has insisted upon 

this idea (EC, 2012).   
7
 Actually, most of these taxes are in reality tariffs (EEA&OECD, 2013).  
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The present work intends to shed light over this discussion. Chapters 3 and 4 

develop methodologies that are used to identify relevant factors that help explain the 

failure of conventional supply and C&C policies in Mediterranean river basins. 

Chapter 5 builds on this and develops additional methods to assess the 

implementability and potential of some economic instruments that have been 

advanced in Mediterranean areas. Rather than offering a brand new water policy the 

goal is to explore how these economic instruments can be streamed into current 

water management practice in order to make a significant contribution to 

meaningfully solve some relevant water governance problems. 

These methodologies are illustrated with applications to different areas located in 

Mediterranean river basins in Spain. Spanish Mediterranean river basins are a 

paradigmatic example of the exhaustion of conventional water policies. Combined 

with growing water demand and decreasing water supply, this policy failure has led 

to increasing scarcity and more frequent and intense droughts.  

Accordingly, the methods introduced in this thesis are largely focused on water 

policy challenges stemming from water scarcity and droughts (irrigation 

modernization plans in Chapter 3, Drought Management Plans in Chapter 4 and 

drought insurance and water pricing in Chatper 5)
8
, although they also deal 

indirectly with qualitative issues. In addition, there is one methodology that is used 

to solve water quality problems (voluntary agreements in Chapter 5).  

The methodologies presented in this thesis are based on standard economics and 

aim to be general and applicable in basins that face water management problems 

similar to those experienced in the case study areas. This mostly refers to 

Mediterranean basins, but the methods may also be of use in several areas 

worldwide increasingly exposed to the water crisis (OECD, 2013).  

For example, in the EU evidence shows that scarcity and droughts are not anymore 

a Southern European challenge (EEA, 2009). Further to scarcity, droughts have 

sorely increased in number and intensity throughout the EU. There have been 

recent drought events or threats in Portugal, Spain, southern France, Greece, 

Cyprus, Italy, Hungary, southeastern England and even in Germany or the North 

Atlantic Faroe Islands, the self-governing region of Denmark  (JRC, 2013). Also in 

                                                           
8
 It is true that if properly designed and contextualized these policies may also help to 

improve the qualitative status of water bodies, but their primary goal is a different one. 
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Finland and the Netherlands Drought Management Plans have been approved as a 

response to the increasing scarcity and drought exposure (EC, 2008).  

The three innovative economic instruments assessed in this thesis do fit in this 

policy context marked by the water crisis, and therefore could be transferred with 

some caveats to other geographical areas. In addition, the discussion included in 

this thesis is meant to feed into some of the ongoing reflections regarding water 

policy reform and the use of economic instruments.  
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2 Objectives, Thesis Outline and 

Research Context 

 

2.1 Objectives 

 

This thesis consists of six scientific papers that have been published or are under 

review in international journals. The thesis presents a series of methodologies and 

stylized facts that are used to assess the contribution that economic instruments can 

make to water policy in Mediterranean basins. The goal is twofold: i) first, to identify 

the factors explaining the failure of conventional C&C and supply policies. ii) 

second, to assess the viability and expected outcomes of a set of economic 

instruments for water management that are being implemented or whose 

implementation is being considered in Mediterranean basins in Spain. Associated 

with these two main objectives there are five specific goals:  

 

i) Objectives related to the understanding of the failure of conventional water 

policies (Chapters 3 and 4) 

 

 Chapter 3 develops an analytical framework with the objective of 

determining under what conditions irrigation modernization projects 

rebound, i.e., under what conditions farmers end up demanding and 

consuming a larger amount of water than before.  

 The objective of Chapter 4 is to evaluate the incentives that farmers have 

to incur in informal groundwater abstractions after the implementation of 

Drought Management Plans, as well as the impact that this may have over 

aquifers. Some evidence for the Segura River Basin (southeastern Spain) 

is provided.  
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ii) Objectives related to the assessment of the implementability and potential 

of economic instruments (Chapter 5) 

 

 Section 5.1 develops a methodology that can be used to estimate the 

opportunity costs of the periodical release of flushing flows in rivers whose 

regimes are controlled by hydropower generating facilities. This method 

may help to articulate voluntary agreements between water users in highly 

engineered rivers. Some insightful results from the implementation of this 

tool in the Lower Ebro (northeastern Spain) are provided.  

 Section 5.2 assesses the implementability of drought insurance for irrigated 

agriculture through the calculation of the minimum long term cost that 

would be faced by a private insurance company. Some results from field 

experiments in the Segura and Guadalquivir river basins in Spain are 

provided.  

 Section 5.3 develops a flexible revealed preferences model that is used to 

assess the impact of water pricing over agricultural water demand and 

consumption. Insightful results for the case study area, the Segura River 

Basin (southeastern Spain), are provided. 

 

2.2 Thesis outline 

 

This thesis is structured in four parts: 

 Part I (Chapters 1 and 2) serves as an introduction and presents the 

objectives, thesis outline and research context of this work.  

 Part II (Chapters 3 and 4) introduces the role of supply and C&C policies in 

water management and explores the factors that may help explain why 

conventional policies have failed in attaining water policy goals.  

o Chapter 3 presents the role played by supply policies and intends 

to identify the reasons that help explain why they failed to solve 

the water crisis. In particular, it addresses the case of irrigation 

modernization plans such as the Spanish Irrigation Plan (Plan 

Nacional de Regadíos).  

o Chapter 4 focuses on C&C policies, which have become 

increasingly relevant as a way to control water demand. This 
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chapter focuses on the powerful economic incentives surrounding 

water use and explores how these incentives may impede a 

sustainable water use even when C&C and supply policies are 

combined. The particular case of Drought Management Plans in 

Spain is presented. 

 Part III (Chapter 5) builds on Part II and evaluates the role that economic 

instruments may play as a complementary policy of conventional C&C and 

supply policies in order to attain water policy goals.  

o Section 5.1 evaluates the potential of voluntary agreements to 

contribute to the goals defined in the water policy. The case study 

focuses on the public-private partnership between the hydropower 

operator and the river basin authority to release flushing flows to 

improve the qualitative status of the Lower Ebro (northeastern 

Spain).  

o Section 5.2 presents drought insurance for irrigated agriculture as 

a water saving instrument during drought events and estimates its 

long term cost. These costs are estimated in two Agricultural 

Districts in the Segura and the Guadalquivir River Basins.   

o Section 5.3 focuses on water pricing and uses a revealed 

preferences model to assess the impact that higher water prices 

may have over agricultural water demand in the Segura River 

Basin (southeastern Spain).  

Part II and Part III are the core of this thesis. Each chapter of the Parts II and III is 

backed by at least one scientific paper that addresses relevant issues for water 

management in Mediterranean river basins. Most of these papers have been 

published in international scientific journals. 

 Part IV (Chapter 6) summarizes the main conclusions of the thesis along 

with some political recommendations that can be inferred from the work.  

 

2.3 Research context 

 

This thesis is the outcome of the author’s participation in different research projects 

at a national and EU level in the University of Alcalá and the Madrid Institute for 

Advanced Studies in Water Technologies (IMDEA-Water). The list of projects in 
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which the doctoral candidate has been involved during the development of this 

thesis comprises a FP7 project (Economic Policy Instruments for Water 

Management in Europe), two projects developed within the EC Freshwater Policy 

Framework Contract awarded to IMDEA-Water (Potential for Growth and Job 

Creation through the Protection of Water Resources, with a Special Focus on the 

Further Implementation of the Water Framework Directive and Floods Directive and 

Support to the various Water Framework Directive Common Implementation 

Strategy (CIS) groups) and two national projects (Contrato entre la Universidad de 

Alcalá y la Agrupación Española de Entidades Aseguradora de los Seguros 

Agrarios Combinados SA, para el estudio de las probabilidades de restricción del 

agua para riego en las demarcaciones hidrográficas españolas and Contrato entre 

la Universidad de Alcalá y la Agrupación Española de Entidades Aseguradora de 

los Seguros Agrarios Combinados SA, para la elaboración de un estudio sobre la 

sequía hidrológica). Although all these projects were relevant for the development of 

this work, most of the research contained in this thesis was carried out within the 

EU’s 7
th

 Framework Contract project Economic Policy Instruments for Water 

Management in Europe (EPI-Water).  

EPI-Water (Grant Agreement 265213) is a FP7 project (FP7/2007–2013) led by Dr. 

Jaroslav Mysiak from Fondazione Eni Enrico Mattei (Italy) and coordinated by Prof. 

Carlos Mario Gómez Gómez for the IMDEA-Water team, formed by himself and 

Gonzalo Delacámara, Miguel Solanes, Marta Rodríguez, Estefanía Ibáñez and the 

doctoral candidate. EPI-Water aims to assess the effectiveness and the efficiency of 

economic instruments in achieving water policy goals, and to identify the 

preconditions under which they complement or perform better than alternative policy 

instruments (e.g. regulatory). The work done by IMDEA-Water focused on the 

development of two ex-post case studies in the Tagus and Ebro river basins and in 

particular on a comprehensive ex-ante case study in the interconnected Tagus and 

Segura river basins. Within this project, the author completed two stays of two 

months each in the Flood Hazard Research Centre of the Middlesex University. This 

was partially funded by the Fórmula Santader Scholarship.  

The EC Freshwater Policy Framework Contract (ENV.D.1/FRA/2012/0014) defines 

preferred suppliers with the objective of providing services to the Water Unit in DG 

Environment. The projects to provide these services are awarded through individual 

contracts in competition with the other consortiums included in the Framework 

Contract. The contractual period lasts for three years, with annual renovations. The 

Framework Contract is led by Chris Hughes from AMEC (UK) and coordinated by 

Prof. Carlos Mario Gómez and Prof. Gonzalo Delacámara for the IMDEA-Water 
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team, formed by themselves and Miguel Solanes, Marta Rodríguez, Estefanía 

Ibáñez and the doctoral candidate. 

The project Potential for Growth and Job Creation through the Protection of Water 

Resources, with a Special Focus on the Further Implementation of the Water 

Framework Directive and Floods Directive is a project awarded within the EC 

Freshwater Policy Framework Contract. The project was led by Dr. Pierre Strosser 

from ACTeon Environment (France) and coordinated by Prof. Gonzalo Delacámara 

and Prof. Carlos Mario Gómez for the IMDEA-Water team, formed by themselves 

and Miguel Solanes, Marta Rodríguez, Estefanía Ibáñez and the doctoral candidate. 

The primary objective of this study was to assess the likely impact of the protection 

of water resources, and in particular of the implementation of the WFD and Flood 

Directive, on growth and job creation. 

The project Support to the various Water Framework Directive Common 

Implementation Strategy (CIS) groups is a project awarded within the EC 

Freshwater Policy Framework Contract. The project is led by Dr. Andrew Farmer 

and coordinated by Prof. Carlos Mario Gómez for the IMDEA-Water team, formed 

by himself and Gonzalo Delacámara, Miguel Solanes, Marta Rodríguez, Estefanía 

Ibáñez and the doctoral candidate. The requested services include the provision to 

the Water Unit in DG Environment (ENV D1) of independent, high quality and timely 

support and advice on scientific, socio-economic and technical issues related to the 

issues dealt with within the Common Implementation Strategy (CIS) of the Water 

Framework Directive (WFD) and Floods Directive. 

The projects Contrato entre la Universidad de Alcalá y la Agrupación Española de 

Entidades Aseguradora de los Seguros Agrarios Combinados SA, para el estudio 

de las probabilidades de restricción del agua para riego en las demarcaciones 

hidrográficas españolas and Contrato entre la Universidad de Alcalá y la 

Agrupación Española de Entidades Aseguradora de los Seguros Agrarios 

Combinados SA, para la elaboración de un estudio sobre la sequía hidrológica were 

privately awarded by the Spanish Association of Agrarian Insuring Firms 

(Agroseguro S.A.) to the University of Alcalá. The project was coordinated by Prof. 

Carlos Mario Gómez Gómez. The other members of the team were Alberto del 

Villar, David Nortes and the doctoral candidate. The objective of these projects was 

the assessment of the viability of drought insurance systems in Spain.   
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2.4 Conferences 

 

In the context of this thesis, the work of the doctoral candidate was presented and 

discussed in different conferences. These are listed below:  

 

Insuring water: A practical risk management option in water scarce and 

drought prone regions? In Frontiers in Economics of Natural Hazards and Disaster 

Risk Reduction - Financing Disaster Risk Reduction and Climate Adaptation. 

Belpasso (Italy), 1-7 September 2013.  

Simple myths and basic maths about greening irrigation. In New Directions 

in the Economic Analysis of Water. Lisbon (Portugal), 18-19 July 2013 

Water efficiency and water conservation in irrigated agriculture. In 

Instrumentos económicos para la gestión del agua en España. Alcalá de Henares 

(Spain), 20-21 June 2013. 

Simple myths and basic maths about greening irrigation. In 5th European 

Association of Agricultural Economists PhD Workshop. Leuven (Belgium), 29-31 

May 2013. 

Myths and Maths of Water Efficiency: An Analytical Framework to Assess 

the Real Outcome of Water Saving Technologies in Irrigation. In 87th Annual 

Conference of the Agricultural Economics Society. Warwick (UK), 8-10 April 2013. 

Can Markets Save Water? Towards a Methodological Framework to 

Develop a Private Drought Insurance System in Semi-arid Basins: An Application to 

a Mediterranean Catchment. In International Water Resource Economics 

Consortium (IWREC) 10th Annual Meeting. Stockholm (Sweden), 26-31 August 

2012. 

Design of optimum private insurance schemes as a means to reduce water 

overexploitation during drought events. A case study in Campo de Cartagena 

(Segura River Basin, Spain). In International Society of Ecological Economics 2012 

Conference – Ecological Economics and Rio+20. Rio de Janeiro (Brazil), 16-19 

June 2012. 

Do drought management plans reduce drought risk? A risk assessment 

model for the Segura River Basin. In International Society of Ecological Economics 
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2012 Conference – Ecological Economics and Rio+20. Rio de Janeiro (Brazil), 16-

19 June 2012. 

Design of optimum private insurance schemes as a means to reduce water 

overexploitation during drought events. A case study in Campo de Cartagena 

(Segura River Basin, Spain). In Vth AERNA Conference. Faro (Portugal), 31 May-2 

June 2012. 

Design of optimum private insurance schemes as a means to reduce water 

overexploitation during drought events. A case study in Campo de Cartagena. In 

86th Annual Conference of the Agricultural Economics Society. Warwick (UK), 16-

18 April 2012. 

Do drought management plans reduce drought risk? A risk assessment 

model for a Mediterranean river basin. In 86th Annual Conference of the Agricultural 

Economics Society. Warwick (UK), 16-18 April 2012. 

Design of optimum private insurance schemes as a means to reduce water 

overexploitation during drought events. A case study in La Campiña (Guadalquivir 

River Basin, Spain). In The Governance of Sustainability. Cambridge (UK), 11-12 

April 2012. 

Development of private insurance schemes as a means to reduce water 

overexploitation during drought events. A case study in Campo de Cartagena 

(Segura River Basin, Spain). In 123rd European Association of Agricultural 

Economists Seminar. Price volatility and farm income stabilization. Dublin (Ireland), 

23-24 February 2012.  

 

2.5 Publications  

 

Chapter 3 gave rise to the following paper: 

Gómez, C.M., Pérez-Blanco, C.D. (under review). Simple Myths and Basic 

Maths about Greening Irrigation. Under review.  

 

Chapter 4 gave rise to the following paper: 
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Gómez, C.M., Pérez-Blanco, C.D., 2012. Do drought management plans 

reduce drought risk? A risk assessment model for a Mediterranean river basin. 

Ecological Economics 76, 42–48.     

 

Chapter 5 gave rise to the following papers: 

Pérez-Blanco, C.D., Gómez, C.M., 2013. Designing optimum insurance 

schemes to reduce water overexploitation during drought events: a case study of La 

Campiña, Guadalquivir River Basin, Spain. Journal of Environmental Economics 

and Policy 2, 1–15. 

Gómez, C.M., Pérez-Blanco, C.D., Batalla, R.J., 2013. Tradeoffs in river 

restoration: Flushing flows vs. hydropower generation in the Lower Ebro River, 

Spain. Journal of Hydrology (in press, available online at 

http://www.sciencedirect.com/science/article/pii/S0022169413006161) 

Pérez-Blanco, C.D., Gómez, C.M. (forthcoming). Insuring water: A practical 

risk management option in water scarce and drought prone regions? Accepted for 

publication in Water Policy.  

Pérez-Blanco, C.D., Delacámara, G., Gómez, C.M. (under review). Water 

pricing and water saving in agriculture. Insights from a Revealed Preferences Model 

in a Mediterranean basin. Under second review in Agricultural Water Management. 

 

Other peer reviewed publications of the doctoral candidate include: 

Gutiérrez, C., Pérez-Blanco, C.D., Gómez, C.M., Berbel, J. (forthcoming). 

Price Volatility and Water Demand in Agriculture. A Case Study of the Guadalquivir 

River Basin (Spain). Accepted for publication in Bournaris, T., Berbel, J., Manos, B., 

Viaggi, D. (Eds.), Economics of Water Management in Agriculture. Science 

Publishers.  

Pérez-Blanco, C.D., Gómez, C.M., del Villar, A. (2011). El riesgo de 

disponibilidad de agua en la agricultura: una aplicación a las cuencas del 

Guadalquivir y del Segura. Estudios de Economía Aplicada 29 (1):333-358 

Pérez-Blanco, C.D., Gómez, C.M., Garrido-Ysete, R. (2010). Cambio 

estructural regional y agua: escasez, dependencia e impactos sobre el tejido 

económico. El caso de Andalucía. Estudios de Economía Aplicada 28 (2):423-446 

http://www.sciencedirect.com/science/article/pii/S0022169413006161
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3 Supply policies for water 

management 

 

In spite of the substantial advances made by water economics in the last decades, 

the comprehension of water management still seems largely influenced by the 

archaic views of John Locke and Francis Bacon, according to which “nature is only 

subdued by submission”. Water policies worldwide, just like those of a couple of 

millennia ago, are usually approached as an engineering problem and are still 

intensive in physical capital. Consequently, since the beginning of the water crisis 

the scarcity of adequate water has been battled through the construction of major 

infrastructures. However, there is abundant evidence that shows that supply 

policies, even if combined with C&C policies, are unlikely to achieve a sustainable 

water use unless they are complemented with (carefully developed) economic 

instruments  (Bratrich and Truffer, 2001; Gómez et al., 2013; Strosser et al., 2013). 

Moreover, in many cases conventional water policies have generated unrealistic 

expectations on the capacity of the system to absorb additional pressures and have 

ended up increasing water demand and aggravating the water crisis. 

 

Among all the Mediterranean countries, Spain is a paradigmatic example of water 

management captured by supply policies. For many decades, economic growth in 

its water scarce and drought prone Mediterranean basins has been closely linked to 

the capacity of public institutions to make increasing amounts of water available to 

users. As a result, the main strategy followed by river basin authorities consisted in 

coordinating the public effort required to supply the water services demanded as a 

result of advances in the many areas of the economy, including population growth, 

urban sprawl, irrigation development, growing manufacturing activities, etc. The 

main objective of water policy, therefore, consisted in finding inexpensive and 

reliable means to meet water demand. Nonetheless, as early as the 1980s it was 

acknowledged that water demand had started to overcome water supply and some 

basins were declared overexploited (BOE, 1986). As a result, this supply-oriented 

modus operandi is currently under transition to a new one aimed at making all water 

services used by the economy consistent with the preservation and adequate 

protection of the water bodies (i.e., to decouple growth from increases in water 
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supply). However, even during this transition period some large water works have 

been built and others have been expanded. This includes dams, water transfers, 

subsidies to drill wells, the modernization of transportation, distribution and irrigation 

networks and more recently the development of non-conventional water sources, 

including treated wastewater and, especially, desalinated water. 

 

Spain is among the countries with the most regulated rivers in the world. Total dam 

storage capacity has been multiplied by 50 since the 1920s and now equals 55 324 

million cubic meters (or cubic hectometers, hm
3
), 51% of the average annual runoff 

of 109 488 hm
3
 (EEA, 2009; MAGRAMA, 2013a). This continued large investment 

has gradually reduced the marginal return of each project. For example, Gómez 

(2009) showed that while the total hydropower installed capacity grew by 145% from 

1928 to 2012, average hydropower production remained very similar. It seems 

therefore that these water works aim at granting a minimum output and reducing 

variability instead of making additional profits.  

Water policy in Spain is also rich in water transfers. Both intra and inter-basin water 

transfers have been implemented for centuries, although the latter usually generate 

the most relevant socioeconomic conflicts (ERBA, 2008; SRBA, 2008; TRBA, 2008). 

Only the Ebro River Basin comprises nine inter-basin water transfers, of which two 

of them supply water to the urban areas of Tarragona and Bilbao (ERBA, 2008). 

However, the largest and also the most conflictive water transfer in Spain is the 

Tagus-Segura Water Transfer, a major diversion project with the capacity to transfer 

up to 1 000 hm
3
/year to the Segura River Basin from the Tagus headwaters located 

242 km away. Since its opening in 1978, this infrastructure has nonetheless been 

working much below its legal capacity of 600 hm
3
/year and has transferred in 

average 329.3 hm
3
/year (SRBA, 2008); in addition, it is said to have passed on 

water scarcity problems to the Tagus River Basin (TRBA, 2008) and has been the 

cause of a major conflict between the regions of Castile-La Mancha (NUTS2: ES42) 

(largely belonging to the Tagus River Basin District) and Murcia (ES62) (largely 

belonging to the Segura River Basin District). The failure of this transfer to deliver its 

expected outcome is one of the reasons explaining the derogation of the polemic 

Ebro Water Transfer, which projected the transfer of 1 050 hm
3
/year of water from 

the Ebro River Basin to various areas in the Spanish Mediterranean coast in the 

framework of the Spanish Hydrological Plan (MIMAM, 2000).  

The Ebro Water Transfer was substituted by the A.G.U.A. Programme (standing for 

Actuaciones para la Gestión y la Utilización del Agua, or Actions for the 
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Management and Use of Water). This initiative also projected an increase of 1 050 

hm
3
/year in water supply in water scarce Mediterranean areas, but this time mostly 

through the use of desalination plants. The programme forecasted the construction 

of 20 desalination plants and the modernization of the existing ones at a cost of €3 

900 million (BOE, 2005a). Since A.G.U.A. relied on saltwater instead of freshwater, 

this project did not put additional pressures over continental water bodies. However, 

while the (financial) cost of conventional water sources in Mediterranean areas is in 

average below 0.1 €/m
3
, that of desalinated water is around 1 €/m

3
 (Maestu and 

Villar, 2007). As a result, desalinated water needed to be heavily subsidized in order 

to guarantee the minimum demand that would make desalination plants financially 

viable (desalinated water for agricultural production in southeastern Spain is sold at 

0.36 €/m
3
)
9
. Even so, desalination capacity is being used below 20% in many areas 

(SRBA, 2008). More recently, the high financial costs of these plants and the 

budgetary constraints resulting from the financial crisis have increased the 

opportunity costs and threatened the viability of this programme. In 2012 the 

Spanish Ministry of Agriculture and Environment negotiated a €500 million loan 

used to rescue the public water company that manages the production and supply 

of desalinated water in Southeastern Spain, Acuamed. In 2013, further budgetary 

pressures have forced public institutions to negotiate an additional €700 million loan 

(GWI, 2013).  

Other relevant supply policies comprise the subsidies for drilling new wells (which 

triggered the aquifer depletion witnessed in many areas in southeastern Spain since 

the 1960s) (Sevilla et al., 2010), and wastewater treatment plants (which 

nonetheless are able to provide a very limited supply, estimated between 50-60% of 

the urban water demand) (Maestu and Villar, 2007). But the most ambitious supply 

policy implemented in Spain in recent years has been the irrigation modernization 

project known as Plan Nacional de Regadíos 2000-2008 (National Irrigation Plan, 

PNR). 

 

Irrigated agriculture has historically played a key economic role in Mediterranean 

rural areas. Even today, irrigation represents the only real pathway towards 

development in many of these areas. Without irrigated agriculture, these areas 

would face depopulation, the abandonment of the land (with potentially negative 

environmental effects) and a great imbalance in the population distribution. Water 

                                                           
9
 This is not to say that the use of desalinated water is not viable. Actually, the total 

economic costs of conventional water sources in overexploited areas of the Southeast are 
likely to be very close to (or even above) those of desalinated water (SRBA, 2008).  
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scarcity, being especially intense in the most productive agricultural districts of the 

Mediterranean, is currently the main threat to the subsistence of irrigated 

agriculture
10

 (OECD, 2010). The Spanish PNR aimed to help the irrigation-based 

agriculture to face all these challenges.  

The PNR invested €7 368 million over the period 2000-2008 to modernize 2 244 

570 ha of irrigated lands across Spain, and planned a reduction in water 

withdrawals of 3 662 hm
3
/year (MAGRAMA, 2013b). From a technical perspective, 

this project achieved an overwhelming success: while in 2002 gravity irrigation 

represented 40.5% of irrigated surface, drip irrigation 34.3% and sprinkler irrigation 

18.4% (other irrigation systems accounted for 6.9% of irrigated lands), by 2009 the 

more efficient drip irrigation already represented 48.6% of irrigated surface, 

replacing both gravity (32.3%), sprinkler (15%) and other irrigation systems (4.1%) 

(Lopez-Gunn et al., 2012; MAGRAMA, 2013b).  

However, according to some ex-post evidence, the PNR did not perform as 

expected in terms of water savings/conservation (Corominas, 2010; Gutierrez-Martin 

and Gomez, 2011; Rodríguez-Díaz et al., 2012). There are some reasons that may 

explain this outcome. First of all, the most relevant opportunities to save water 

through technical efficiency gains
11

 in Spain are located in areas where water is less 

scarce and therefore less valuable. In turn, the opportunities to save valuable water 

are increasingly located in places where shifting to more efficient devices is not 

profitable due to the higher operation costs (e.g., energy demands) and more 

complex management practices (Corominas, 2010). On top of that, it has been 

shown that after an irrigation modernization water demand may “rebound” (i.e., 

increase). According to some authors, this may be the case of some areas in 

                                                           
10

 This menace has been recently aggravated with other problems, including decreasing 
subsidies, compliance with a more restrictive environmental legislation, price instability 
and, at the same time, the need for farmers to produce competitive goods in a global 
market. 
11

 Water is often linked to the idea of efficiency. Nonetheless, water efficiency is a rather 
vague concept that needs further clarification. Specifically, it is important to differentiate 
between technical and economic or allocative efficiency. Up to this point, with “efficiency” 
we were referring to the allocative efficiency concept. In economics, the allocative 
efficiency is reached when the social surplus is maximized with no deadweight loss, i.e., 
when the value that the society assigns to the outputs produced is larger than the value 
that the society assigns to the inputs consumed. Here, though, we are referring to the 
technical efficiency, i.e., the effectiveness with which inputs are used to produce an output, 
or alternatively the ratio of outputs (in economic terms) to inputs (water use). Although the 
difference may seem subtle, it does matter. For example, better irrigation technologies 
increase technical efficiency, but they do not guarantee steady or declining resource use. As 
a result, rebound effects may appear, offsetting the technical efficiency gains and possibly 
generating an allocative ineffiency. 
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southern Spain (Gutierrez-Martin and Gomez, 2011; Rodríguez-Díaz et al., 2012). 

This inevitably raises the following question: why would water demand increase 

after an increase in the technical efficiency?  

Water is fugitive and ultimately flows under gravity (Zaag and Savenije, 2006). Since 

water is rarely fully consumed by a single user
12

, what is left can be reused by 

another user located downstream. This implies that a single molecule of water can 

have multiple and sequential uses, thus generating multiple and sequential 

economic values. However, it is very difficult to keep track of every single molecule 

of water, and consequently it is difficult to enforce property rights over return flows. If 

technical efficiency is increased, consumptive uses also increase and the whole 

water dynamics may be significantly altered. Authors have identified two effects that 

may result in a “rebound” of irrigation modernization plans like the PNR: an increase 

in water use due to the shift to more water intensive crops and the increase in use 

during dry periods, known as the Jevons’ Paradox (Gómez, 2009); and an increase 

in water depletion due to lower water returns, known as the Hydrological Paradox 

(Pfeiffer and Lin, 2012; Rodríguez-Díaz et al., 2012; Ward and Pulido-Velazquez, 

2008). While the latter is widely known and cited in the scientific literature, there is 

no methodological framework that identifies under what conditions a Jevons’ 

Paradox will appear.  

 

The next paper, prepared by the doctoral candidate and the Prof. Carlos Mario 

Gómez Gómez, presents an analytical framework that identifies the preconditions 

under which a Jevons’ Paradox may occur. The paper is entitled Simple Myths and 

Basic Maths about Greening Irrigation, and is currently under review. Previous 

versions of this paper have been presented in the 87
th

 Annual Conference of the 

Agricultural Economics Society in Warwick, UK (8-10 April 2013); in the 5th 

European Association of Agricultural Economists PhD Workshop in Leuven, 

Belgium (29-31 May 2013); and in the conference New Directions in the Economic 

Analysis of Water in Lisbon, Portugal (18-19 June 2013). 

 

 

                                                           
12

 Water use refers to the amount of water demanded by users. The share of water use 
that either evaporates or becomes contaminated is consumed (i.e., water consumption) 
(Kohli et al., 2010). The water that remains in the system can still be incorporated into 
other water use/s.  
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Abstract: Greening the economy is mostly about improving water governance and not only 

about putting the existing resource saving technical alternatives into practice. Focusing on the 

second and forgetting the first risks finishing with a highly efficient use of water services at the 

level of each individual user but with an unsustainable amount of water use for the entire 

economy. This might be happening already in many places with the modernization of irrigated 

agriculture, the world’s largest water user and the one offering the most promising water 

saving opportunities. In spite of high expectations, modern irrigation techniques seem not to be 

contributing to reduce water scarcity and increase drought resiliency. In fact, according to the 

little evidence available, in some areas they are resulting in higher water use. Building on basic 

economic principles this study aims to show the conditions under which this apparently 

paradoxical outcome, known as the Jevons’ Paradox, might appear. This basic model is 

expected to serve as guidance for assessing the actual outcomes of increasing irrigation 

efficiency and to discuss the changes in water governance that would be required for this to 

make a real contribution to sustainable water management. 

 

Keywords: Jevons’ Paradox; Rebound effect; Agricultural economics; Water economics; 

Irrigation efficiency. 

JEL classification: Q15, Q18, Q25, Q51, Q58. 
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1. INTRODUCTION 

 

Climate change, water supply limits, continued population growth and the improvement of 

living standards brought about by development are making water scarcity one of the most 

pressing environmental problems worldwide. Among all the competing uses, agriculture is the 

world’s largest water user and is often believed to be wasteful. Consequently, policy makers 

have recently called for measures to save water in this sector. Among these measures, subsidies 

to increase irrigation efficiency (or technical efficiency, i.e., the effectiveness with which water 

is used at a plot level to produce agricultural goods) have rapidly become widespread (OECD, 

2008)
1
. It is widely believed that more efficient irrigation technologies save water, making it 

available for other productive uses and also for the environment. However, technical options to 

reduce water use and withdrawals
2
 are but a social opportunity that might be wasted if no 

other measures necessary to improve water governance are set (e.g., enforcing property rights, 

water pricing and metering, etc.). In fact, recent empirical work shows that even when the 

desired technical shift is successfully implemented, it might end up reinforcing the already 

unsustainable trends in water use (Pfeiffer and Lin, 2012; Rodríguez-Díaz et al., 2012). There are 

two arguments that help to explain this apparently paradoxical outcome: i) the hydrological 

paradox, based on the hydrological assessment of irrigation efficiency increases; and ii) the 

Jevons’ Paradox, grounded on economic theory and on which the present work focuses. 

The hydrological paradox argument comes from the hydrological study of the water balance
3
 

within a basin. Take for example a traditional irrigation system. Due to its low technical 

efficiency, a large share of the water used does not effectively contribute to satisfy 

evapotranspiration (i.e., the consumptive use of water or water consumption) and is therefore 

“lost”. But much of this water is later on recaptured and returned to the watercourse, and is 

still available for alternative uses. However, after an increase in the irrigation efficiency, 

although water use may actually fall, water availability for other uses may decrease through 

increased consumptive use, reduced return flows and lost aquifer seepage. This hydrological 

paradox can be found for example in Jensen (2007), Rodríguez-Díaz et al. (2012), Scheierling et 

al. (2006), Ward and Pulido-Velazquez (2008). 

The Jevons’ Paradox argument comes from the economic study of water: without any 

complementary policy, an increase in irrigation efficiency makes water a more productive input 

                                                           
1
 Government subsidies for irrigation modernization are common across OECD 

countries, covering the totality or part of the irrigation modernization costs. This is the 

case for example of Australia, Austria, Mexico, the Netherlands, Portugal or Spain 

(OECD, 2008).  
2
 Water withdrawal is water removed from its source for a specific use, while water 

use refers to the amount of water demanded by users. The two flows are not the 

same because of leaks. In this paper we assume that there is no change in the 

transportation efficiency and we will refer directly to water use.  
3
 In hydrology, a water balance equation can be used to describe the flow of water in 

and out of a system. A general water balance equation is: 

 

Where   is precipitation,   is runoff,   is evapotranspiration and   is the change 

in water storage (in soil or the bedrock). 
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and may result in an increase, rather than a reduction, in water use

4
. The idea that under 

certain conditions an increase in the irrigation efficiency may lead to an increase in the use of a 

resource is well known in economics at least since the XIX
th

 century and has received different 

names, such as the Khazzoom-Brookes Effect or the Jevons’ Paradox (Alcott, 2008, 2005; 

Khazzoom, 1989). There is considerable interest in determining under what conditions this 

paradox appears, and much research is ongoing in fields such as energy or transportation 

(Brookes, 1990; Greene et al., 1999; Hong et al., 2006; Vringer et al., 2007). Surprisingly, its 

study in the field of water economics is relatively new and mostly based on ex-post empirical 

results (Ding and Peterson, 2006; Gutierrez-Martin and Gomez, 2011; Lecina et al., 2010; 

Pfeiffer and Lin, 2012). There is no methodological framework that explains under what 

conditions an increase in the irrigation efficiency will result in a Jevons’ Paradox. Therefore, it is 

difficult to predict ex-ante the impact that an increase in the irrigation efficiency will have over 

water use. This knowledge gap is shocking if we consider the prominent role that has been 

assigned to the modernization of irrigation devices in drought and water scarcity strategies 

worldwide, as well as the high costs of these projects in a time of financial crisis. This paper 

wants to help bridge this gap. In the following pages we present an analytical framework to 

discriminate the determinants of the emergence of the Jevons' paradox. This study may serve 

as a methodological guidance for empirical papers analyzing the issue. 

 

2. ANALYTICAL FRAMEWORK 

 

The change in water use following an increase in the irrigation efficiency depends on three 

opposing effects, namely, a technical effect, a cost effect and a productivity effect. 

First of all, an increase in irrigation efficiency will reduce the amount of water required to 

obtain the same products as before (technical effect). Accordingly, water use could be reduced 

in the same percentage as the increase in irrigation efficiency, provided that the farmers obtain 

the same crops as before. This over-simplistic scenario, where no other effects are considered, 

is the hidden assumption of many studies assessing the expected water savings from irrigation 

modernization plans (a good example of this can be found in the Spanish Irrigation Plan
5
). 

However, the technical shift means also a change in the incentives in place and farmers will not 

normally continue producing the same products as before. Two additional effects over water 

demand need to be considered. 

                                                           
4
 There is a third possibility: neither an increase, nor a decrease, but rather no change. 

That is, the same amount of water is used as before; none is saved for (1) other uses 

or (2) the natural environment. For the purpose of rejecting irrigation efficiency 

increases as a water-saving measure it is enough to show that there is no change in 

water use, i.e. no savings. 
5
 The Spanish Irrigation Plan (Plan Nacional de Regadíos, PNR) 2000-2008 was a large 

investment effort with the aim of reducing agricultural water use. This Plan was 

complemented with the Shock Plan 2006. Both plans invested 7,368 M EUR to 

modernize 2,244,570 ha of irrigated lands and forecasted a reduction in water use of 

3 662 hm3/year (MAGRAMA, 2013). However, since the implementation of the PNR, 

water use from agriculture in these areas are far from decreasing (Gutierrez-Martin 

and Gomez, 2011; Rodríguez-Díaz et al., 2012). 
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The second effect stems from the higher water application costs associated to more efficient 

irrigation technologies and, similar to the first one, reduces water use (cost effect). The increase 

in the water application costs is largely explained by the higher energy costs of the more 

sophisticated irrigation devices (e.g., drip irrigation) as compared to traditional devices (e.g., 

gravity irrigation) (Soto-García et al., 2013). For example, recent empirical work has found that 

the intense irrigation modernization in Spain has increased energy consumption in irrigated 

agriculture by 1,800% since 1950 (Corominas, 2010).  

The third effect refers to the fact that more efficient irrigation systems make water more 

productive (productivity effect). Therefore, for a given amount of water use, the last drop 

generates a larger agricultural product than before and, for this reason, farmers would probably 

be willing to use more water than before. This productivity effect may have a large impact over 

water use and result in a Jevons’ Paradox, though it has been traditionally ignored in the 

assessment of irrigation modernization plans. 

Summing up, the increase in irrigation efficiency leads to three different effects making possible 

to obtain the same production with less water use and higher water application costs, but also 

with higher water productivity. The relevant question we want to solve is what would be the 

combined effect of the technical shift over water use. In other words, under what conditions an 

increase in the technical efficiency with which water is used in agriculture will lead to an 

increase in water use and therefore to a Jevons’ Paradox. In order to answer this question, we 

develop a methodology in two stages: in the first one we obtain water demand as a function of 

irrigation efficiency; in the second one, we assess the impact of an increase in the irrigation 

efficiency over water use, identifying the determinants of the incidence of each of the three 

effects above. 

 

2.1. The water demand function 

Water used by farmers ( ) is bought at a unitary price, P, (for example, per cubic meter of 

water used) and applied to the crops incurring in a unitary water application cost, . 

Therefore, the marginal cost of water use ( ) is equal to: 

       [1] 

Where  is an increasing function of the technical efficiency  ( ) of the irrigation 

devices in place
6
, since more sophisticated techniques are costlier ( ) (Corominas, 

2010; Soto-García et al., 2013).  

The amount of water that effectively satisfies the agronomic water needs of the crops, or water 

consumption ( ), is only a fraction  of the total water use ( ). Therefore, to consume one 

unit of water, farmers use  units of water. Accordingly, the marginal cost of the water 

consumed ( ) is equal to:  

                                                           
6
  measures the technical efficiency of the irrigation technology in place with, for 

example, typical values of 0.5 for traditional gravity, 0.7 for sprinklers and 0.9 for drip 

devices. 
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      [2] 

Water consumption serves to produce crops ( ) with a decreasing marginal productivity: 

, with  and    [3] 

Farmers will demand water up to the point where the marginal productivity of the water 

consumed ( ) equals its marginal cost ( ): 

       [4] 

Accordingly, the water demand function can be expressed as: 

      [5] 

 

2.2.  What happens with water use after an increase in the irrigation efficiency? 

The answer to this question lies formally on the response of water use ( ) to an increase in the 

irrigation efficiency ( ), that is to say, on the sign of the following derivative: 

        [6] 

A positive sign (i.e., ) means that more water is used after an increase in the irrigation 

efficiency, and thus that the Jevons’ Paradox applies.  

Provided that following the irrigation efficiency increase there is no complementary pricing 

policy and thus water prices remain constant ( )
7
, the effect of an increase in the 

irrigation efficiency over water use can be obtained from the demand function [5] as follows: 

       [7] 

 That is to say: 

     [8] 

Which, after multiplying both sides by , can be transformed into the efficiency elasticity of 

water use ( ):    

     [9] 

                                                           
7
 This is the case in most of the irrigation modernization plans, such as those of Spain, 

Portugal, Mexico or Australia (OECD, 2008).  
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Where:   

  is the efficiency elasticity of water use. 

 is the efficiency elasticity of the water application cost. 

 is the efficiency elasticity of the marginal productivity of 

water consumption. 

 

Equation [9] contains the three effects identified above, namely: 

· A technical effect, meaning that increasing irrigation efficiency by one percentage 

point would reduce water use by one percentage point, a reduction in water use 

proportional to the relative increase in irrigation efficiency (indicated by ).  

· A cost effect, meaning that the higher application cost of water resulting from a more 

efficient irrigation technique will lead to a reduction in water use. This is measured by 

. The incidence of this effect over water use depends on two 

ratios: the first ratio  is the quotient of the efficiency elasticity of the water 

application cost ( ) to the efficiency elasticity of the marginal productivity of water 

consumption ( ); and the second ratio  is the quotient of the application 

cost  to the unitary water costs ( ).  

· A productivity effect, meaning that the increase in water productivity will lead to an 

increase in water use. This is measured by  and its importance depends on 

the vale of .  

 

3. CONCLUSIONS 

 

In this paper we have developed an analytical framework that may be used to predict ex-ante 

the likelihood of a Jevons’ Paradox in irrigated agriculture. This study may serve both as 

guidance for future empirical papers and as an analytical framework to better understand the 

opposing effects existing behind an increase in the irrigation efficiency.  

Subsidies to increase irrigation efficiency have rapidly become a widely used policy in water 

stressed countries as a means to reduce water use. However, the common belief that considers 

more efficient irrigation devices as synonymous of water saving technologies is rather naive as 

it tends to ignore the entire physical, economic and institutional framework where these 

alternatives are implemented. Actually, making a real contribution to reduce water pressures 

out of a technical shift is a difficult task. To start with, water availability may decrease through 

increased consumptive water use, reduced return flows and lost aquifer seepage, leading to a 
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Hydrological Paradox. More importantly, if the productivity effect resulting from a better 

irrigation technology is large enough, total water use may even increase (Jevons’ Paradox).  

Consider for example the following extreme, but still likely, case. Assume an agricultural area 

where energy is heavily subsidized and the more efficient irrigation devices do not increase the 

cost of applying water (for the sake of the argument, let us assume that ).  In addition 

to that, water is scarce in such a way that most of the time there is idle irrigation capacity and 

the technical shift will allow higher water consumption at the same cost as before ( ). 

Then the productivity effect is higher than one  and will overcome the technical 

effect ( ). In such a situation increasing the irrigation technology will lead to a Jevons’ Paradox 

and, contrary to the common belief, water availability will decrease and the real outcome of the 

presumed water saving technologies will worsen the already unsustainable use of water. The 

intuition behind the example shows that water technologies might be less effective precisely in 

the situations where water savings are more needed; that is to say, in water stressed areas with 

subsidized infrastructures and low water and energy prices (this is the case in many 

Mediterranean countries like Australia, Portugal or Spain). 

If the policy goal is simply to use or consume less water for irrigation, there are other measures 

for doing this. They are direct, inexpensive and by definition effective: caps and/or taxes. 

However, the actual objective of irrigation modernization policies is twofold: reducing water 

use  without impairing agricultural welfare. More efficient technologies may help to attain this 

dual objective, but they should not be used as a panacea and need to be part of a 

comprehensive policy mix towards a sustainable water management. For example, the 

technical shift can increase farmers’ income, and this may be used as an opportunity to agree 

upon a reduction in energy subsidies and/or the implementation of metering and volumetric 

tariffs. This policy mix, rather than a simple technical shift, can find the way to make the 

reduction of water scarcity compatible with the maintenance and eventual improvement of 

farmers’ welfare. Technical options are only opportunities; the real challenge in the transition 

towards a sustainable water use relies on building better institutions and putting effective 

incentives in place. 
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4 Command and Control policies for 

water management        

 

In the last few decades, water resources management has become a problem that 

can no longer be treated exclusively from the technical standpoint (i.e., through 

water supply policies). The unparalleled increase of water withdrawals has forced 

policy makers to implement some measures concerning also water demand. This 

has been done through a more intensive use of Command and Control (C&C) 

policies. C&C policies are not new in water policy, and they have been used as a 

complement to supply policies for centuries. However, in the last decades they have 

evolved from simple rules that were only casually enforced by law to more complex 

and sophisticated water management plans, fully supported by regional, national 

and/or supra-national institutions (Pahl-Wostl et al., 2010).  

The mechanism called C&C refers to a set of regulatory instruments that specify a 

particular type of behavior that agents have to comply with. Traditionally, the 

intended behavior was decided unilaterally and enforced by legal disciplining 

through the use of the power of the state. More recently, many institutions worldwide 

have opted for a more integrative approach in which the objectives of the C&C 

policies are designed through a social agreement including all the agents affected, 

although decisions are ultimately enforced by the public sector (EC, 2008, 2007; 

NDMC, 2013).  

 

In the EU, complex and sophisticated C&C policies have proliferated during the last 

decades. Initially, C&C policies at a Community level aimed towards defining 

minimum standards for water quality across the EU. We can identify two milestones: 

the Drinking Water Directive (EC, 1991) and the Wastewater Directive (EC, 1998). 

Although they have performed relatively well, their implementation has been (and 

still is) challenging mainly because of the financial and planning aspects related to 

major infrastructure investment such as sewerage systems and water treatment 

facilities (EC, 2013; KWR, 2011). More recently, C&C policies have also addressed 

the challenges posed by floods (EC, 2007) and droughts (EC, 2008). Although it is 

still early to assess the outcomes of these policies, some authors have already 
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claimed that these policies should be defined in a less rigid, more adaptive way to 

be successful in the long and even in the medium term (Pahl-Wostl et al., 2010). At 

a national level, C&C policies have also played a significant role, either through the 

transposition of Community Directives or through the development of 

complementary C&C policies. For example, in the overexploited Segura River Basin 

in Spain the allocation of new water rights for irrigation was prohibited by Royal 

Decree in 1986
13

 (BOE, 1986). Another example can be found in the rigid norms 

that regulate the Tagus-Segura Water Transfer (BOE, 2001, 1985, 1980). 

From the perspective of an omniscient and omnipresent state, C&C policies appear 

enough to achieve the objectives of water policy. However, in reality the effective 

implementation of these regulations presents a series of difficulties. The costs of 

enforcing C&C policies depend on the economic incentives towards non-compliance 

and on the complexity of the C&C policy. The latter is of special relevance in the 

case of water, since the status of the water resources is the result of the action of 

multiple agents, and this makes complex to command and control all the factors 

involved to achieve the desired objectives (including those to impose law-

enforcement mechanisms which require structures to inspect and apply fines and 

penalties, with increasing difficulties because of the magnitude of the problem). This 

is particularly true when the system is operating under critical situations of water 

stress (multiple sources of point pollution, overexploitation, etc.) that increase the 

marginal value of water and strengthen the incentives towards non-compliance 

(Porto and Lobato, 2004). In addition, C&C policies are often non-flexible and lack 

adaptive capacity (Pahl-Wostl et al., 2010). This is due to the fact that C&C policies 

either ignore uncertainties or assess them quantitatively in a way that ignores the 

non-linear changes that are making surprise and crisis increasingly common in 

many Mediterranean river basins worldwide (e.g., climate change). Consequently, 

C&C policies may be effective only for roughly stable systems with reliably recurring 

phenomena. 

The relevant shortcomings associated with the implementation of C&C policies in 

combination with supply policies have made researchers to question the adequacy 

of the current paradigm
14

 for water management. In fact, some have argued in favor 

of a looser water management approach that does not aspire to comprehensive 

                                                           
13

 Although in practice this norm has been seldom enforced (WWF, 2006). 
14

 By paradigm we refer to the “intellectual and operational environment within which 
scientists ’do’ science. It shapes the nature of problems to be addressed as well as the 
methods to be used and the interpretive lens through which the legitimacy and utility of 
findings are judged” (Pahl-Wostl et al., 2010). 
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command and control (Bucknall, 2006; Mayntz, 1998; Pahl-Wostl et al., 2010). In 

any case, this does not mean that C&C policies should be removed from the water 

policy mix; rather the contrary, both supply policies and economic incentives are 

inherently linked to C&C policies, which are necessary in order to define a common 

legal framework in which agents interact and to set a general direction in water 

policy for the achievement of collectively agreed goals. This is the case of Drought 

Management Plans (DMPs): although per se and even in combination with supply 

policies DMPs may be unable to attain the objectives of the WFD, they are a 

prerequisite for the development of efficient and effective water markets and drought 

insurance systems that may lead to a more sustainable water use.  

 

DMPs are inspired in the drought contingency plans implemented in the US since 

the ‘80s and thus follow similar rules (NDMC, 2013). Basically, DMPs define the 

precise thresholds of possible drought situations and set the water constraints that 

will come into force in each of these cases, with the aim of guaranteeing water 

supply to priority uses. Drought thresholds are obtained from the historical 

assessment of water supply, while the extent of water constraints varies from one 

basin to another and depends largely on the ratio between water demand and water 

supply, being more restrictive in overexploited basins and focusing on agricultural 

uses (the water use with the lowest priority) (EC, 2008). As a result, the declaration 

of a drought will automatically reduce, in a predictable amount, the quantity of water 

delivered to the irrigation system from publicly controlled water sources.  

In spite of being relatively new and voluntary, DMPs have rapidly spread across 

Southern EU countries such as France, Italy, Portugal and Spain
15

. In particular, 

Spain has pioneered the adoption of DMPs and currently every inter-regional 

(NUTS2) river basin in the country has already approved its DMP. This is particularly 

shocking if we consider that there are no assessments available on the potential 

impact of DMPs over the environment and over the productive activities exposed to 

water restrictions. Since DMPs focus exclusively on surface water and do not 

develop any instrument to regain control over loosely controlled and overexploited 

aquifers, we may expect that during droughts the pressures over surface water are 

at least partially transferred to groundwater through illegal abstractions. This effect 

                                                           
15

 Unlike other water management instruments such as River Basin Management Plans, 
DMPs are not prescriptive. However, apart from these set of Southern EU countries, DMPs 
have been also implemented in Finland, the Netherlands and the UK. 
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was not considered in the development of DMPs and its impact is basically 

unknown.  

 

The following paper, prepared by the doctoral candidate and the Prof. Carlos Mario 

Gómez Gómez, intends to help bridge this gap. The paper develops a stochastic 

methodology to estimate the expected water availability and the potential for illegal 

groundwater abstractions in agriculture resulting from the decision rules of the 

recently approved DMPs in Spain. This method is illustrated with an application to 

the Segura River Basin. The paper is entitled Do drought management plans reduce 

drought risk? A risk assessment model for a Mediterranean river basin, and was 

published in Ecological Economics in the year 2012. Different versions of this paper 

were presented in the 86th Annual Conference of the Agricultural Economics 

Society in Warwick, UK (16-18 April 2012) and in the International Society of 

Ecological Economics 2012 Conference – Ecological Economics and Rio+20 in Rio 

de Janeiro, Brazil (16-19 June 2012). 
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Groundwater resources are traditionally overexploited in arid and drought-prone regions with profitable ir-

rigated agriculture, and the depletion of this groundwater results from a combination of the physical scarcity

of surface sources and the lack of effective control of use rights on the part of water authorities. This is the

case in the Segura River Basin of southern Spain. As a result, drought risks and structural deficits have steadily

increased over the last 50 years. The Drought Management Plan recently approved by the Segura River Basin

Authority aims to enforce more stringent water supply restrictions from surface sources, but the plan does

not include any explicit policy to handle illegal groundwater abstraction. By using a stochastic risk assess-

ment model, this paper shows that the implementation of the drought plan will increase the expected irriga-

tion deficits of surface water and can, paradoxically, lead to higher drought and aquifer depletion risks than

the traditional rules that the new plan replaces.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many semiarid and drought-prone regions have significant com-

petitive advantages for irrigated agriculture because the land is abun-

dant and cheap and few alternative uses for the land exist.

Furthermore, solar radiation is guaranteed and, apart from the abun-

dance of cheap labour, many of these areas are located near high-

demand markets. In fact, everything except water seems to be in

place for developing a prosperous agricultural sector. In this context,

water for irrigation can become the critical production factor that de-

termines the viability of, and returns from, the agricultural sector.

This is the case in many European Mediterranean regions where the

survival of a competitive and highly productive agriculture critically

depends on the ability to satisfy the water demands of a water-

intensive irrigation system.

In these regions, although the water demand for irrigation is high,

water property rights are poorly defined and enforced. Therefore,

during frequent droughts, incentives are in place to use more water

than the amount provided from publicly controlled sources. In fact,

when current demands cannot be handled by publicly controlled

sources, farmers have powerful incentives to switch to the more de-

pendable, mostly uncontrolled groundwater sources. Uncertainty,

coupled with the legacies of past management actions, often leaves

decision makers few options other than to reinforce the current tra-

jectory of the system (Anderies et al., 2006). The resulting overexploi-

tation of the aquifers may reduce the robustness and resiliency of the

system and its ability to cope with future droughts, thus leading to a

vicious circle of increasing risk, vulnerability and water scarcity

(Anderies, 2005; Anderies et al., 2004; Anderies et al., 2006; Holling,

1973; Perrings, 1989; Ruttan, 2002).

Some important measures have recently been taken to tackle the

structural problem of recurrent droughts in the European Union. In

what was perceived as an advanced replacement of past emergency

responses by the apparently more appropriate planned and anticipat-

ed risk management response, several river basin authorities from

Spain, the UK, Portugal, the Netherlands and Belgium have recently

approved their respective Drought Management Plans (DMP) (EC,

2008). Basically, for the case of drought events, these plans establish

more stringent constraints to access to publicly provided water

while guaranteeing priority uses, such as drinking water, and ensur-

ing minimum environmental services. As a result, the declaration of

a drought will automatically reduce, in a predictable amount, the

quantity of water delivered to the irrigation system from publicly

controlled water sources. The DMP defines the precise thresholds of

possible drought situations and sets the water constraints that will

come into force in each of these cases (EC, 2008). For example, in
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the Segura River Basin in Spain, a four-stage classification system is

used (normality, pre-alert, alert and emergency). In the case of an

emergency, an optimistic2 50% of planned irrigation resources will

be conceded in an attempt to guarantee, as highest priority, the sur-

vival of ligneous crops (although water distribution can be revised

by the local authorities). Less stringent water constraints are estab-

lished for alert (75%) and pre-alert levels (90%) (CHS, 2010b).

The plans reduce, de jure, the water supply during drought events.

However, neither the DMP nor the water authorities introduce any

instrument to handle the illegal abstraction of groundwater.3 The ille-

gal abstraction of groundwater is a major cause of the increased scar-

city of water and drought risk in arid and semiarid catchments and

also represents an important limit to the ability of the water authority

to reduce water use during droughts. In fact, the imperfect enforce-

ment of property rights over groundwater use in several European

Mediterranean basins raises some serious doubts about the effective-

ness of the DMP. Reductions in water supply from controlled sources,

although proven efficient regarding surface water, are more difficult

to enforce regarding legal and illegal groundwater sources (CHS,

2010a; Llamas, 2007). As has happened in the past, farmers may at-

tempt to use informal and more reliable groundwater to compensate

for the lack of formal surface water. Under the existing drought man-

agement rules, aquifers can be considered an insurance against

drought,4 making drought risk equivalent to groundwater depletion

risk.

Controlling property rights is a necessary condition for managing

the collective challenge of water scarcity and drought risk. The main

hypothesis in this paper is that when water property rights are not

perfectly enforced, making the formal water supply contingent on

drought levels can paradoxically worsen both the water deficits and

the risk of drought. To test this hypothesis, we develop a methodolo-

gy to compare and assess the water supply deficits resulting from two

alternative drought responses. In the first case, the baseline response

results from the traditional decision rules historically applied in the

basin. In the second case, the counterfactual response stems from

the decision rules of the recently approved DMP.5

The basic conclusion of this paper is that if the new decision rules

are not complemented by proper enforcement of water use rights,

they will lead to increased water deficits and will reinforce the exist-

ing incentives to increase the depletion of the largely uncontrolled

groundwater resources

The paper is structured as follows. In Section 2, we introduce the

area where the case study is applied, the Campo de Cartagena agricul-

tural district in the Segura River Basin (Spain). Section 3 presents the

risk assessment model, and Section 4 presents and discusses the re-

sults obtained under the two alternative decision rules. Section 5 con-

cludes the paper.

2. Background for the Case Study: Campo de Cartagena, Segura

River Basin (Spain)

Because most of the variables involved are site- or crop-specific,

such as rainfall, water demand, water supply and risk exposure, we il-

lustrate each step of the model with the results for the particular case

of the ligneous crops in the Campo de Cartagena agricultural district

in the Segura River Basin (SRB).6

The SRB is a semi-arid water scarce basin exposed to an increased

drought risk, and it is characterised by an imperfect enforcement of

water use rights. For example, in 2008, according to the rainfall-

runoff models used by the water authority, the average household,

manufacturing industry and agriculture demand was estimated to

be 1.9 billion cubic metres per year (1900 million cubic metres or

hm3, 85% of which was from irrigated agriculture), whereas the aver-

age renewable resources amounted to only 0.75 billion cubic metres

(CHS, 2010a, 2011). These data thus yield a water exploitation

index greater than 2.5.7 Indeed, apart from the transfer of water

from the Tagus River Basin, which has never accounted for more

that 20% of the Segura water demand,8 strong evidence (CHS,

2010a, 2011; WWF, 2006) suggests that the existing water supply

deficit of the last several decades has been effectively covered by

using the mostly uncontrolled groundwater sources.9 10 Rather than

enforcing property rights by closing illegal mills, the traditional re-

sponse has been to tolerate offenders11 (CHS, 2010a; Llamas, 2007).

Not surprisingly, the drought risk has increased along with the in-

crease in water scarcity, and as the evidence presented in this paper

shows, under the current water supply and demand, a drought can

occur in one of every six years.

Campo de Cartagena, in the SRB, is an agricultural district with ap-

proximately 13,000 ha of irrigated ligneous crops (28.9% of the total

irrigated land), which demand approximately 58 million cubic metres

(hm3) of water for irrigation in a normal hydrological year, of which

approximately 16.7 hm3 per year come from already overexploited

aquifers (CHS, 2010a; MARM, 2007). Although it suffers from severe

water scarcity, Campo de Cartagena, where the main ligneous crop

is citrus fruit (CHS, 2011), is one of the largest and most profitable ir-

rigated areas in Spain (CHS, 2010a), with production levels well over

20,000 kg/ha for some fruit trees (such as lemon, mandarin, orange

and peach trees) (Pérez et al., 2011). Thus, the incentives for aquifer

overexploitation are high, even in the presence of high abstraction

costs.

The three aquifers in the Campo de Cartagena agricultural district,

Carrascoy, Victorias and Campo de Cartagena, are overexploited even

in non-drought periods. In a normal hydrological year, irrigation re-

sources from these aquifers account for 29% of the irrigation demand,

2 During past drought events, the conceded observed irrigation resources have

reached, in many cases, levels well under the 50% of the initially planned irrigation re-

sources. This was the case in the last drought in 2005–2008, when the conceded irriga-

tion resources were less than 25% of the resources initially planned for the entire

period (CHS, 2010b and 2011).
3 On the contrary, river basin authorities have explicitly postponed compliance with

the environmental European quality and state standards for aquifers beyond the ini-

tially planned deadline of 2015 (CHS, 2010b, 2011; EC, 2003)
4 The traditional response against illegal water abstraction has been the result of in-

frastructure and the concession of additional irrigation rights (Gómez, 2009). This

partly explains why irrigated land in CHS has grown more than 275% since 1990.
5 No drought has been declared since its implementation; however, this is the result

of a succession of relatively rain-abundant years (CHS, 2011).

6 Campo de Cartagena is, simultaneously, one of the most overexploited and profit-

able agricultural districts in Spain (CHS, 2010a).
7 The water exploitation index (WEI) is calculated as the ratio of total freshwater ab-

straction over total renewable resources. According to the European Environment

Agency (2009), this index was 1.27 in 2003, indicating a meaningful trend towards a

greater water scarcity in the last 20 years. Previous studies (Martínez Fernández and

Esteve Selma, 2002) estimated that water consumption was already 2.25 times greater

than the available renewable resources nearly a decade ago.
8 Tajo-Segura Water Transfer was intended to provide an average of 55% of the total

water resources in SRB and 35.78% of the irrigation resources between 2005 and 2010

(CHS, 2010b).
9 The SRB accumulated groundwater overexploitation amounts to 7000 hm3 (CHS,

2010b), including aquifers whose resources have been exhausted to such a degree that,

even in the absence of more abstractions, it would take more than a century for them

to completely recover. This is the case with the Alcoy-Sopalmo aquifer, where during

some hydrological years, it has pumped out twenty times its renewable resources

(CHS, 2010b).
10 This occurs even though the granting of new concessions in the Segura River Basin

has been forbidden since 1986 because of the significant water scarcity. Nevertheless,

irrigated areas increased between 1990 and 2000 at a rate of 6500 ha/year (MMA,

2005). For example, in Campo de Dalias (Almería), the number of hectares farmed un-

der plastic has tripled from 1980 to 2005, even though the drilling of new wells is pro-

hibited. In the Segura River Basin, approximately 100,000 ha was irrigated with water

illegally abstracted in 2005 (IDRUICM, 2005). See WWF (2006).
11 The concession of new water use rights has been legally forbidden in the Segura

River Basin since 2005, when aquifers were declared overexploited. Nevertheless, agri-

cultural use increased by 5% each year since 2005 (CHS, 2010a, 2011). This is possible

because of a lack of control over irrigation water demand. For example, only

155,313 ha of the 225,356 ha irrigated in Murcia (71.4% of the total irrigated land in

the SRB) are officially registered by the water authority.
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36% of which is non-renewable groundwater (CHS, 2010a). This over-

exploitation is further exacerbated by the low technical efficiency of

the abstraction, distribution and irrigation systems (25.5% according

to CHS, 2010b) because only one-fourth of the water abstracted effec-

tively contributes to satisfying the agronomic water requirements.

3. The Risk Assessment Model

To analyse the alternative drought management rules, we use a

two-stage risk assessment method. The first stage consists of repre-

senting both the water required and the water available for a given

set of ligneous crops at any moment in time as stochastic variables.

In the second stage, we use these stochastic variables to determine

the resulting water supply deficit associated with each decision rule.

We can describe the two stages as follows:

• The first stage uses a standard method to obtain water require-

ments for each ligneous crop. We compare the evapotranspiration

requirements with the amount of water available, which is from

the following five sources: three stochastic sources (rainwater, run-

off and stored water), the existing stock of groundwater and a var-

iable but deterministic amount of non-conventional sources

(wastewater reuse and desalinated water).

• The second stage allows us to determine the amount of water deliv-

ered to the irrigation system in accordance with the two alternative

decision rules (traditional vs. drought contingency rules) and serves

to measure the resulting excess demand for water as well as the

moral hazard incentive to engage in illegal abstractions. The alter-

native decisions are obtained as follows:

i) In the baseline (traditional) case, the water authority decides the

amount of surface water to be delivered to the irrigation system

using the same discretionary rules that can be deduced from past

decisions, which basically depend on the amount of runoff ob-

served in any moment in time.

ii) In the alternative case, the water authority follows the decision

rule approved as part of the DMP. When the natural supply of

water is “normal”, that is, the stored water and/or runoff may

be sufficient, the decision is the same as in the traditional rule.

However, in the case of a drought emergency, that is, in an

alert or pre-alert state (which occur with a probability of 14%

in our model), the amount of water delivered must be adjusted

to the specific predetermined thresholds.

3.1. First Stage. The Decision Context: Water Requirements and Water

Availability

Following the Spanish Ministry of Environment standard method

(MARM, 2009b),12 the amount of water required by a single crop, or

its evapotranspiration (ET), is measured by using the evapotranspira-

tion registered during the period from 1941 to 2009 (MARM, 2009b).

In the case of irrigated crops, these water requirements are partially

covered by the effective rainfall (ER) received from nature, which is

a function of rainfall (a stochastic variable in the model). Thus, the

amount of water required from the irrigation system, or the agro-

nomic water required (WR) by a particular crop, is equivalent to the

difference between the crop's evapotranspiration (ET) and the effec-

tive rainfall (ER). Agronomic water requirements can either be satis-

fied or not satisfied, depending on the region's natural capital

(stochastic runoff) and human capital (surface water stored).

The effective coverage of the agronomic water requirements de-

pends on three stochastic variables: rainfall, runoff and surface

water stored. We consider the probability density function (PDF) of

these three factors to determine the water supply at any moment in

time.

3.1.1. Effective Rainfall

Effective rainfall (ER) is the amount of rainfall in mm (p) that ef-

fectively contributes to satisfy evapotranspiration13:

ER ¼ g pð Þ: ð1Þ

To represent ERi under every possible state of nature, the observed

data were adjusted to a probability density function (PDF)14 that al-

lows assigning a probability (y=h(p)) to each rainfall level (p). This

function is obtained as the best fit gamma function15 of the following

type (Martin et al., 2001; McWorther et al., 1966):

y ¼ z pja; bð Þ ¼
1

baΓ að Þ
p
a−1

exp
−p

b

! "

ð2Þ

where a and b are, respectively, the scale and the shape parameters.

Table 1 presents the maximum likelihood estimators (MLEs) of this

function's parameters. As Fig. 1 indicates, higher probabilities corre-

spond to rainfall levels that are low or even very low for a region sup-

porting a highly productive and water-dependent agriculture.16

The water deficit (WR) representing the part of evapotranspira-

tion (ET) that is not covered by effective rainfall (ER) is also a stochas-

tic variable, which can be defined as:

WR ¼ ET−g pð Þ: ð3Þ

3.1.2. Runoff

The amount of water available to cover the agronomic water re-

quirements is estimated using two proxy variables measured in per-

centage units. The first proxy variable is the percentage of annual

cumulative runoff over the river basin surface water storage capacity

(r), and the second proxy variable is the percentage of water stored

over the river basin surface water storage capacity at the beginning

of the crop season (s) (CHS, 2010b; Gómez-Ramos et al., 2002).

Both are stochastic variables.

Table 1

Rainfall Gamma function. The dependent variable is mm of

rainfall.

Variable Coefficient

a (Scale) 16.358a

(2.821)

b (Shape) 22.9964a

(2.286)

No. of observations 68

Source: Authors' elaboration from MARM, 2009b.
a Significant at the 1% level.

12 MARM methodology follows a combination of the Thornthwaite and Penman-

Monteith Methods (see, for example, Allen et al., 2006).

13 Effective rainfall (ER) is estimated using the Soil Conservation Service–USDAmethodol-

ogy for Spain (Cuenca, 1989), and it is a function of humidity deficit (f(D)), rainfall (p) and

evapotranspiration (ET). It is measured in annual mm: ER=f(D)·[1,25 p0,824–2,93]−
100,000955·ET.
14 Data on cumulative annual rainfall are obtained from the Sistema Integrado de

Información del Agua (SIA) (MARM, 2009b) for the period 1941 to 2009.
15 The gamma function is defined by a scale parameter (a) and a shape parameter (b).

It is consistent with rainfall measures because negative values are not allowed. The

function reaches a maximum for intermediate values, decreases according to its scale

parameter and converges to a normal distribution function as the shape parameter

increases.
16 The Segura River Basin (SRB) is exposed to a higher meteorological drought risk in

Spain. The average evapotranspiration is similar to that of the Guadalquivir River Basin,

although the time distribution is concentrated in low values (90% of rainfall values are

between 400 and 800 mm, whereas, for example, values are above 500 mmwith a 92%

probability in the Ebro River Basin).
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Following Martin et al. (2001), we adjust the runoff probability

distribution function to a gamma function.17 This allows assigning a

probability (q) to each runoff level (r):

q ¼ f rja; bð Þ ¼
1

baΓ að Þ
r
a−1

exp
−r

b

! "

ð4Þ

Table 2 and Fig. 2 show the best fit parameters for the runoff

function.

3.1.3. Available Surface Stored Water

FollowingGómez-Ramos et al. (2002) and Pérez et al. (2011), we ad-

just the probability distribution function of the level of available stored

surfacewater by using theWeibull function,18which allows assigning a

probability (w) to each stored water level (s)19 (see Table 3 and Fig. 3):

w ¼ j sja; bð Þ ¼
b

a

a

b

! "b−1
exp − s

a

! "b
# $

: ð5Þ

3.2. Decision Rules

At the beginning of each crop season, the water authority observes

the level of water stored in the reservoirs and assesses the overall ir-

rigation water required (TIR).20 Accordingly, the water authority then

applies a rule to determine the amount of water to be delivered to the

crop fields.21 The amount of irrigation resources actually delivered

each year is a public decision that is based on water availability, and

it may consist of using traditional decision rules (baseline) or apply-

ing the new decision rules of the recently approved DMP.We now an-

alyse separately the two types of decisions (Fig. 3).

3.2.1. Traditional Decision Rules to Determine Water Delivery for

Irrigation

In contrast with the situation created by the recently approved

drought plans, the decision rules followed thus far have been the

result of a combination of social agreements, opinions of expert judg-

es and discretion with no written rules to be applied in any case,

depending on the water available for the crop season. To formalise

these decisions, we use the available data on the amount of water ef-

fectively delivered to farmers measured as a percentage of irrigation

resources conceded over TIR. Available data span a range of 15 years

(1992 to 2007) (CHS, 2010b), and as is normal in this type of analysis,

the number of observations is fewer than required by a robust esti-

mation of a probability distribution function. To compensate for the

problem caused by the small number of observations, we follow the

standard approach of increasing the sample size by representing the

percentage of TIR satisfied as a proportion of runoff, r22 23 (h(r)) by

using ordinary least squares (Gómez-Ramos et al., 2002).24 The func-

tion relating h(r) with runoff is presented in Table 4.

Finally, the effective surface irrigation resources (EIR(r)), or the

part of the irrigation resources (TIR) that effectively satisfy evapo-

transpiration, can now be expressed as a function of the runoff

(through g(h)) and the overall efficiency of the irrigation system (es):

EIR rð Þ ¼ TIR%h rð Þ%esw: ½6'

Other publicly controlled water sources, such as the groundwater

legally used (gw), the treated water (tw) and the desalinated water

(dw), are provided to farmers in proportion to the irrigation resources

delivered (h(r))25 from reservoirs. The amount of water delivered

from each of these sources is converted into an effective irrigation re-

source by using its own technical efficiency index (egw for groundwa-

ter, etw for treated water and edw for desalinated water),26 as follows:

gw rð Þ ¼
λ

η
%TIR%h rð Þ%egw ð7Þ

tw rð Þ ¼
γ

η
%TIR%h rð Þ%etw ð8Þ

17 Runoff values range from 0% to 225% over the river basin dam storage capacity.
18 The Weibull distribution is a continuous probability distribution with a scale pa-

rameter (a) and a shape parameter (b).
19 The s data series, as a percentage of the total dam storage capacity, is obtained from

Anuario de Aforos (MARM, 2009a).
20 TIR is the maximum amount of irrigation resources that can be conceded in an ide-

al hydrological year. Spanish river basins estimate TIR as the agronomic water required

to cover the 80th percentile of annual historical evapotranspiration (from 1941 to

2009) with a global efficiency of the water provisioning system of 60% (MARM,

2008). TIR is then higher than %TIR, and it is generally higher than WR.
21 The irrigation resources actually conceded by the river authority in the SRB cover

only a percentage of the estimated TIR (%TIR).

Table 2

Runoff gamma function. The dependent variable is the percent-

age of runoff over the total surface water storage capacity.

Variable Coefficient

a (Scale) 6.1813a

(1.088)

b (Shape) 0.1143a

(0.012)

No. of observations 68

Estimated bymaximum likelihood. Standard errors in parentheses.

Source: Authors' elaboration from MARM, 2009a.
a Significant at the 1% level.

22 The r data as a percentage of dam storage capacity were obtained from Anuario de

Aforos (MARM, 2009a).
23 Stored water (s) was not found to be statistically correlated with the percentage of

TIR satisfied, which could be a consequence of the small storage capacity of the Segura

River Basin. The ratio of reservoir storage capacity (1141 hm3) over average yearly wa-

ter use (1905 hm3) is only 60% in the SRB, far lower than that of the drought-prone

Guadalquivir (238%) and the rainfall-abundant Ebro River Basin (90%) (see: CHE,

2011; CHG, 2011; CHS, 2011).
24 For values of TIR over 100%, the function is truncated and equals 1.
25 In an average hydrological year, Campo de Cartagena irrigation resources come pri-

marily from dam stored water (65.31%, η, 37.6 hm3 of effective water) and groundwa-

ter (29%, 16.92 hm3 of effective water, λ). Desalinated water (0.39%, θ) and treated

water (5.3%, γ) are negligible (3.32 hm3 of effective water) (MARM, 2007). These per-

centages are assumed to be constant in the model.
26 Piping and irrigation techniques determine the final amount of effective water ap-

plied to satisfy a certain amount of a crop's water demand. Global efficiency of the sys-

tem for the Campo de Cartagena region is approximately 87% for dam stored water,

60% for desalinated water and treated water and 25% for groundwater (CHS, 2010a;

MARM, 2007).

Source: Authors’ elaboration from MARM, 2009b. See table 1. 
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Fig. 1. Rainfall probability density function, SRB, 1941–2008.Source: Authors' elabora-

tion from MARM, 2009b. See Table 1.
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dw rð Þ ¼
θ

η
%TIR%h rð Þ%edw ð9Þ

The percentage of the evapotranspiration satisfied (%ET) can now

be obtained from expressions (7) through (10), as follows:

%ETp;r ¼
g pð Þ þ EIR rð Þ þ gw rð Þ þ tw rð Þ þ dw rð Þ

ET
: ð10Þ

Each %ET has an associated probability (prob%ET), which depends

on runoff (r) and rainfall (p) values. Using expressions [2] and [4],

this probability can be expressed as follows:

prob%ETp;r
¼ f rð Þ%z pð Þ: ð11Þ

The expected level of evapotranspiration coverage (E%ET0) and the

resulting expected irrigation deficit (ID) in the traditional rule scenar-

io can be represented as:

EET ¼ ∫
225

r¼0

∫
1300

p¼0

z pð Þ % g pð Þ þ f rð Þ % EIR rð Þ þ gw rð Þ þ tw rð Þ þ dw rð Þð Þ½ ' ð12Þ

ID ¼ ET−EET : ð13Þ

Illegal groundwater abstraction is a positive function of irrigation

deficits. The use of surface water is observable and controlled by the

water authority within the limits of the existing legal property rights.

In contrast, access to groundwater is a moral hazard decision made by

the farmer and is unobservable by the water authority. When water

allowances from publicly controlled water resources fall short with

respect to agronomic needs, as the evidence in the Segura River

Basin shows, farmers will have positive incentives to seek uncon-

trolled groundwater sources. Illegal groundwater abstraction (GW)

is then a positive function of the irrigation deficit:

GW ¼ c
ID

egw

 !

: ð14Þ

3.2.2. DMP Decision Rules over Water for Irrigation

The recently approved DMP for the SRB quantifies the particular

situation at hand and the severity of the problem by using an objec-

tive and publicly observable drought index, Ie. This plan establishes

the following four drought thresholds (CHS, 2010b) i) when water

stored levels are regarded as normal (Ie>0.5), there are no additional

explicit restrictions, and thus water delivery (%TIR) is the same as in

the baseline or traditional rule scenario; ii) water for irrigation is re-

duced by 10% (h=0.9) when available water falls below the pre-

alert threshold (0.35b Ie≤0.5); iii) if the alert limits are exceeded

(0.2b Ie≤0.35), water for irrigation is reduced by at least 25%

(h=0.75); and iv) in emergency situations (Ie≤0.2), water for irriga-

tion is halved (h=0.5). According to historical data, a drought is quite

likely in the SRB, occurring with a probability of 14%.27

In the case of Campo de Cartagena in the SRB, the drought index

(Ie) depends on the observed values of both runoff and stock28
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Fig. 3. Dam stored water probability density function, SRB, 1941–2008.Source: Authors'

elaboration from MARM, 2009a. See Table 3.

Table 4

Irrigation resources estimation under the traditional decision. The dependent variable

is a percentage of irrigation resources conceded in the SRB over TIR.

Variable Coefficient

Runoff (percentage over dam storage capacity) 1.351a

(.131)b

R2 89.14

Adjusted R2 88.31

No. of observations 15

Source: Authors' elaboration from CHS (2010b).
a Significant at the 1% level.
b Estimated by maximum likelihood. Standard errors in parentheses.

Table 3

Surface water stored: Weibull function. The dependent variable

is the percentage of dam stored water over dam storage

capacity.

Variable Coefficient

a (Scale) 0.3411a

(0.063)

b (Shape) 4.1286a

(0.497)

No. of observations 68

Estimated maximum likelihood. Standard errors in parentheses.

Source: Authors' elaboration from MARM, 2009a.
a Significant at the 1% level.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

0% 50% 100% 150% 200%

P
ro

b
a
b
ili

ty
 (

%
)

Runoff (% over SRB dam storage capacity)

Source: Authors’ elaboration from MARM, 2008. See Table 2.

Fig. 2. Runoff probability density function, SRB, 1941–2008.Source: Authors' elabora-

tion from MARM, 2009a. See Table 2.

27 This is a minimum threshold. Historical data underestimate drought risk because

the data do not consider that today's water resources are jeopardised significantly mo-

re than in the past.
28 Ie is calculated as follows (CHS, 2010b):

Ie ¼
1

2
1þ

V i−Vmed

Vmax−Vmin

# $

; if V i≥Vmed

Ie ¼
1

2

V i−Vmin

Vmed−Vmin

# $

; if V ibVmed

where Vi is an indicator that is unique for each junta de explotación (a group of agricul-

tural districts of comarcas). In Sistema Cuenca, which is Campo de Cartagena's corre-

sponding sub-basin, Vi, is obtained as follows: V i ¼
2 %DSC % rþDSC % s

3 Where r is the runoff

as a percentage of the total dam storage capacity (DSC) and s is dam stored water as

a percentage of the total DSC. Using r and s maximum, minimum and average observed

values during the reference period, we obtain Vmax, Vmin and Vmed, respectively
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(CHS, 2010b). Therefore, we define lr, s as a discrete water restriction

variable whose value depends on the drought index (and thus on

runoff and stock values) and its corresponding h. As the empirical

data suggest, the estimated satisfied agronomic crop requirements

under the new drought plan are too optimistic compared with past

events. Therefore, we set lr, s as the minimum between h(r) defined

in the baseline scenario and the SRB's DMP parameters above (h):

lr;s ¼

min h rð Þ;0:5ð Þ; if Ie≤0:2
min h rð Þ;0:75ð Þ; if 0:2bIe≤0:35
min h rð Þ;0:9ð Þ; if 0:35bIe≤0:5

h rð Þ; if Ie > 0:5

:

8

>

>

<

>

>

:

ð15Þ

In every case, the percentage of evapotranspiration satisfied with

rainfall and surface water (%ET2) and its associated probability

(prob%ET2) can be obtained from:

%ET2r;s;p ¼
g pð Þ þ

lr;s
h rð Þ

% EIR rð Þ þ gw rð Þ þ tw rð Þ þ dw rð Þð Þ

ET
ð16Þ

prob%ET2r;s;p
¼ f rð Þ%z pð Þ% j sð Þ: ð17Þ

We can also obtain expected evapotranspiration satisfaction and

expected deficit under the Drought Management Plan scenario by

conditioning evapotranspiration satisfaction to the impact of the

drought threshold indices (lr, s):

EET ¼ ∫225
r¼0∫

1300
p¼0 ∫100

s¼0 z pð Þ%g pð Þ þ f rð Þ%
lr;s
h rð Þ

% EIR rð Þ þ gw rð Þ þ tw rð Þ þ dw rð Þð Þ

+ ,

ð18Þ

ID ¼ ET−EET: ð19Þ

Again, illegal groundwater abstraction would be a positive func-

tion of irrigation resources [14]. The entire methodology must be per-

formed for every crop in every agricultural district considered.29

4. Drought Decision Rules and Water Deficits

Table 5 compares the outcome of the two decision frameworks in

terms of the expected rates of evapotranspiration covered and the as-

sociated irrigation deficits (in both volume and per cent units). The

last row, PotGW, shows the expected amount of non-authorised

water abstractions that would be required to fully cover the irrigation

deficits in the Campo de Cartagena region with the existing technical

efficiency of the irrigation system.

In the baseline, droughts occur with a 14% probability, and the

expected deficit amounts to 1.82 hm3 of effective water (this deficit

is confirmed by the water authority in CHS, 2008), which means

that the technical efficiency of the irrigation system would require

the abstraction of an additional 7.28 hm3. Implementing the decision

rules of the drought plan will increase this expected deficit by 35% to

2.4 hm3. As a result,30 the implementation of the new planned deci-

sions for drought conditions will add pressure to the already over-

exploited aquifers in the area because at least a portion of the

increased supply deficit will be satisfied by increasing uncontrolled

groundwater.

Water deficits and incentives for aquifer overexploitation are par-

ticularly high during drought emergency events (Iet, j≤0.2), which

occur one in ten years (with a probability of 9.88% in our model). A

drought emergency would imply a severe cut in water allowances

for irrigation, which would have a significant impact on evapotranspi-

ration satisfaction and the irrigation deficit, decreasing production

and income (Pérez et al., 2011). Thus, incentives for illegal groundwa-

ter abstraction, in this case, are even greater, as shown in the table

below.

Compared with previous decision rules, the expected irrigation

deficit will increase from 17% to 22% (see Table 6), and it will require

an additional 8 hm3 of water, meaning that there will be higher in-

centives to use poorly controlled groundwater sources. By trying to

reduce water use, responses planned for drought conditions that are

similar to those in the case of the Segura River Basin can reinforce

the existing moral hazard incentives to groundwater depletion and

thereby lead to the paradoxical result of decreased resilience and in-

creased drought risk in the future.

5. Discussion and Conclusions

The results presented in this paper provide relevant insights not

only within the field of ecological economics but also in the broader

area of drought risk management. The main conclusion is that DMPs

must be properly designed and should consider all possible water

sources to guarantee that a comprehensive social–ecological water

conservation framework is put into place. Otherwise, the water de-

mand stemming from the implementation may result in local overex-

ploitation of illegal water sources such as aquifers and thus result in a

loss of resilience and robustness.

Such is the case in the SRB in Spain. Irrigated agriculture in this

area is among the most extensive and most profitable in Spain

(CHS, 2010a; Pérez et al., 2011), although its sustainability is compro-

mised by structural water scarcity and recurring droughts (CHS,

2010a, 2010b; EEA, 2009). The farmers' traditional response to use

groundwater as an insurance against drought (Llamas, 2007; WWF,

2006) generates a vicious cycle of higher water deficits, lower resil-

ience and more frequent and severe droughts. This dynamic can be

reversed only when water use is curved downward to match the

long-term renewable resources of the river basin, which is not

29 Most parameters in the model can be taken at a river basin level, except K coeffi-

cients and system global efficiency, which are unique for each crop and district,

respectively.
30 Only 12 proceedings for illegal water abstraction have been initiated between 1996

and 2005 in the SRB, which offers a perspective on the immunity under which of-

fenders operate (WWF, 2006).

Table 5

Expected evapotranspiration satisfaction, expected irrigation deficit and expected po-

tential illegal groundwater abstraction in absolute terms (hm3) and as a percentage

of ET satisfied (%ET) for all possible states of nature in the Campo de Cartagena agricul-

tural district.

Baseline

scenario

DMP

scenario

Difference

Total expected evapotranspiration

satisfaction

EET (hm
3) 43.89 43.31 −0.59

E%ET 94.73% 92.32%

Expected irrigation deficit ID (hm3) 1.82 2.41 0.59

ID%ET 3.99% 7.68%

Expected potential groundwater

depletion

PotGW (hm3) 7.15 9.45 2.3

Source: Authors' elaboration.

Table 6

Expected evapotranspiration satisfaction, expected irrigation deficit and expected po-

tential illegal groundwater abstraction in absolute terms (hm3) and as a percentage

of ET satisfied (%ET) under emergency in the Campo de Cartagena agricultural district.

Baseline

scenario

DMP

scenario

Difference

Total expected EET (hm
3) 37.84 35.82 −2.02

Evapotranspiration satisfaction E%ET 82.76% 78.34%

Expected irrigation deficit ID (hm3) 7.88 9.90 2.02

ID%ET 17.24% 21.66%

Expected potential groundwater

depletion

PotGW (hm3) 30.90 38.83 7.92

Source: Authors' elaboration.
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possible without the enforcement of existing water property rights

(Raffensperger, 2011). The existing data and the risk assessment

analysis presented in this paper suggest that more stringent water

constraints over publicly controlled water sources, which are the es-

sence of the recently approved Drought Management Plans, will not

effectively reduce drought risk. Furthermore, without recovering the

control of groundwater resources, these norms will only contribute

to the water scarcity, making water an even more valuable resource

and resulting in new incentives for farmers to engage in the moral

hazard type of behaviour that now pervades irrigated agriculture in

many Mediterranean areas including the SRB.

For example, under the new Drought Management Plan in the

SRB, a likely drought with a rainfall less than 400 mm and a drought

index below 0.2 would lead to an expected deficit in effective irriga-

tion water of 18.23 hm3, thereby requiring the abstraction of as

much as 71.51 hm3 of groundwater (more than four times the

amount required in a normal hydrological year). This event actually

occurred between 2005 and 2008, when the drought index remained

below the emergency level throughout the majority of the period. The

failure of the emergency responses used at that time was one of the

principal arguments for designing the drought plans that were ap-

proved in 2008. However, the emerging decision rules ignore the

basic fact that quantitative water constraints can be successful only

if water property rights are properly designed and enforced. In effect,

according to the results presented in this paper, the Drought Manage-

ment Plan will make future droughts more likely and more severe.
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5 Economic Instruments for water 

management  

 

The current water crisis is now recognized as being largely a crisis of governance
16

, 

and not of resources or technological problems (Bucknall, 2006). In fact, while the 

technical capacity of the society to put additional amounts of water at the service of 

growing water demand has increased exponentially, society seems to have failed to 

acknowledge nature’s physical constraints. Consequently, whereas science has 

developed technical water management to a very large extent, considerations of 

social, political, institutional and financial order (i.e., economics) are still treated in 

an incipient form, with major problems persisting. This failure is perfectly exemplified 

by the lack or the inadequacy of the current policy mix to match the decisions made 

by the different water users in the local economy with the ability of the existing water 

resources to satisfy these uses in a sustainable manner.   

In order to overcome the current water crisis, some researchers and policy makers 

have demanded a paradigm shift in which conventional water policy is 

complemented with economic instruments in order to replace the traditional notions 

of control and government-led planning by those of incentives, motivation and multi-

level governance (Pahl-Wostl et al., 2010). However, evidence demonstrates that 

there is still a major gap between the political rhetoric and the operational level. With 

the exception of water markets and water pricing, economic instruments for water 

management are seldom found outside the academia, and in many cases they 

consist of financial tools disguised as economic instruments to make the ultimate 

goal of raising revenues more acceptable (Strosser et al., 2013).  

As a result of the little evidence available and of the misuse of economic 

instruments, there is significant confusion regarding what an economic instrument 

for water management actually is. Although it is generally accepted that taxes, fees, 

subsidies and markets can be all considered economic instruments, there is still 

disagreement regarding the inclusion of non-market mechanisms in this group and 

the purpose and design of economic instruments. This confusion is perceivable 

                                                           
16

 Noteworthy, some of these governance failures have an economic explanation 
(Hanemann, 2006).  
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even in the academia. Different definitions have been made available, and in some 

points they conflict with each other. For example, NCEE (2001) considers that 

economic instruments are financial tools (i.e., market based) that “provide monetary 

and near-monetary rewards” for accomplishing environmental goals. In the same 

line, Stavins (2003) puts economic instruments at the same level as market based 

instruments and labels them as “harnessing market forces”, because if they are well 

designed and implemented, they “encourage agents to undertake pollution control 

efforts that are in their own interest and collectively meet policy goals”. Kraemer et 

al. (2003) provide a clearer definition and finally open up the category to non-market 

economic instruments, but they do not separate economic instruments for water 

management from revenue raising tools: “When the primary aim of an 

environmental charge or tax is not to create incentives but to raise revenue, the 

relevant distinction lies whether the revenue is earmarked or simply added to the 

general government budget”. Although financial instruments are of paramount 

importance for the accomplishment of the goals defined in water policy, they are not 

economic instruments for water management per se, since they do not need to 

pursue an environmental objective. In addition, even if financial instruments are 

earmarked for environmental purposes, the relevant economic instrument here 

would be the mechanism in which this money is used, and not the revenue raising 

tool. ONEMA (2009) provides a very similar definition and incurs in the same 

mistake as Kraemer et al. (2003).  

In spite of the contradictions already mentioned, all the definitions above agree to 

point out that the key elements in an economic instrument are those of incentives, 

motivation and voluntary choice. Moreover, they all stress that at least one of their 

objectives should be that of adapting individual decisions to collectively agreed 

environmental goals. Strosser et al. (2013) gather up all these contributions and 

create a synthetic definition. According to these authors, economic instruments are 

“those incentives designed and implemented with the purpose of adapting individual 

decisions to collectively agreed goals (e.g. the environmental objectives of the WFD 

and of its “daughter” Directives)”. This implies that financial instruments aimed 

primarily at raising revenues are not economic instruments for water management 

(although cost-recovery can be a secondary objective of these); on the other hand, 

co-operative agreements and other non-market instruments that lead to behavioral 

changes may be economic instruments for water management even in the absence 

of financial transactions.  
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Economic instruments for water management are not a substitute of conventional 

C&C and supply policies; rather, they should be designed to complement them
17

. 

Nonetheless, once the potential of water works has been developed far beyond the 

capacity of the system and C&C policies have become more and more sophisticated 

without attaining the preset objectives of water policy, the alternatives available to 

achieve a sustainable water use must be found in a combination of new economic 

instruments capable of articulating the increasing water demand, limited water 

supply, water policy goals and the existing infrastructures and legal framework. This 

is exactly the situation in which we find many Mediterranean basins. 

 

Economic instruments for water management have been consistently developed in 

Spain during the last decades. For example, water scarcity and recurrent droughts 

in Mediterranean basins (EEA, 2009) have promoted the adoption of water markets 

and have made Spain a laboratory to test the outcomes of this instrument under the 

particular EU legal framework
18

. Nonetheless, the experience of Spain with 

economic instruments is not restricted to water markets. Voluntary agreements 

(Gómez et al., 2013), subsidies (Lopez-Gunn et al., 2012), water pricing instruments 

(through water tariffs) (EEA&OECD, 2013) and risk management schemes (Pérez-

Blanco and Gómez, 2013) have been also explored and/or implemented.  

In the next sections we present a series of methodologies that have been used in 

the assessment and in some cases in the implementation of innovative economic 

instruments for water management in Spain. The methodologies used are ex-ante 

and grounded in economic theory. Since these methods are quantitative, they are 

illustrated with case studies that provide some insightful results.  

Therefore, our objective in the following sections is to present some methods and 

stylized facts that can be used to assess the implementability of some of the most 

relevant economic instruments that have been advanced in Mediterranean basins, 

namely, voluntary agreements, drought insurance and water pricing. 
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 This makes even more challenging to single out the actual contribution of an economic 
instrument to the water policy goals: economic instruments are never implemented in 
isolation from other supply and C&C policies (nor should they); and many macro-economic 
and sectoral changes that influence behavior and water use also take place at the same 
time (Strosser et al., 2013). 
18

 Water markets have been widely developed through different legal figures, namely, lease 
contracts, water exchange centers, purchases of land to use water and inter-basin 
temporary trading, but also through informal water trade (Albiac et al., 2006; Calatrava and 
Gómez-Ramos, 2009; Garrido and Calatrava, 2009; Rey et al., 2011). 
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5.1 Voluntary agreements  

 

In some specific contexts, water policy can attain significant welfare gains through 

the promotion of voluntary agreements that generate (or merge) incentives for a 

win-win situation. Building cooperative agreements is only feasible when private 

interest is somehow compatible with the actual purposes of water policy, such as 

the recovery of some ecological potential of the river system. In these cases, rather 

than altering market dynamics or defining a new set of rules that agents have to 

comply with, the goal of water authorities should focus on creating an environment 

that is favorable for the development of this type of agreements.  

Voluntary agreements cover a wide spectrum and can be used to improve the 

environmental status of water bodies in different ways. This may range from the 

voluntary compliance with a certification scheme that signals a good environmental 

performance (Bratrich and Truffer, 2001) to bilateral agreements involving private 

and public agents (Gómez et al., 2013). Although voluntary agreements have been 

sometimes rejected as an economic instrument (NCEE, 2001; Stavins, 2003), they 

should be fully considered as such (Kraemer et al., 2003; ONEMA, 2009; Strosser 

et al., 2013).  

 

In Spain, one of the most significant and successful experiences with these 

instruments is the voluntary acceptance by the hydropower operator of the 

Mequinenza-Ribarroja-Flix Dam Complex to release flushing flows designed to 

improve the qualitative status of the Lower Ebro (northeastern Spain). This 

agreement was possible due to the coordinated efforts of the hydropower operator, 

the water authorities and the scientific community. The role of the scientific 

community largely consisted in the design of the standard hydrograph of the flushing 

flows and the economic model that served to estimate the private revenue foregone 

following a cost minimizing implementation of flushing flows. Therefore, two models 

were used in this interdisciplinary research: i) first, a hydrological model (Batalla and 

Vericat, 2009) based on the sediment entrainment method (Kondolf and Wilcock, 

1996); ii) second, an economic model (Gómez et al., 2013) aimed at minimizing the 

opportunity costs of flushing flows. The latter constitutes the core of this chapter.  
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The background for the implementation of this economic instrument is the 

construction of the large Mequinenza and Ribarroja dams in the 1960s, which 

significantly modified the hydrology of the Lower Ebro River (Batalla and Vericat, 

2009). Although the river still experiences natural floods, its physical and 

environmental conditions have remarkably changed during the last decades (ERBA, 

2008). These changes have resulted in local incision and riverbed armouring, re-

vegetation of formerly active areas of the river channel, reduction of sediment inputs 

to the delta (modifying the dynamics of the estuary and resulting in salt intrusion) 

and, especially, the proliferation of macrophyte biomass (Batalla and Vericat, 2009; 

Vericat et al., 2006).  

A macrophyte is an aquatic plant that grows in or near water. Although its 

proliferation is beneficial in lakes, where they are regarded as eco-indicators, in 

highly engineered rivers its presence evidences degradation, rather than good 

ecological status. In addition, macrophyte biomass may cause problems in water 

intakes and navigation, may constitute a threat to public health
19

 and may hamper 

the regular functioning of irrigation pumping stations, hydropower and energy plants 

(Batalla and Vericat, 2009; ERBA, 2008). Prior to 2002, costly actions were adopted 

in order to mechanically remove macrophytes. At that time, the delivery of recurrent 

flushing flows in order to remove macrophyte biomass appeared as an alternative to 

avoid costly adaptation to degrading water conditions.  

From a public perspective, the potential benefits of flushing flows were related to the 

partial recovery of the river regime, covering a wide range of benefits including the 

control of invasive species, the abatement of salt intrusion in the river mouth and the 

improvement of water quality along the river. However, the private interest of 

hydropower operators was in principle focused on removing the macrophyte 

biomass located close to the hydropower plants, which required a far less 

demanding flushing flow than one aimed at partially restoring the entire Lower Ebro 

down to the estuary. In any case, the hydropower operator proved to be willing to 

consider water flow patterns that were not only designed to maximize financial 

profits within the range of prevailing regulations, but also to deliver some 

improvements in the ecology of the river system. Besides, although at the beginning 

the possibility of compensation to the hydropower operator in exchange of the 

release of flushing flows was considered, finally the agreement was voluntary. This 

was largely owed to the low share of the hydropower operator’s annual income that 

the flushing flows represented (Gómez et al., 2013). In addition, the hydropower 
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 Macrophytes are also seen as the main cause of the summer plagues of black flies 
(Simulium spp.) which may transmit diseases such as onchocerciasis (river blindness). 
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operator could avoid the costly actions to mechanically remove macrophytes and 

convert the whole intervention into part of its corporate social responsibility strategy. 

Since 2002 a series of flushing flows have been implemented. Initially, this was only 

for experimental purposes, supported by a research program to design flushing 

flows and to monitor and maximize their effectiveness. More recently, these efforts 

were integrated in the design of the river basin management plan and finished with 

the agreement to deliver two controlled flushing flows every year (in spring and 

autumn), deliberately defined to maximize macrophyte removal rates and implying 

the delivery of 36 million m
3
 (hm

3
) in 13 hours in each controlled flood (ERBA, 

2008).  

Despite the relative success of the voluntary agreement, recent evidence has shown 

that the effectiveness of flushing flows to restore the river is now lower than in the 

previous decade, even for macrophyte biomass removal (ERBA, 2013). Effects are 

better in the immediacy of big dams and hastily decrease with only marginal 

changes in the river estuary. Paradoxically, the success in improving the chemical 

status of the river in the last ten years seems to have increased the potential for 

macrophyte proliferation and boosted its rate of renewal after every controlled flood. 

Recent research indicates that flushing flows help in river restoration but are 

increasingly insufficient to offset the many hydromorphological changes affecting the 

Lower Ebro. Better designed environmental flows, presumably with a higher 

frequency and intensity, are required.  

 

The following paper, prepared by the doctoral candidate, the Prof. Carlos Mario 

Gómez Gómez and the Prof. Ramon Batalla, presents an economic model that can 

be used to estimate the opportunity costs of the periodical release of flushing flows 

in rivers whose regimes are controlled by hydropower generating facilities. This 

economic model was designed to support decision making in the bargaining process 

among the different agents involved in the voluntary agreement in the Lower Ebro. 

The paper is entitled Tradeoffs in river restoration: Flushing flows vs. hydropower 

generation in the Lower Ebro River, Spain, and was published in the Journal of 

Hydrology in the year 2013.  
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Although the effectiveness of flushing floods in restoring basic environmental functions in highly engi-

neered rivers has been extensively tested, the opportunity cost is still considered to represent an impor-

tant limitation to putting these actions into practice. In this paper, we present a two-stage method for the

assessment of the opportunity cost of the periodical release of flushing flows in the lower reaches of riv-

ers with regimes that are basically controlled by a series of dams equipped with hydropower generation

facilities. The methodology is applied to the Lower Ebro River in Spain. The results show that the cost of

the reduced power generation resulting from the implementation of flushing floods is lower than the

observed willingness to pay for river restoration programmes.

Ó 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Water is an economic asset necessary to sustaining life, the

environment and the production of many valuable goods and ser-

vices and should be managed accordingly. However, the prevailing

paradigm considers water demand to be exogenous, and water pol-

icy, consequently, has traditionally focused on guaranteeing the

supply of water services at affordable prices. As a result, during

the last decades population growth and the improvement of living

standards brought about by development have increased the pres-

sures on water resources. The negative environmental effects

stemming from this paradigm are visible for instance in the case

of the European and North American rivers, where the need to sat-

isfy a continuously growing demand for water and river services

has resulted in increased water abstractions and polluted dis-

charges along with gravel mining, canalisation, and successive

modifications in river morphologies (e.g., Furse et al., 2006; Za-

wiejska and Wyzga, 2010; Batalla and Vericat, 2009).

Consequently, restoration of river ecosystems has become a pri-

ority for water management in the developed world, especially in

the stressed lower reaches of its rivers (Gupta and Bravard, 2010;

EC, 2000). However, restoration is often obtained at the cost of

impairing the ability of water infrastructures to provide valuable

socioeconomic goods and services, such as hydropower (Bednarek

and Hart, 2005; Palmieri et al., 2001; Robinson and Uehlinger,

2003). There is thus a considerable interest in learning how to bal-

ance river restoration benefits with the production of goods and

services provided by water infrastructures.

As a result of this interest, significant effort in scientific research

has recently been mobilised in two important directions. Consider-

able progress has been made in the assessment of current ecolog-

ical status and trends and in the design of effective technical

alternatives to restoring some basic environmental functions of

rivers. In particular, emerging research in biology and ecological

engineering (e.g., Granata and Zika, 2007) shows that dams and

other infrastructures that alter river systems can also be used as

tools to reproduce artificially a portion of the functions performed

in the past by the natural system. For instance, modifying the rules

of hydropower dam operation to guarantee the periodic release of

properly designed maintenance flows (namely, flushing flows) may

effectively replace the role performed in the past by the natural

floods characteristic of many rivers, which served to maintain

the structure and functions of the river ecosystem (see Hueftle

and Stevens, 2002; Vinson, 2001; Kondolf and Wilcock, 1996). So-

cial sciences have also provided methods and results for the valu-

ation of the economic and social benefits of potential

improvements in the capacity of river systems to increase the

quantity and range of those environmental services that might re-

sult from a successful restoration of river systems (such as
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recreation opportunities, biodiversity support, health services,

water security and flood control) (see, for example, Hitzhusen,

2007; Turner et al., 2003 and Gupta and Bravard, 2010; CSIRO,

2012). However, there is still little research on the costs of practi-

cally applying the available options to improve rivers’ ecology,

which makes the opportunity cost of water the missing element

for the assessment of the policy options at hand.

Information on opportunity costs plays a critical role in the

evaluation of river restoration alternatives for a series of reasons:

to find the most cost-effective way to improve the river environ-

ment and thus minimise the impact over marketable water ser-

vices, to judge whether the associated cost is lower than the

benefits expected from the improvement of the water environment

(and to assess later whether the proposed measures are justified in

the light of cost benefit criteria), to provide the critical information

to assess what would, for example, be the minimum compensation

demanded by water users for voluntarily adapting the use of the

resource to certain new requirements and to know the real cost

of harmonising the provision of water services and the improve-

ment and protection of the water environment.

This paper aims to help bridge this information gap. The paper

presents a model for the evaluation of the opportunity costs of

implementing a given flushing flow programme in an area where

the flow regime is driven by the operation of a hydropower facility.

In such a situation, the requirement to release the flushing flow

means that for certain precise periods of time, the outflow of water

does not depend on the profit maximising criteria used by the

hydropower plant (baseline scenario) but rather on an operating

constraint imposed by an environmental authority (counterfactual

flushing-flow scenario). The opportunity cost of such measures is

therefore represented by the monetary losses of the concerned

commercial activity, namely, hydropower. The overall question

we want to answer can be presented as determining a financial va-

lue for the compensation required by a hydropower operator to

voluntarily accept a predetermined programme of periodical artifi-

cial releases. The model is illustrated with an application to the

Lower Ebro River, Spain.

2. The Lower Ebro River: river diagnosis and the need of

flushing flows

The Lower Ebro River is located in the northeast of Spain and

comprises the area located between the Mequinenza–Ribarroja–

Flix Dam Complex (hereafter MRFDC) and the outlet of the river

to the Mediterranean Sea (see Fig. 1). Water demand from agricul-

ture is significant (1.200 million cubic meters/year, i.e., 90% of the

total water demand), and runoff has been reduced by more than

20% as a result of increasing pressures from upstream and long-

term changes in land use (i.e., afforestation). However, flows are

still relatively abundant, and droughts are rare (ERBA, 2007). The

main environmental concern in the area is related to the impover-

ished ecological status that resulted from the alteration of the riv-

er’s hydrology and, subsequently, the channel morphology after

the construction of the MRFDC (see Table 1).

The large Mequinenza and Ribarroja dams built in the 1960s

substantially modified the flow regime of the Lower Ebro. Among

other hydrological components, flood magnitude and frequency

have been altered. Of particular interest for the river’s ecological

functioning is the 25% reduction, on average, of the relatively fre-

quent floods (i.e., those with a return interval between 2 and

25 years) (Batalla et al., 2004). Although the river still experiences

natural floods, and the impact of regulation is much smaller than

that found in comparable large rivers, such as, for instance, the Sac-

ramento and the San Joaquin Rivers in California (Kondolf and

Batalla, 2005), the river’s physical and environmental conditions

have changed notably in the last decades (e.g., Batalla et al.,

2006; Vericat and Batalla, 2006; Vericat et al., 2006; Batalla and

Vericat, 2009). The main dam induced changes can be summarised

as follows:

– Reduction of flood frequency and magnitude; floods provide the

energy for maintaining an active river channel morphology, and

this reduction has led to the loss of formerly sedimentary active

areas, the encroachment of riparian vegetation and the narrow-

ing of the channel.

– Reduction of the river’s sediment load, which implies the ero-

sion of the gravel fractions in the channel with no replacement

from upstream and simultaneous riverbed armouring during

small frequent floods and during high flow periods.

– Alteration of the river’s ecology, as a compound effect of

impoundment, exemplified by the low frequency of bed moving

floods, slow moving waters, deficit of fine sediment, high tem-

peratures and excess nutrient load. These combined alterations

create a new functioning in the river ecosystem with conse-

quences regarding the river’s ability to provide key environ-

mental services.

This new set of environmental conditions, together with similar

changes in the upstream main tributaries, appears to explain the

uncontrolled proliferation of macrophytes1 in the Lower Ebro River

channel (e.g., Goes, 2002; Palau et al., 2004). Macrophytes threaten

river infrastructures, increasing operating costs, reducing the pro-

ductivity of power-generating plants and water-pumping devices

and reducing the ability of the river to provide navigation and recre-

ation services. Competition for space and resources resulting from

the stabilisation of dense macrophyte stands also affects the biology

of the river ecosystem in many different ways. Macrophyte stands

limit the access to microhabitats that are important for the growth

and survival of juvenile fish, and the decomposition of growing or-

ganic matter depletes the water of its oxygen. Macrophytes commu-

nities also enhance flow resistance, thus exacerbating the reduction

in flow velocity and trapping an important portion of fine sediment

load (Batalla and Vericat, 2009).

Within this context, a considerable body of research has been

devoted to the design and implementation of flushing flows as a

means to improve the ecological status of the Lower Ebro River.

These efforts started in 2002 following two notably dry years.

These drought conditions encouraged cooperation between the

hydropower operator, the water authorities and the scientific com-

munity. With the exception of two dry years in 2004 and 2005,

flushing flows have been regularly performed twice a year (in au-

tumn and spring). These flushing flows have provided opportunity

to the design of such flows to increase their effectiveness, and mac-

rophytes removal rates as high as 95% have been achieved in areas

close to the dam (Batalla and Vericat, 2009). Despite the need to

limit peak floods to avoid damage to riverine villages, flushing

flows in the Lower Ebro are now a tested means to enhance the

biological productivity of the physical habitat, to entrain and trans-

port sediments to restore the dynamism of the river channel, to re-

move pollution loads and improve the water quality, to control salt

intrusion and to supply sediments to the delta and the estuary.

Fig. 2 presents the standard hydrograph of the flushing flow

implemented in the Lower Ebro since 2002 (for an extensive anal-

1 Macrophytes are visible algae and other flora species that are rooted in shallow

waters with vegetative parts emerging above the water surface. In lakes, macrophytes

provide cover for fish and substrate for aquatic invertebrates, produce oxygen, and act

as food for some fish and wildlife, therefore being a symptom of a good

environmental status. However, in a river their proliferation occurs when water is

stagnated and denotes a poor environmental status, having negative effects over the

ecosystem and economic activities.
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ysis of the flushing flow design and field monitoring, as well as a

critical discussion on its effectiveness as a river restoration tool,

see Batalla and Vericat, 2009).

3. Materials and methods

The opportunity cost of artificial flood flows in modified river

reaches, where the flow regime is basically determined by the

operation of hydropower facilities, can be defined as the reduction

of the value of the energy produced resulting from the new envi-

ronmental constraints. The assessment of this opportunity cost re-

quires knowledge of the hydropower operator’s profit maximising

decision-making and how it would react to a change in the operat-

ing constraints imposed by the river basin authority. To solve this

problem, we present a theoretical general model that allows the

calculation of the opportunity cost of flushing flows based on the

previously stated characteristics and we calibrate the general mod-

el to our particular case study in the Lower Ebro River2.

Fig. 1. Location of the River Ebro Basin in the Iberian Peninsula and detail of the Lower Ebro River. Source: Own elaboration from ERBA, 2012a.

Table 1

Characteristics of the Mequinenza–Ribarroja–Flix dam system.

Reservoir Mequinenza Ribarroja Flix

Storage capacity (h m3) 1530 218 5

Licensed flow (m3/s) 760 940 400

Installed capacity (kW/h) 324 262.8 42.5

Height (m) 74 41 12.1

Efficiency 0.8 0.8 0.8

Input output ratio (m3/kW h) 6.2 11.19 37.91

Fig. 2. Standard hydrograph of the flushing flow implemented in the Lower Ebro

River since 2002. Source: Own elaboration.

2 It is important to note that in the calibration stage we use econometric

techniques. An analytical solution to the theoretical problem would demand

accepting strong assumptions about the operator’s behaviour (assuming either

perfect hydrological foresight or accepting strong assumptions about the operator’s

risk attitude) that make preferable to deduce this solution from the decisions that the

operator has taken in the past.
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3.1. The basic opportunity cost evaluation model

From the hydropower operator’s perspective, the dam and its

associated power production facility are capital assets. At any gi-

ven time, the operator decides on the flow of energy to be pro-

duced. This decision is based upon a number of variables, such as

the technical characteristics of the plant, the current operating

rules, the expected evolution of the amount of water stored in

the reservoir and the current and the expected energy prices. From

a private business perspective, these decisions aim at maximising

the value of the expected flow of benefits along the entire life span

of the dam. As the electricity produced cannot be stored for future

selling, the hydropower operator has to make two kinds of deci-

sions simultaneously. The first decision involves choosing how

much water to release every day (xt), and the second involves

choosing how to distribute the electricity generated throughout

the day (xtk). Both decisions aim to maximise the flow of hydro-

power revenues. In what follows, we analyse each of these key pro-

duction decisions:

Decision (1): the volumes of water released everyday can be

represented by the following dynamic optimisation programme.

For simplicity, we assume a zero discount rate:

max
xt

X

1

t¼0

E½PtðxtÞ� ð1Þ

zðtþ1Þ ¼ zt þ yt ÿ xt ð2Þ

zt 6 zt 6 zt ð3Þ

xt 6 xt 6 xt ð4Þ

where the decision variable xt represents the flow of water used for

power generation on day t; the function Pt(xt) represents the daily

financial revenue at the moment t, which (see below for details) is

assumed to increase at a decreasing rate with the amount of water

used to produce energy. The upper case E underlines the fact that

companies’ decisions are based on imperfect information concern-

ing the future values of critical variables, such as the level of the res-

ervoir and future energy prices (i.e., nature and market uncertainty

imply that the objective function is in fact the expected value of the

energy produced; thus, the model avoids the problem of most opti-

misation models that assume that companies have ‘‘perfect hydro-

logical foresight’’, which leads to unrealistic results). The state

variable zt measures the amount of water stored in the reservoir

on day t; its dynamics are represented by the transition function

(2), where the state of the system on the following day depends,

first, on its state the previous day, second, on the exogenous net in-

flow of water (yt) obtained from the river basin net of the evapora-

tion and the abstractions taken from the reservoir for other uses

that are out of the control of the hydropower operator and, finally,

on the decision made by the hydropower operator on day t, xt.

Constraint (3) shows the boundaries of the state variable zt on

any day. The left term of this constraint shows the minimum level

of water stored (zt 6 zt). This lower bound is the value determined

by the technical requirements of the infrastructure or by the insti-

tutional requirement to guarantee a minimum water availability

for other present and future uses. Thus, the lower limit may vary

in different seasons or months (depending, for example, on sea-

sonal crops requirements). The right term of the constraint (3)

shows the upper bound of the amount of water stored (zt 6 zt),

which also may depend on different factors, such as the reservoir’s

storage capacity or the flood limit to avoid the flooding of down-

stream riverine villages (which may also vary during the year

according to flood risk perceptions).

Constraint (4) shows the boundaries of the daily decision vari-

able, xt. The lower bound (xt 6 xt) may come either from a mini-

mum environmental flow, from the requirement to deliver given

amounts of water to other water uses downstream or, alterna-

tively, from any water authority requirement to release a certain

amount of water at the date t (for example, for an artificial flood).

In a similar way, the relevant upper limit (xt 6 xt) is the higher

value among the quantity of water resulting from the hydropower

generation plant maximum capacity. Provided that the plant is not

always functioning at its full capacity, none of the above-

mentioned constraints is binding, and the operator is able to

distribute the energy produced among the different days of the

year in order to maximise its revenue3.

Decision (2) consists of choosing the hourly production of elec-

tricity in a particular day. This decision can be represented by the

following daily revenue maximisation problem:

max
xt

Pt ¼
X

k¼1

ptkaxtk ð5Þ

xk 6 xk 6 xk ð6Þ

X

24

k¼1

xtk ¼ xt : ð7Þ

The objective function in this case, pt, represents the daily

financial revenue. This revenue depends on the following: (i) the

decision variable (xtk),the quantity of water used for power gener-

ation per hour (k), (ii) the corresponding prices, (ptk), which are as-

sumed to vary in a predictable way (t) depending on the season,

the day of the week, weather conditions and other factors that

are known in advance by the operator, and (iii) an input–output

technical parameter (a) measuring the volume required to produce

one unit of electricity. Under these conditions, the operator finds

the optimal distribution of the energy produced during the day

(producing at a maximum capacity at peak price and minimising

the energy delivered to the market when electricity demand is at

its lowest). The variable and fixed costs of producing hydroelectric-

ity can be considered negligible; accordingly, variations in the rev-

enue function reflect changes in financial returns. The decision

variable (xtk) is subject to the same upper and lower bounds as

in the first problem, but the relevant time units are now hours in-

stead of days (as in (6)).

Provided that there is detailed data on both the hourly market

price of electricity and all of the relevant constraints on the deci-

sion variable x, obtaining a closed solution for decision problem

(2) becomes straightforward. The solution of this problem for the

range of all of the likely values of the daily decision xt is the finan-

cial revenue function pt = F(xt). This maximum daily revenue func-

tion is concave and non-decreasing and varies on different days

during the year according to random and seasonal changes in elec-

tricity demand and supply.

Problems (1) and (2) are closely linked. On the one hand, the

overall quantity of water delivered in the solution of problem (2)

must equal the optimal decision of the first problem for the corre-

sponding day (as in constraint (7)). On the other hand and most

importantly, the optimal solution of problem (2) is nested in the

definition of problem (1). In other words, the maximum revenue

as a function of the decision variable (xt) becomes the main argu-

ment, and its expected value in the future is the objective function

of problem (1). Thus, when deciding how much water to use each

3 In fact, the key role played by hydropower in the stabilization of the electricity

supply system implies the presence of spare capacity ready to be used to turbine

water at peak demand hours. In the last 10 years, hydroelectricity in Spain used less

than 20% of its installed power production capital (Gómez, 2009).
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day, the operator knows how this water can be delivered at any

time to obtain the maximum revenue in the electricity market.

3.2. The model calibration

The maximum daily revenue function above is an important

step in the calibration of daily production decisions as represented

in problem (1). Nevertheless, finding the analytical solution to

problem (1) is not an easy task given its dynamic nature, the wide

time span that needs to be considered and the uncertainty associ-

ated with natural water inflows and energy markets. A theoretical

solution requires assuming either perfect hydrological foresight or

accepting strong assumptions about the operator’s risk attitude. In-

stead of finding the analytical solution of problem (1), we have the

option of deducing its solution from the decisions that the operator

has taken in the past under a given set of conditions.

Therefore, we use detailed data on the decisions taken by the

operator in the past (on different days, under different decision

constraints, and in different states of the river system) to obtain

econometrically the operator’s underlying decision function of

using water and producing energy. This function (problem (1))

and the maximum daily revenue function (problem (2)) provide

the representation of the optimal behaviour of the operator in

the baseline scenario. These two functions and the information

set of observed decisions and constraints are all that we need to

represent the operator’s behaviour and assess the opportunity cost

of imposing the delivery of a flushing flow.

The information used in this paper comes first from the daily

data on the level of water stored in the three reservoirs and their

hourly outflow of water provided by the Hydrological Information

Automatic System (SAIH) of the Ebro River Basin Authority (ERBA,

2012a). We use data from September 1997 to October 2008. This

11-year period encompasses several hydrological cycles during

which regulations over water use have been relatively stable, as

defined in the River Basin Management Plan (ERBA, 2012b). Sec-

ondly, the River Basin Authority has also provided an entire set

of data on the relevant constraints with which the operator must

comply. These data include the following: the minimum flows,

set at 100 m3 sÿ1; the amount of water that was required to be sup-

plied by the reservoir system for other uses different from power

generation in any given month; and the monthly changing mini-

mum level of water stored in the MRFDC determined by the water

authorities to guarantee water supply at any time. Finally, the

hourly price of electricity was obtained from the Spanish Electric-

ity Market Operator (SEMO, 2013), and the quantity of electricity

produced by the hydropower operator at any moment was de-

duced from the outflow of water and the technical characteristics

of the power plants in each reservoir (we assume a standard 0.8

energy conversion efficiency). In this way, we have observations

for all the parameters and for all the state and decision variables

implied in the optimisation problems (1) and (2) for a total se-

quence of 4017 days. This sample provides both the data required

for calibrating the base model and the scenario to assess the oppor-

tunity cost of the flushing flow programme.

The first stage in calibrating the model deals with optimisation

problem (2). The daily financial returns are a maximum argument

function of the following: the amount of water used for power gen-

eration, the set of hourly prices of the day, the minimum flow set

by water authorities and the maximum production capacity of

the plant. Fig. 3 shows the daily financial return function obtained

from using hourly prices and the production capacity and the min-

imum flows for three selected months: (i) December, when water

demand and the average price are that their highest, (ii) March,

when prices are the lowest, and (iii) January, when the price is

close to the yearly average. As can be observed, the financial return

function increases at a decreasing rate with the volume of water.

Once the minimum flow is satisfied, the decreasing marginal pro-

ductivity of the water input is caused by the fact that at lower pro-

duction levels, the energy is produced at peak price time; any

increase in water use implies selling the energy at a decreasing

price. Daily income is also bounded by the maximum capacity of

the plant.

Once the optimal financial returns are determined, this infor-

mation is introduced in the intertemporal decision problem (1)

to obtain the optimal decision profile of how much water to use

any day, considering the transition equation (2) and the technical

and policy constraints of the baseline scenario. The ability of the

operator to obtain rents from market price variations is one of

the key elements that are affected by the requirement to adjust

water delivery to a pre-designed flushing flow scenario.

The second stage of model calibration deals with optimisation

problem (1), which is associated with the decision on the daily out-

flow of water. Obtaining an explicit functional form of the optimal

daily decision profile xt is not feasible given the number of param-

eters involved and the stochastic nature of the problem. Neverthe-

less, the number and the details of the available data in the sample

allow for an empirical approximation of this optimal value func-

tion with econometric techniques; this circumstance allows

revealing the functional form that better explains the observed

behaviour of the operator. We thus expect the decision variable

(xt) to be an increasing function of the amount of water stored

(represented by the state variable zt) and the water inflow received

from the basin on the previous days, yt. As this relationship is not

linear, we use a maximum likelihood estimation method to obtain

the better fitting function among the Box Cox power transforma-

tion family of functions. In addition, as restrictions over the mini-

mum level of the stored water and the other uses of water that are

different from electricity production vary from month to month,

we also used dummy variables for every month of the year. The

empirical model is then as follows:

xtðlÞ ¼ a1ztðkÞ þ a2ytðgÞ þ bi; ð8Þ

where k, l and g are the Box Cox transformation parameters:

xðlÞ ¼
xl ÿ 1

l
� zðkÞ ¼

zk ÿ 1

k
� yðgÞ ¼

yg ÿ 1

g
ð9Þ

and the coefficients bi(i = 1, . . . ,12) represent the fixed effect param-

eters for any month that is included in the model as dummy vari-

ables. The variable yT measures the overall net inflow from the

Fig. 3. The optimal daily revenue function in the upstream Mequinenza Power

Plant. Source: Own elaboration.
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upstream river basin and helps to include variations explained by

dry or wet years.

This function of the private decision on how much water to de-

liver on any day, along with the maximum revenue function deter-

mining how to distribute this water during the day to produce

energy, allows the calibration of the model for the complete se-

quence of all of the days in the sample. Table 2 shows the econo-

metric results. Transformation parameters l and g were not

found to be significantly different from 1; therefore, the associated

variables xt and zt enter linearly in the equation. The maximum

likelihood value of the nonlinear transformation parameter (k)

was determined at 0.35. All of the remaining coefficients are signif-

icant at a 1% level. Apart from maximum likelihood criteria, the fi-

nal equation fulfils Wald’s and Lagrange’s multiplier tests for the

optimisation of the econometric estimation. The size and detail

of the sample seem to be important factors behind the robust

and efficient econometric estimation of the daily decision variable.

This baseline scenario and the associated optimisation func-

tions are the basis by which to assess the impact of flushing flows

over the quantity and value of the energy produced.

4. Results

Flushing flows are implemented through the imposition of par-

ticular constraints over the operating rules of the hydropower

plant. These constraints imply a deviation from the profit maximis-

ing decision profile (baseline scenario) with a negative impact on

expected financial profits. The revenue variation, or the opportu-

nity cost, is moreover the net result of two different effects of

opposite sign. The first effect is the immediate revenue increase,

as controlled floods require the delivery of an amount of water that

exceeds the quantity that the operator would have chosen other-

wise. The second effect is the decreased revenue resulting from

the reduction in the stock of water available after the flood4 during

the days or weeks required for the reservoir to come back to its base-

line level. Once this convergence is complete, not only will the

amount of water stored be back to normal but the operator’s deci-

sions and revenues will also be the same as in the baseline scenario.

The absorption period, or the time during which water stocks, flows

and profits diverge from the baseline, is a measure of the time re-

quired by the system to absorb the shock produced by the flood5.

The cost of the flushing flow can be reduced by a careful selec-

tion of the right moment at which to start delivering the water for

the subsequent hours. Although the operator cannot decide upon

the day and the quantity of water to deliver during the artificial

flood, it can choose the right hour at which to start the flood. This

decision allows minimising foregone revenues, as expected energy

prices vary in a predictable way during the day. Fig. 4 shows the

market value of the energy obtained during the flood for the au-

tumn and spring seasons according to the flushing flow hydro-

graph shown in Fig. 2.

The correct selection of the time to start delivering the water

might explain differences as high as 40% of the maximum revenue,

or an opportunity cost of as much as EUR 160,000 per flood. In

what follows, we assume that the delivery of water always starts

at a time that maximises the value of the energy produced during

the flushing flow (thus minimising the opportunity cost of the

flushing flow).

Provided that the artificial flood is feasible (which occurs when

water level is above a minimum critical level) and its starting point

has been chosen to minimise its impact over the value of the elec-

tricity produced, we are now ready to analyse the opportunity cost

of flushing flows. Fig. 5 presents the overall opportunity cost for

the days in the sample when the flood is feasible in autumn

(Fig. 5a) and spring (Fig. 5b). The revenue variation is measured

on the left axis. The figure is complemented with data about the

amount of water stored in the upstream reservoir on the day of

the flood, which is measured on the right axis.

As expected, the opportunity cost of flushing flows changes

with the condition of the system. The profit maximising opportu-

nity cost varies from EUR 33,000 (revenue variation: ÿ33,000) to

EUR 76,000 (ÿ76,000) for the spring and autumn floods, respec-

tively, for a total opportunity cost of 109,000 EUR per year

(ÿ109,000). The standard deviation of the opportunity cost equals

55,000 for the spring flood and 110,000 for the autumn flood,

denoting a high variability that is largely the result of the irregular

water flows observed in the case study area. In the same way, the

absorption time varies from a few days to several months with an

average value of 82 days and a standard deviation of 506.

5. Discussion and conclusions

Flushing flows have been shown to be effective means to

achieve successful river restoration (Hueftle and Stevens, 2002;

Table 2

Box Cox estimation of the daily outflow of water. Source: Own elaboration.

Variable Coefficient Standard

error

Significance

(%)

Water stored (h m3)a 0.0009339 0.0368078 99

Lag water stored (h m3) 0.1480627 0.00718118 99

Water inflow (h m3/day) 0.48437 8.13874Eÿ05 99

October ÿ12.4484 1.34145119 99

November ÿ11.278 1.34805527 99

December ÿ10.647 1.3814159 99

January ÿ8.71131 1.39861698 99

February ÿ9.53085 1.40190417 99

March ÿ8.7341 1.41103021 99

April ÿ10.3591 1.44114208 99

May ÿ10.9435 1.47712765 99

June ÿ13.4476 1.48860571 99

July ÿ12.3389 1.44571131 99

August ÿ12.4329 1.37090634 99

September ÿ12.8491 1.32810979 99

k 0.383011 0.00718118 99

Wald test 34.07

Elasticity of water stored 1.14593

Elasticity of water inflow 0.79495

Elasticity of lag water

inflow

0.35503

a Variables transformed by k.

4 Under extreme events, the implementation of flushing flows may lead to

additional opportunity costs. For example, when the amount of water stored in the

reservoirs is below or at its lowest or minimum acceptable level, flushing flows would

imply a reduction of the water supplied for crops or any other uses. In any case,

despite being technically feasible, the River Basin Authority clearly establishes a

series of priorities under extreme events that rule out the possibility of implementing

flushing flows (ERBA, 2007).

5 The flushing flows alter the decision making process of the hydropower operator,

moving away the observed stocks and released water flows from the optimal path

(baseline). As a response to the lower water stock in the dam resulting from flushing

flows, the hydropower operator will release less water than he would otherwise do in

the baseline scenario without flushing flows. This will happen until the amount of

water stored in this alternative scenario finally converges to the amount of water

stored in the baseline scenario. This time span is known as the absorption period.
6 Operator’s decisions in our model are based on expectations over the water

inflow that the reservoir might receive in the future. These expectations might or

might not be fulfilled, and the consequence of this circumstance is that the

opportunity cost may actually differ from its expected value (depending on rainfall

on the days following the flood) and can even be negative. Given the timing of the

different effects and, particularly, the fact that the increase in revenue occurs at the

start of the flood, while the cost is different along the absorption time, the succession

of wet days can shorten the absorption time, and when the reservoir recovers rapidly

enough, it can even avoid a negative opportunity cost. This outcome is observed on

the days when the revenue variation of the flood is positive (see Fig. 5).
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Vinson, 2001; Kondolf and Wilcock, 1996). While the benefits and

technical effectiveness of this alternative are widely known, the

tradeoffs in terms of the economic uses of water are often consid-

ered too high and prevent the periodical release of artificial floods.

In this paper, we present a planning-level methodology for the

assessment of such opportunity costs in heavily modified down-

stream areas where flushing flows affect the operational rules of

hydropower facilities. We show how the model can be calibrated

with a combination of a deterministic maximum revenue function

for the hourly delivery of water and an econometrically obtained

decision function for the daily amount of water delivered. The

model enables us to analyse the impact of imposing a new opera-

tion rule on the hydropower operator’s optimal decisions. This rule

requires the release of water during certain periods of time in

accordance with an artificial flood regime purposely designed to

restore the basic functions of a river ecosystem. As the technical

design, feasibility and opportunity cost of flushing flows heavily

depend on the intrinsic conditions of river ecosystems, we used

the detailed time information about the stocks and flows of water

in the Lower Ebro River to calibrate and simulate the model for all

of the days in spring and autumn in the sample when an artificial

flood is feasible.

Implementing flushing flows on a regular basis will result in a

reduction in the asset value of affected hydropower facilities, as

they will have to operate under more stringent institutional rules.

The case study shows that hydropower facilities in the Lower Ebro

can provide the artificial flows required for the restoration of the

river channel at a cost that is equivalent to a small fraction of

the energy delivered to the market and the overall annual revenue.

The expected opportunity cost of two floods per year (EUR

109,000) is equivalent to 0.17% of the average yearly revenue and

is only a fraction of the average daily revenue (which amounts to

EUR 250,000 in the sample days).

The cost of guaranteeing the periodical release of flushing floods

by changing the operation rules of hydropower facilities also

seems to be lower than any other alternative of obtaining water

from other sources (such as saving water in agriculture and domes-

tic consumption or water recycling and desalination) to have addi-

tional stored water available for this purpose in the reservoirs.

Each artificial flood requires the delivery of approximately 36 mil-

lion cubic metres over sixteen hours; considering the opportunity

cost estimated at EUR 76,000 and EUR 33,000 for the autumn and

the spring floods, respectively, we can conclude that the cost per

cubic metre delivered is lower than EUR 0.002 for the autumn flood

and less than half of that quantity for the spring flood. Experience

shows that there are few alternatives to obtaining such a large

amount of water at a lower cost from other economic uses.

Provided that flushing flows are implemented with sound eco-

nomic criteria, their opportunity cost is small when compared to

people’s Willingness To Pay (WTP) to secure the benefits of river

restoration programmes. Original estimations in areas that resem-

ble our policy context show that WTP ranges from EUR 5.3 to EUR

63.6 per person per year (Loomis et al., 2000; Meyerhoff and Dehn-

hardt, 2007; Berrens et al., 1998; Brown and Duffield, 1995; Colby,

1993; González-Cabán and Loomis, 1997). Depending on the size of

the population benefited by the programme, the opportunity cost

of flushing flows can range from EUR 0.55 (if we consider the

200,000 people living in the Lower Ebro River) to EUR 0.04 per per-

son per year (if we consider the 2.8 million people living in the en-

tire Ebro Basin) (ERBA, 2012b).

However, these values should be taken with caution. The WTP

for the benefits associated with river restoration programmes

may be actually lower as a result of the distance decay problems

typically associated with environmental quality valuation (Hanley

et al., 2003; Bateman et al., 2006). Also, the opportunity cost of

flushing flows of 109,000 EUR per year should not be regarded

strictly as a lower bound; rather, it is a reference value sensitive

to uncertainty. Actually, the uneven behaviour of flows and stocks

of water in Mediterranean rivers (ERBA, 2012a) and the volatility of

energy prices (SEMO, 2013) make operator’s revenue highly vari-

able. Assuming that hydropower operators are risk averse, they

would be willing to accept a lower compensation for the losses de-

rived from a flushing flow, as long as this value is secure (certainty

equivalent). The difference between this compensation and the

opportunity cost of flushing flows is a function of the operator’s

risk aversion coefficient, which varies for every area and type of

agent (e.g., risk aversion is higher in drought prone areas such as

the Guadalquivir River Basin than in more resilient basins, see Gut-

iérrez-Martín and Gómez, 2011). Although revealing the risk atti-

tude of hydropower operators is beyond the scope of this paper,

these considerations need to be addressed in future research and

bargaining processes.

In spite of this, our results show that the opportunity cost of

flushing flows is expected to be between 9.74 and over 1633 times

lower than the benefits associated with the river restoration pro-

grammes, as measured by individual’s WTP. These figures suggest

that the real policy challenge consists in finding the institutional

agreement to implement the flushing flood programme and agree-

ing on the potential compensations7 to overcome the incentive

problem. The considerable mismatch between the opportunity cost

and the societal benefits provides sufficient room for private opera-

tors and public authorities to conduct successful bargaining and thus

agree on the voluntarily compliance of a soundly designed pro-

gramme of flood releases to restore the critical functions of the water

ecosystem. The cooperation between power generation companies

and water authorities is also a positive signal, showing that flushing

flows for river restoration purposes can be compatible with private

corporate interests. These efforts are now considered to be the pio-

neering phase of a comprehensive restoration programme of the

whole river’s ecosystem and a key piece of the River Basin

Fig. 4. The optimal timing of the flushing flow in the Lower Ebro River. Source: Own

elaboration.

7 The MRFDC was built by the hydropower operator in exchange of a long term

government concession to exploit the dam complex. The contract did not include the

possibility of implementing flushing flows (i.e., larger temporary outflows), nor a

reduction in the water inflows. In the past, the modification of this contract (e.g.,

through increased water rights upstream that reduced water availability for

hydropower generation) has been solved with compensations to the operator,

sometimes in the form of larger concession periods (e.g., GRC, 1997). Accordingly, in

the current context making the hydropower operator pay for the flushing flows cost is

unlikely and would require a modification of the legal framework.
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Management Plan that is being elaborated for the implementation of

the WFD.

Also, this research on the opportunity costs of flushing flows

may offer useful insights for basins that resemble our case study

area. There is still little research on the costs of reallocating water

from economic uses to the environment, with the exception of

some studies on the tradeoff between agriculture and environmen-

tal flows (Sisto, 2009; Troung, 2012; Pang et al., 2013). However, as

shown above, the implementation of flushing flows in heavily engi-

neered rivers like the Lower Ebro River may be more cost-effective

if the necessary water is taken from alternative uses with a lower

opportunity cost than agriculture (i.e., hydropower), provided that

other uses are not affected. Moreover, the large amounts of water

required and the short time span during which flushing flows are

released may make hydropower the only feasible alternative. This

paper aims to provide a standard method to estimate the tradeoff

between flushing flows and hydropower generation. This method-

ology may be transferred to other heavily engineered rivers in

which hydropower facilities can be used to reproduce the func-

tions previously performed by the natural system and thus to

achieve a better ecological status. This is the case of many rivers

in semi-arid areas, which tend to be more heavily impounded

and thus their hydrology more strongly affected than rivers in hu-

mid climates because demand for water is greater and runoff is

out-of-phase with demand. For example, in the Sacramento and

San Joaquin Rivers of California (US) the impounded runoff index

(ratio of reservoir capacity divided by mean annual runoff) is 0.8

and 1.2, respectively, and the flood peaks have declined on average

Fig. 5. The opportunity cost of a flushing flood in the Lower Ebro. (A) Autumn. (B) Spring. The sample of days includes the sequence of autumn (A) and spring days (B) in the

total sequence of 4017 days (ERBA, 2012a). Source: Own elaboration.
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53% and 81%, respectively. Therefore, flushing flows have the po-

tential to achieve a better environmental status (Kondolf and

Batalla, 2005). In these rivers runoff is lower than in the Lower

Ebro River, pressures are more intense and the hydrograph is flat-

ter (the decline of the flood peaks is estimated at 30% in the Ebro

River) (ERBA, 2012a; Kondolf and Batalla, 2005), all this suggesting

larger opportunity costs and absorption periods for flushing flows

than in our case study area (but also potentially larger environ-

mental benefits), though all this should be confirmed with on-site

estimations. Similar results could be expected with the flushing

flows proposed by Wu and Chou (2004) in the Trinity River in

northern California. The estimation of the opportunity costs of

flushing flows is also of relevance in the lower stretches of the Col-

orado River (US-Mexico border), where the recently approved Min-

ute 319 created a pilot programme that required water users in the

U.S. and Mexico to provide a one-time high-volume flushing flow

(or pulse flow) of 129.5 million cubic metres (IBWC, 2012). How-

ever, since water scarcity is much more acute in this area (the delta

of the Colorado River has run dry during most of the last half cen-

tury) (Glenn et al., 2008; Wheeler et al., 2007; ERBA, 2012a),

opportunity costs are likely to affect other uses apart from hydro-

power generation and therefore a more extensive assessment

framework involving other economic activities would be required

in this case. Flushing flows have also been implemented to prevent

algal blooms downstream the Opuha Dam in New Zealand (Lessard

et al., 2013), though with limited results as a consequence of the

inability of the dam to generate floods similar to pre-dam levels.

This area resembles our case study, with hydropower being the

most affected economic activity. In this and similar cases, the esti-

mation of the opportunity costs is of especial relevance in order to

justify (or not) the implementation of flushing flows from a cost-

benefit perspective.
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5.2 Drought insurance for irrigated agriculture  

 

Droughts are a relevant temporary decrease of the average water availability and 

are considered natural phenomena. There are two types of droughts: meteorological 

and hydrological. Meteorological droughts refer to a precipitation deficit over a 

period of time, while hydrological droughts refer to unusually low water levels in 

reservoirs, river flows, streams, lakes and/or aquifers. There is a time lag between 

the lack of precipitation and decreased water levels, which makes that the end of a 

hydrological drought might also be lagging behind the end of the corresponding 

meteorological drought, since large quantities of precipitation are required to restore 

water bodies back to normal conditions (EC, 2008).  

Droughts may have significant effects over the economy. An abrupt fall in the 

amount of water available implies that not all the water uses (agricultural, industrial, 

environmental and households demand) can be fully satisfied during a period of 

time, thus generating relevant welfare losses. Traditionally, policy makers have 

reacted to drought episodes through a crisis-management approach, rather than 

through the development of comprehensive, long term and planned drought policies. 

Although this is changing (e.g., through DMPs –see Chapter 4), the uncertainty 

associated with this emergency response has promoted spontaneous and individual 

actions to enhance the preparedness against droughts. These actions often involve 

significant tradeoffs with negative environmental impacts. This is especially visible in 

the case of agriculture, the world’s largest water consumer (Ward and Pulido-

Velazquez, 2008). 

Farmers are risk averse individuals that are willing to reduce their expected income 

as long as this income becomes more stable (Gutierrez-Martin and Gomez, 2011; 

Lien and Hardaker, 2001). In arid and semi-arid areas, the most important threat to 

agricultural income stability is droughts (OECD, 2010). Accordingly, farmers are 

willing to pay in advance relatively large amounts of money (as compared to their 

income) to soften the impact of droughts. In rainfed agriculture, this can be done 

through drought insurance
20

 (Bielza et al., 2008b). However, drought insurance for 

irrigated agriculture does not exist in the EU (Bielza et al., 2008a, 2008b). As a 

result, especially in drought prone and highly profitable agricultural areas, farmers 

may incur in informal abstractions from loosely controlled groundwater bodies to 
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 Currently only a few countries offer drought insurance for rainfed agriculture in the EU, 
namely, Austria, France, Italy and Spain. 
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stabilize their income (Pérez-Blanco and Gómez, 2013). This may be one of the 

main factors driving overexploitation and aquifer depletion in many Mediterranean 

basins (EC, 2008; EEA, 2009; WWF, 2006). Our main hypothesis is that an 

insurance system provided by financial markets may allow transferring the burden of 

drought risk from nature to the financial sector, thus removing this negative tradeoff. 

Stabilizing farmers’ incomes then becomes a way to reduce incentives to informally 

abstract water from overexploited aquifers
21

.  

 

The implementation of a drought insurance system for irrigated agriculture poses 

many challenges. However, Spain has exceptional enabling conditions as proved by 

the success of the agricultural insurance sector in covering a wide range of natural 

hazards. In fact, Spain has nowadays the most developed agricultural insurance 

sector in the entire EU (Bielza et al., 2008a, 2008b). Moreover, most of the 

challenges faced by drought insurance for irrigated agriculture resemble those faced 

and overcome by drought insurance for rainfed agriculture, and therefore could be 

easily dismantled (Pérez-Blanco and Gómez, 2013). Accordingly, it seems that the 

failure to successfully implement drought insurance for irrigated agriculture has to 

be more with a lack of institutional development and the fears surrounding its 

financial implementability. 

The more practical way to identify the room available for the development of this 

economic instrument consists in estimating the maximum welfare surplus at stake. 

These gains are the difference between the maximum amount farmers are willing to 

pay for the insurance and the minimum costs at which this product may be provided 

by the financial market. This surplus is usually positive because firms can aggregate 

individual risks and are risk neutral while individual farmers are risk averse.  

The total costs faced by an insurance company comprise the expected indemnity, 

transaction costs, asymmetric information and systemic risk costs. Transaction costs 

are in principle negligible since drought insurance for irrigated agriculture would be 

offered as a part of a comprehensive insurance package covering other agricultural 

hazards, known as the combined insurance scheme. Therefore, the increase in 

transaction costs by drought insurance for irrigated agriculture would be only 

marginal. However, in water scarce and drought prone areas the expected 

indemnity (the expected value of the yield losses effectively compensated by the 
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 Precisely because of this, it is of paramount importance that drought insurance for 
irrigated agriculture focuses at least on the farmers whose plots have access to 
overexploited groundwater bodies. 
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insurer
22

, measured in constant prices) can be high, thus increasing the total costs 

and reducing the room to cover asymmetric information and systemic risk costs. In 

addition, drought insurance is especially sensible to asymmetric information (i.e., 

moral hazard and adverse selection) and systemic risk problems, which may result 

in the total costs overcoming the farmers’ willingness to pay.  

In the following papers we estimate the fair risk premium of drought insurance for 

irrigated agriculture for a varied range of ligneous crops. The fair risk premium is a 

key variable in any insurance system and equals the quotient of the expected 

indemnity to the production value in a hydrological year without drought. In other 

words, it represents the direct costs of the drought in the case of irrigated 

agriculture, or alternatively the long term costs of providing this type of insurance in 

a world without information constraints and transaction costs. This value, combined 

with the farmers’ willingness to pay (Gutierrez-Martin and Gomez, 2011), can be 

used to estimate the room that insurance companies have to accommodate 

transaction costs and especially the costs of asymmetric information and systemic 

risk.  

 

This chapter presents two papers, both authored by the doctoral candidate and the 

Prof. Carlos Mario Gómez Gómez. The first one is entitled Designing optimum 

insurance schemes to reduce water overexploitation during drought events: a case 

study of La Campiña, Guadalquivir River Basin, Spain and was published in the 

Journal of Environmental Economics and Policy in 2013. This paper was presented 

in the conference The Governance of Sustainability in Cambridge, UK (11-12 April 

2012); and in the International Water Resource Economics Consortium (IWREC) 

10th Annual Meeting in Stockholm, Sweden (26-31 August 2012).   

The second one is entitled Insuring water: A practical risk management option in 

water scarce and drought prone regions? and has been accepted for publication in 

Water Policy in 2013. This paper was presented in the 123rd EAAE Seminar. Price 

volatility and farm income stabilization in Dublin, Ireland (23-24 February 2012); in 

the 86th Annual Conference of the Agricultural Economics Society in Warwick, UK 

(16-18 April 2012); in the V
th

 AERNA Conference in Faro, Portugal (31 May-2 June 

2012); in the International Society of Ecological Economics 2012 Conference – 

Ecological Economics and Rio+20 in Rio de Janeiro, Brazil (16-19 June 2012); and 

in the Belpasso Summer School: Frontiers in Economics of Natural Hazards and 
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 Insurance systems compensate only a fraction of the yield losses. This avoids a full loss 
recovery and reduces the incidence of moral hazard. 
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Disaster Risk Reduction - Financing Disaster Risk Reduction and Climate 

Adaptation in Belpasso, Italy (1-7 September 2013). 
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aWater Economics Group, University of Alcalá de Henares, Plaza de la Victoria, 2, 28802 Alcalá
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In several arid and semi-arid Mediterranean basins, water deficits in irrigated
agriculture during drought events are relieved by illegal abstractions from
aquifers. Illegal abstractions are largely tolerated by the authorities and are
regarded by farmers as a reliable and inexpensive form of insurance against
drought. This framework of illegal abstractions is responsible for the structural
water deficit that is characteristic of many Southern European regions. The
situation is changing with the implementation of River Basin Management Plans
and Drought Management Plans, which demand improvement in the quantitative
and qualitative status of water bodies, improved surveillance of groundwater
resources and more rigorous sanctions for illegal groundwater abstractions.
However, these plans raise distribution and equity issues and may not be sufficient
to stop illegal abstractions in certain areas. Provided that the new framework is
properly enforced, private drought insurance has the potential to stabilise income
levels and reduce the incentives for overexploitation during drought events. This
paper develops a methodology to estimate the basic risk premium and the
potential water savings of private drought insurance. This methodology is based
on concatenated stochastic models (rainfall-stock), a decision model and
agronomic production functions, and is illustrated through the application of
the model in the La Campiña agricultural district in the Guadalquivir River
Basin, Spain.

Keywords: drought insurance; stochastic models; groundwater; agriculture;
drought management plan

1. Introduction

Fresh water is a finite and vulnerable resource that is essential for sustaining life,

development and the environment and should be managed accordingly (ICWE

1992). However, the prevailing paradigm has been that water policies must play an

instrumental role in providing a package of services, thus making water demand

exogenously defined outside of the field of water management policy (Saleth and

Dinar, 1999). In the case of Southern Europe, this paradigm has led to a significant
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expansion of irrigation, which has increased the pressure on water resources. This

increasing demand contributes to the arid and semi-arid climates that are

characteristic of many of these regions, which significantly constrains water

availability. Consequently, this area is now more vulnerable to droughts. In an

attempt to limit the impact of droughts on their activity, farmers have reacted by

increasing illegal abstractions from uncontrolled, dependable aquifers. The

reluctance of the water authorities to penalise this behaviour has made illegal

abstractions inexpensive, and these abstractions have become the true insurance

against drought.

The Water Framework Directive (WFD) was implemented as a reaction against

the poor qualitative and quantitative status of the water bodies, particularly aquifers.

Following the WFD, all members of the EU must have approved River Basin

Management Plans (RBMPs)1 by 2009, which include the achievement of a good

quantitative status in every relevant water body as a priority. The European

authorities also recommended the development of Drought Management Plans

(DMPs) in drought-sensitive basins. Drought Management Plans are intended to

avoid water overexploitation during drought events through a set of objective

drought indicators and abstraction rules2 (EC 2008). Both RBMPs and DMPs

indicate a clear commitment to stop illegal abstractions during drought events

through an improved surveillance mechanism and a more rigorous application of

sanctions (GRBA 2007, 2010). Consequently, the likelihood of detecting and

penalising offenders increases, which may provide a sufficient incentive for farmers to

reduce illegal abstractions, or even to stop them, in areas where the income gap

between irrigated and rain-fed agriculture is small (Mendelsohn and Saher 2011).

However, this incentive may prove to be insufficient in agricultural districts where

the income gap is large and droughts result in significant monetary losses (WWF/

Adena 2006, Llamas 2007).

Drought insurance guarantees a regular income and thus implements incentives to

reduce illegal abstractions, even in high-income irrigated areas. However, drought

insurance for irrigated agriculture does not exist in Europe3 (Bielza et al. 2008a,

2008b) for a variety of reasons. The systemic nature of droughts, moral hazard and

adverse selection are frequently cited problems that raise the price of the product

(Miranda 1991) or even make a certain degree of public support necessary (Rejda

2008), as happens with drought insurance in rain-fed agriculture (Bielza et al. 2008a,

2008b). Such problems are also common to other sources of risk where insurance

markets are nonetheless working (World Bank 2005, Bryla and Syrpka 2007, Dick

2007, Breustedt et al. 2008). In the case of irrigated agriculture, the reason that

drought insurance does not exist is twofold: (i) there is a high uncertainty that stems

from institutional decisions about water availability, and (ii) there is a high cost of

insurance compared to the alternative of illegal abstractions.

Prior to the implementation of DMPs, irrigation restrictions during a drought

event were subject to discretionary assessments made by institutions. The outcome of

the assessment was unpredictable and increased the indemnity variability above

levels that would be bearable by commercial insurance (Pérez Blanco et al. 2011).

Therefore, any compensation for farmers would come from public institutions

through expensive emergency funds (Meuwissen et al. 2003). Moreover, emergency

funds did not always guarantee a full refund of the losses. The high uncertainty made

farmers perceive illegal abstractions from dependable aquifers to be a more reliable

form of insurance with the potential to guarantee up to 100% of the yield. In

2 C.D. Pérez Blanco and C.M. Gómez Gómez
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addition, poor surveillance mechanisms, the tolerance of offenders and the small

chance of being punished by the authorities made illegal abstractions less expensive

than traditional insurance. For instance, the solution to persistent overexploitation

has very often consisted of granting new water use rights to the offenders, thus

generating additional incentives for further water overuse (Gómez Gómez and Pérez

Blanco 2012). Under these conditions, the development of an insurance market for

irrigated agriculture has not been possible.

If properly enforced, RBMPs and DMPs will increase the cost of illegal

abstractions and largely remove institutional arbitrariness from decisions on water

availability, thus making drought insurance relatively less expensive and more

reliable. All this favours the development of an insurance system that is partially

supported by private capital and more efficient and effective than emergency

compensation, where the informal, spontaneous and individual insurance system of

illegal abstractions can be replaced by a more coherent, formal collective risk-sharing

scheme. This paper develops a methodology to explore the financial viability of

drought insurance markets in irrigated agriculture and the potential water savings

that can be obtained under the new framework characterised by DMPs and RBMPs.

The potential of this methodology is illustrated by its use with the irrigated ligneous

crops in the La Campiña agricultural district in the Guadalquivir River Basin

(GRB), Spain. The results indicate that the basic risk premiums would be reasonable

and the expected environmental outcomes significant.

2. Case study background: La Campiña, GRB, Spain

Spain has the most developed agricultural insurance system in Europe, in which

all companies operate within a pool and assume the risk in a co-insurance regime

(Bielza et al. 2008a). Spain has also pioneered the introduction of DMPs in the

EU, and every relevant basin has approved its own DMP, including the GRB

(EC 2008). Although the approval of RBMPs in Spain has been delayed, the

GRB’s RBMP is in its last stage, and there is a preliminary report available

(GRBA 2010). The implementation of DMPs and RBMPs is part of a national

strategy organised by the River Basin Authorities to provide a collective response

to the increased frequency and intensity of droughts, especially in the south

(Pérez Blanco et al. 2010).

Water demand in the GRB comes mainly from agriculture. Irrigation demands

an average of 3485 hm3 every year and represents 86.8% of the 4016 hm3 annual

water demand. However, renewable resources amount to only 3287 hm3/year, and

this value is reduced to 3028 hm3/year if we consider the minimum environmental

requirements (GRBA 2007, 2010). As a result, water overexploitation in an average

hydrological year amounts to 987.7 hm3, according to official records, with a water

abstraction to renewable resources ratio of 1.22, which is considered severe

overexploitation. Other sources estimate this ratio to be 1.64 (EEA 2009).4

La Campiña, located in the GRB in the south of Spain, comprises one of the

most important agricultural districts in Spain. La Campiña Agricultural District has

48,764 ha of irrigated land, of which 39.7% is ligneous crops (GRBA 2010). The

most relevant ligneous crops in the area are Prunus armeniaca (315 ha), Cerasus

(4685 ha), Citrus 6 sinensis (408 ha), Olea europaea (9087 ha) and Malus domestica

(997 ha). Greater than 99% of the water demand in the area is from irrigation.

During an average hydrological year, 78.8% of water for irrigation comes from
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aquifers, with the remaining resources coming from reservoirs. There are three

aquifers in La Campiña, all of them are detritic. The two main aquifers, whose

renewable resources amount to 92.8 hm3/year, have an abstraction-to-renewable

resources ratio of greater than 100% in an average hydrological year. The third

aquifer (32 hm3/year) has an exploitation rate of slightly greater than 70% (GRBA

2010). In addition, droughts in the area are common and expected yields are high

(Pérez Blanco et al. 2011), which makes the aquifers of La Campiña extremely

vulnerable to drought events.

3. Methodology

The viability of an insurance market depends on the experimental design of feasible

scenarios, the financial losses associated with these scenarios and the corresponding

probabilities from which the risk premium is estimated (Skees and Barnett 1999).5

The basic risk premium is the key element in the design of commercial insurance

and is calculated as the ratio between the expected indemnity (a function of the

expected losses) and the expected production value in a reference year (in this case,

a normal or average hydrological year). The basic risk premium should not be

confused with the premium applied in the insurance market, which is actually

larger. This discrepancy between the basic risk premium and the insurance market

premium occurs because of three factors inherent to agricultural insurance

markets: (i) first, insurance markets are plagued with issues of adverse selection

and moral hazard that may significantly increase costs for the insurer (Miranda

1991);6 (ii) second, insured agents are risk averse (Lien and Hardaker 2001, Kim

and Chavas 2003), and their willingness to pay to transfer a portion of the risk

they bear to an insurer is greater than the expected drought losses;7 (iii) finally, the

implementation of an insurance system requires that the insurer constitutes a

financial fund in which stochastic indemnities are compensated by the money paid

by the insured, and this fund has intrinsic operating costs that are assumed by the

insurer and must be recovered. In addition, drought is a systemic risk and is likely

to generate catastrophic events with disproportionate costs for which commercial

insurance may not be prepared; thus, a certain degree of public support is

necessary (Rejda 2008, Bielza 2008a, 2008b).

This methodology calculates the basic risk premium of the ligneous crops in the

area through the implementation of a model that depends on the historical evolution

of the insured product, i.e. water availability (Martin et al. 2001). In La Campiña,

the variables determining water availability for irrigation are the water stock in

reservoirs, groundwater and rainfall. However, groundwater levels are difficult to

measure because there are no reliable sources of data for the area. The DMP for the

GRB uses annual rainfall as a proxy variable to assess the quantitative state of the

permeable detritic aquifers of La Campiña (GRBA 2007, 2010). Consequently, our

model has two relevant variables: the rainfall and the water stock of reservoirs. We

start by estimating the probability density function (PDF) of both variables.

Subsequently, the quantity of water available for irrigation in every scenario and its

corresponding probability are estimated according to the applicable decision rules,

and the potential water savings are estimated. Finally, we use a deterministic

agronomic model to estimate the yield of every ligneous crop in La Campiña, its

corresponding production value and indemnity and the basic risk premium for every

possible scenario.

4 C.D. Pérez Blanco and C.M. Gómez Gómez
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3.1. Water availability

In La Campiña, water availability is a function of rainfall, piezometric levels and

water stock in reservoirs. In the following sections, we calculate the PDF for the

water stored in the reservoirs and rainfall (which serves as a proxy variable for

piezometric levels) to determine the probability associated with every level of water

availability.

3.1.1. Rainfall

Rainfall is the most important source of water in La Campiña agricultural district

for two reasons: (i) it provides effective rainfall captured directly by crops; and more

importantly, (ii) rainfall recharges the permeable detritic aquifers of the area, which

are the main source of water for irrigation. Rainfall is a stochastic variable that can

be adjusted to a PDF, which allows for the assignment of a probability (y ¼ z(p)) to

each level of rainfall, expressed in mm (p). The data used correspond to the period

1941–2008 (MARM 2011). The PDF is calculated with a best-fit gamma function of

the following type (McWhorter et al. 1966, Martin et al. 2001, Gómez Gómez and

Pérez Blanco 2012):

y ¼ zðpja; bÞ ¼
1

baÿðaÞ
paÿ1exp

ÿp

b

� �

ð1Þ

where a and b are the scale and shape parameters, respectively. Table 1 presents the

maximum likelihood estimators (MLEs) of the parameters.

3.1.2. Water stock in reservoirs

On the basis of work by Gómez-Ramos et al. (2002), Pérez Blanco et al. (2011)

and Gómez Gómez and Pérez Blanco (2012), we adjust the PDF of the level of

water stored in reservoirs at the beginning of the irrigation season using the

Weibull function. This function assigns a probability (w) to each stored water

level (s), measured as a percentage of the storage capacity, in La Campiña. The

data used correspond to the period from 1968 to 2008 (MARM 2008). The

Weibull function can be expressed as follows:

w ¼ jðsje; dÞ ¼
d

c

c

d

� �dÿ1

exp ÿ
s

c

� �d
� �

: ð2Þ

Table 2 shows the MLEs of the parameters in the function above.

Table 1. Rainfall Gamma function. The dependent variable is mm of rainfall.

Variable Coefficient

a (scale) 15.35a (2.79)
b (shape) 37.75a (3.28)
No. of observations 68

Note: aSignificant at 1% level. Source: Authors’ research from MARM (2011).
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3.2. Decision rules

At the beginning of every irrigation season, the water authority estimates the

quantity of water required for irrigation (TIR)8 according to the crops present in the

sub-basin and their historical evapotranspiration rates. Later, the water authority

assesses the water availability in the reservoirs and the annual accumulated

precipitation (GRBA 2010) to determine the quantity of water to be delivered to

agriculture.

Traditionally, the percentage of TIR that was effectively satisfied (TIRr) followed

discretional decision rules. This situation changed with the approval of the DMPs,

which clearly established a set of drought thresholds with specific associated

restrictions. Nonetheless, DMPs still offer the possibility to apply additional water

restrictions, which follow discretional criteria, during exceptional junctures (e.g.

during extreme droughts or after a lasting drought to speed up the recovery) (GRBA

2007). Thus, both decision rules are in force.

3.2.1. Traditional decision rules

In contrast with the situation created by the recently approved DMP in the GRB, the

decision rules followed thus far have been the result of a combination of social

agreements, opinions of experts and discretion depending on water availability, with

no written rules to be applied in any case. To formalise these decisions, we use the

available data on the quantity of water effectively delivered to farmers, measured as

a percentage of TIR satisfied. The data span a range of 19 years (1989–2008). We

found that the relevant variables explaining the percentage of TIR satisfied are water

stored in reservoirs (measured as a percentage over total storage capacity) (s) and

annual rainfall in mm (p). The relationship between the percentage of TIR satisfied

(h(p,s)) and both of these variables are linear (Gómez Ramos et al. 2002). The

parameters of the function are estimated using ordinary least squares (see Table 3).9

3.2.2. DMP decision rules

The recently approved DMP of the GRB quantifies the particular situation at hand

and the severity of the problem using objective and publicly observable drought

thresholds that are dependent on the quantitative state of the groundwater bodies

and indirectly assessed through the annual rainfall (p). The plan establishes the

following four drought thresholds: (i) when rainfall values are regarded as normal

(p 5 425), there are no additional explicit restrictions, and the quantity of water

available for irrigation is thus the same as in the traditional rules scenario; (ii) the

quantity of water available for irrigation is reduced by 5% (h ¼ 0.95) when the

Table 2. Surface water stored: Weibull function. The dependent variable is the percentage of
dam-stored water over dam storage capacity.

Variable Coefficient

c (scale) 0.61a (0.12)
d (shape) 4.79a (0.57)
No. of observations 40

Note: aSignificant at 1% level. Source: Authors’ research from MARM (2008).

6 C.D. Pérez Blanco and C.M. Gómez Gómez
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amount of rainfall is less than the pre-alert threshold (325 5 p � 425); (iii) if the

alert limits are exceeded (275 5 p � 325), the quantity of water available for

irrigation is reduced by 30% (h ¼ 0.7); and (iv) in emergency situations (p � 275),

the quantity of water that is delivered for irrigation is reduced by 70% (h ¼ 0.3)

(GRBA 2007).

3.2.3. Combined decision rules

We define lp,s as a discrete water restriction variable whose value depends on the

DMP’s decision rules (and thus on rainfall), its corresponding h (q for normal, 0.95

for pre-alert, 0.7 for alert and 0.3 for emergency) and the traditional decision rules

that apply under exceptional circumstances (h(p,s)):

lp;s

hðp; sÞ; if p > 425

min ðhðp; sÞ; 0:95Þ; if 325 < p � 425

min ðhðp; sÞ; 0:7Þ; if 275 < p � 325

min ðhðp; sÞ; 0:3Þ; if p � 275:

8

>

>

<

>

>

:

ð3Þ

Water delivered for irrigation is thus a function of rainfall and the water stock in

reservoirs (TIRr(p,s)):

TIRrðp; sÞ ¼ lp;s � TIR: ð4Þ

3.3. Evapotranspiration satisfied

We measure the expected crop evapotranspiration (ET) for every irrigated ligneous

crop in La Campiña, according to the Spanish Ministry of Environment standard

method, using data from 1941 to 2009 (MARM 2011).10 The expected evapotran-

spiration is partially addressed by effective rainfall. Effective rainfall (ER) is a

function of stochastic rainfall and a series of parameters that can be safely assumed

to be constant (Cuenca 1989)11:

ER ¼ gðpÞ: ð5Þ

The portion of evapotranspiration (ET) that is not addressed by effective rainfall

is the irrigation water requirement (WR):

WR ¼ ETÿ gðpÞ: ð6Þ

The WR can either be satisfied through irrigation or left unaccounted for,

depending on the available water resources and the decision rules in force. The total

quantity of water delivered for irrigation was estimated in the previous section

(TIRr(p,s)). Nonetheless, only a fraction of the TIRr(p,s) effectively contributes to

satisfy evapotranspiration due to water losses during the abstraction, transportation

and irrigation stages. The effective irrigation resources (EIR(p,s)), or the part of the

irrigation resources that effectively satisfy the irrigation water requirements, are a

function of TIRr(p,s) and the overall efficiency of the irrigation system (es), which is

approximately 61% in La Campiña (GRBA 2007):

EIRðp; sÞ ¼ TIRrðp; sÞ � es: ð7Þ

Journal of Environmental Economics and Policy 7
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The percentage of the evapotranspiration satisfied (%ET) can now be calculated

from the previous equations:

%ETp;s ¼
gðpÞ þ EIRðp; sÞ

ET
: ð8Þ

Each %ET has an associated probability (q(p,s)), which depends on the stock (s)

and rainfall (p) values. Using expressions (1) and (2), this probability is expressed as

follows:

qðp; sÞ ¼ zðpÞ � jðsÞ: ð9Þ

The expected evapotranspiration satisfaction (EET), the resulting expected

irrigation deficit (ID) and potential groundwater depletion (PotGW) are defined as

follows:

EET ¼

Z max p

p¼0

Z max s

s¼0

½zðpÞ � gðpÞ þ jðsÞ � zðpÞ � ðEIRðp; sÞÞ� ð10Þ

where maxp and maxs are the values of the variables p and s that make the

cumulative density function equal to 1 (i.e. the probability of any value above this

limit is zero).

ID ¼ ETÿ EET ð11Þ

PotGW ¼
ID

es
: ð12Þ

3.4. Agronomic production functions and production value

The agronomic production of a given crop depends largely on the percentage of

evapotranspiration satisfied. However, making the production function of a crop

dependent only on the percentage of evapotranspiration satisfied implies that

other variables that may affect the production function, such as soil type,

fertilisers and phytosanitaries, climatic variables and others, are excluded.

However, if we consider this set of variables to be constant, it is still possible

to develop sound and rigorous agronomic production functions that provide

results close to the observed values (SCRATS 2005, Pérez Blanco et al. 2011).

Thus, we obtain the agronomic production in kg (Qp,s) as a function of the

percentage of evapotranspiration satisfied (%ETp,s) and other variables that are

assumed to be constant (k):

Qp;s ¼ fð%ETp;s; kÞ: ð13Þ

The reference agronomic production functions for the considered crops are

obtained after a comprehensive bibliographical review. Subsequently, these

functions are adapted to the characteristics of the area of study, if there are

not site-specific production functions (SCRATS 2005, MARM 2010). To adapt

the production functions, it is assumed that the local characteristics have fixed

8 C.D. Pérez Blanco and C.M. Gómez Gómez
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effects that shift the agronomic production functions but maintain their elasticity

and marginal productivity. The resulting production functions are quadratic:

Qp;s ¼ a �%ET2
p;s þ b �%ETp;s þ c: ð14Þ

Next, we obtain the value of production, which is the product of the agronomic

production (Qp,s) and the updated average prices of the last 10 years (P) (MARM

2007).

Vp;s ¼ Qp;s � P: ð15Þ

The value of production is the reference value for the calculation of the basic

risk premium. Prices are assumed to be constant because neither revenue insurance

(price, yield and costs) nor income insurance (price and yield) exist in the EU,

where yield insurance prevails. As a result, price variability is not considered in our

model.

3.5. Basic risk premium

The main element of any insurance market is the estimation of the basic risk

premium that, given the likelihood of a catastrophic event, guarantees a certain

level of coverage for the insured with no losses for the insurer in the medium-

long term. The indemnity conceded by drought insurance in the case of drought

losses in the EU is subject to two prerequisites: (i) losses must be institutionally

acknowledged; and (ii) losses must be larger than the minimum threshold

predetermined by the insurance company, usually as a percentage of the

production value.

(1) The drought indemnity is only paid when the relevant authorities formally

declare a drought. In the case of La Campiña, the system is considered to suffer a

drought when it is subject to at least a pre-alert state (i.e. p � 425). We generate a

dichotomous variable, ap, to include this condition in our model.

aðpÞ ¼ 1; if p � 425

aðpÞ ¼ 0; if p > 425

�

ð16Þ

(3) Additionally, insurance systems only cover at most a percentage of the

expected value of the production in a normal hydrological year (Vexp). This

threshold (m), which is 70% in Spain (Bielza et al. 2008b), aims to reduce the impact

of the moral hazard (Miranda 1991). Consequently, the indemnity (IND(p,s)) is

defined as follows:

INDðp; sÞ ¼
m � Vexp ÿ Vp;s; if 0 � Vp;s < m � Vexp

0; if Vp;s � m � Vexp

�

: ð17Þ

The expected indemnity (IEp,s) for each crop is calculated as follows:

IEp;s ¼

Z max p

p¼0

Z max s

s¼0

½zðpÞ � jðsÞ þ aðp; sÞ � INDðp; sÞ� ð18Þ
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Finally, the basic risk premium (BRPp,s) is calculated as the ratio of expected

indemnity to expected production in a normal hydrological year (Vexp):

BRPp;s ¼
IEp;s

Vexp

: ð19Þ

4. Results

The methodology above has been applied to the La Campiña sub-basin. First, we

have estimated the potential of commercial drought insurance to prevent illegal

water use during all possible drought events (Table 4).

The new legal and institutional framework after the implementation of the DMPs

and the RBMPs results in irrigation restrictions of 6.06 hm3/year in La Campiña.

Without the proper incentives in place (i.e. formal drought insurance), this

framework leads to a potential aquifer overexploitation of 9.94 hm3/year (i.e.

informal insurance). This framework results in a deficit of approximately 8% of the

total annual renewable resources in La Campiña. This deficit would be much larger

during an emergency drought, when expected illegal abstractions would equal 20.5

hm3/year (16.4% of annual renewable resources in La Campiña), according to our

model. It should be noted that this deficit corresponds exclusively to ligneous crops

(39.7% of irrigated surface in La Campiña). However, the combination of DMPs

and RBMPs with a formal drought insurance system may prevent these illegal water

abstractions and thus strengthen the sustainability of the system.

Next, we calculate the expected production value in a normal hydrological year

(Vexp), the expected indemnity (considering every possible scenario) (IEp,s) and the

Table 4. Expected evapotranspiration satisfaction (EET), expected irrigation deficit (ID) and
expected potential groundwater depletion (PotGW) during drought events in absolute terms
(hm3) and as a percentage of ET satisfied (%ET) in La Campiña.

Variable Value

EET (hm3) 36.82
EET (%ET) 85.9%
ID (hm3) 6.06
ID (%ET) 14.14%
PotGW (hm3) 9.94

Source: Authors’ research.

Table 3. Irrigation resources estimation under traditional decision rules. The dependent
variable is the percentage of TIR satisfied in the GRB.

Variable Coefficient

S 0.35a (0.13)
p 0.0007 a (0.0002)
R2 0.89
Adjusted R2 0.88
No. of observations 19

Note: aSignificant at 1% level. Source: Authors’ research.

10 C.D. Pérez Blanco and C.M. Gómez Gómez
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basic risk premium (BRPr,s,p) for the ligneous crops of La Campiña. The values are

displayed in Table 5, along with the irrigated surface of every ligneous crop in La

Campiña.

Higher basic risk premiums are observed in citrus trees. Citrus 6 sinensis shows

a BRPp,s of greater than 10%. This high value may pose a significant challenge for

the development of commercial agricultural drought insurance in the region because

Citrus x sinensis is one of the most representative crops not only in La Campiña

(21.8% of total surface) but also in southern and south-eastern Spain. The BRPp,s

obtained for Citrus reticulata, although consistent with the values obtained for other

citrus trees, should not be considered representative because of the small surface

covered by these crops in La Campiña. The same can be said for the Vitis. Prunus

armeniaca and Cerasus have intermediate drought insurance BRPp,s slightly above

2%. Finally, Malus domestica (0.98%) and Olea europaea (0.5%), which together

represent 52.2% of the irrigated ligneous crops surface, have affordable BRPp,s

below 1%.

5. Conclusions

Drought insurance for irrigated agriculture does not exist in Europe. However, the

necessary conditions for its development in drought-sensitive areas in Southern

Europe are in place after the implementation of RBMPs and DMPs. Our hypothesis

is that under the clearer and publicly enforced rules on water abstractions contained

in both plans, drought insurance has the potential to reduce illegal groundwater

abstractions and stabilise agricultural incomes.

In this paper, we have estimated the cost (i.e. basic risk premium) of this

insurance market in the agricultural district of La Campiña (Spain) and the potential

water savings that could be attained with the joint implementation of DMPs,

RBMPs and drought insurance for irrigation. The results obtained in our case study

in La Campiña indicate that the basic risk premium is reasonable and the

environmental outcome is significant. Nonetheless, the viability of a private

insurance market also depends on other sources of risk that are independent of

the insured product, namely, adverse selection, moral hazard (Miranda 1991) and, in

the medium-long term, the ability of institutions and private agents to cope with

external shocks, such as climate change. Moreover, droughts are a systemic risk in

Table 5. Expected production value in a normal hydrological year (Vexp), Expected
Indemnity (IEp,s) and Basic Risk Premium (BRPp,s) for irrigated ligneous crops in La
Campiña.

Variable/crop
Prunus

armeniaca Cerasus
Citrus

reticulata
Malus

domestica
Citrus 6
sinensis

Olea
europaea Vitis

Irrigated
land (ha)

315 4685 2 997 4208 9087 11

Vexp (EUR) 1457 6626 11,467 3944 5840 2072 7828
IEp,s (EUR) 33 147 1212 39 597 10 14
BRPp,s 2.26% 2.22% 10.57% 0.98% 10.22% 0.50% 0.18%

Source: Authors’ research. Reference agronomic production functions were obtained from MARM (2010)
(all crops), SCRATS (2005) (citrus trees), Pastor et al. (2005) (Olea europaea), Almarza (1997) (Vitis) and
Pérez Pastor (2001) (Prunus armeniaca), Parra et al. (2009) (Malus domestica).
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which the risks of the different insured agents are correlated, which may result in

catastrophic losses (Bielza et al. 2008a, 2008b). These factors demand a certain

degree of public initiative (Rejda 2008). In any case, drought insurance for irrigation

still offers a better alternative than the baseline scenario, where drought losses are

compensated through costly emergency mechanisms that are entirely supported by

public institutions and without a water saving target.
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Notes

1. RBMPs are already in effect in every member state, with the exception of Belgium,
Greece, Portugal and Spain.

2. Unlike RBMPs, DMPs are not prescriptive, although they are available in several
southern European basins in Spain, Italy, Portugal and France, and also in Finland,
Netherlands and UK.

3. Only Spain, Italy, Austria and, recently, France have developed drought insurance
markets for rain-fed agriculture (Bielza et al. 2008b).

4. This figure refers to all of the Andalusian basins, which are the GRB, the Andalusian
Mediterranean Basins and the Andalusian Atlantic Basins. The GRB is the largest
Andalusian basin and with its 57,527 km2 covers 59.5% of the total surface of the region.

5. Although alternative insurance methods do exist, such as index financial products or
derivatives, they are still in their early stages and are usually experimental (Barnett et al.
2005, Bielza et al. 2008b).

6. Adverse selection is difficult to clear up in the case of index insurance, although it is easier
to resolve for tailored individual insurance plans, as happens in Europe. However, issues
of moral hazard in the EU are less important than in other areas because to receive
indemnity in the EU, it is necessary to ascertain which event caused the loss, whether the
damage affects a sufficiently significant area (that is, that the risk has not affected only
one individual farmer) and whether the insured or guaranteed yield can be corrected
according to the productive conditions of the insured farm (Bielza et al. 2008a).
Additionally, a deductible (17m) is applied to discourage this type of behavior (e.g. 15%
in France, 20–30% in Italy, 30% in Spain).

7. In most EU countries, including Spain, the insurance market is in the hands of no more
than three insurance companies, and this low competition may result in even higher
premiums.

8. Spanish river basins estimate TIR as the quantity of water required to meet the demand
of the 80th percentile of annual historical evapotranspiration, with a global efficiency of
the water provisioning system of 60%.

9. For values of TIR greater than 100%, the function is truncated and equal to 1.
10. MARMmethodology follows a combination of the Thornthwaite and Penman-Monteith

Methods (see, for example, Allen et al. 2006).
11. Effective rainfall (ER) is estimated using the Soil Conservation Service–USDA

methodology for Spain (Cuenca 1989), and it is a function of the humidity deficit
(f(D)), rainfall (p) and evapotranspiration (ET). It is measured in annual mm:
ER ¼ g(p) ¼ f (D) � [1.25 p0.824 7 2.93] � 100.000955 � ET.
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Rejda, G.E., 2008. Principles of risk management and insurance. Lincoln: Pearson Education
Sindicato Central de Regantes del Acueducto Tajo-Segura (SCRATS), 2005. Informe sobre las

repercusiones de la sequı́a 2004–2005. Murcia: SCRATS.
Saleth, R.M. and Dinar, A., 1999. Water challenge and institutional response: A Cross-

Country Perspective, World Bank Policy Research Working Paper no. 2045.
Skees, J. and Barnett, B., 1999. Conceptual and practical considerations for sharing

catastrophic/systemic risks. Review of Agricultural Economics, 21 (2), 424–441.
World Bank, 2005. Managing agricultural production risk: innovations in developing countries

[online]. Agriculture and Rural Development Department, Report No. 32727-GLB. The
World Bank. Available from: http://siteresources.worldbank.org/INTARD/Resources/
Managing_Ag_Risk_FINAL.pdf. [Accessed 25 January 2012].

WWF/Adena, 2006. Illegal water use in Spain. Causes, effects and solutions. Madrid: WWF/
Adena.
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Annex: Summary of variables and parameters

Variable Description

p Rainfall (mm)
s Water stored in reservoirs (percentage over the storage capacity)
y ¼ z(pja,b) Gamma PDF
w ¼ j(sja,b) Weibull PDF
a Scale parameter, Gamma PDF
b Shape parameter, Gamma PDF
c Scale parameter, Weibull PDF
d Shape parameter, Weibull PDF
TIR Quantity of water required for irrigation according to the crops present in

the sub-basin and their historical evapotranspiration data
h(p,s) Percentage of TIR satisfied under traditional decision rules
h Percentage of TIR satisfied under the DMP decision rules
lp,s Water restriction variable resulting from the combination of h(p,s) and h
TIRr Percentage of TIR satisfied
ET Expected crop evapotranspiration
ER ¼ g(p) Effective rainfall
WR Irrigation water requirements
es Overall efficiency of the irrigation system
EIR(p,s) Effective irrigation resources
%ET Percentage of ET satisfied
q(p,s) Probability of %ET
EET Expected evapotranspiration satisfaction
ID Expected irrigation deficit
PotGW Expected potential groundwater depletion
Qp,s Agronomic production function (kg)
k Other variables in the production function, which are assumed constant
P Average prices over 10 years
Vp,s Production value
Vexp Expected production value in a normal hydrological year (without drought)
a(p) Dichotomous variable 7 Drought threshold
m Maximum indemnity (% over Vexp)
IND(p,s) Indemnity
IEp,s Expected indemnity
BRPp,s Basic risk premium
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Abstract: Recurrent water deficits in various arid and semi-arid Mediterranean basins are 

largely covered by illegal groundwater abstractions uncontrolled by the water authorities. 

Aquifers thus play the role of buffer stocks and are used by farmers as a reliable, though 

informal, insurance system. This has led to continuous groundwater depletion and 

increased scarcity and drought risk over the last few decades. An effective solution to this 

problem requires the replacement of this spontaneous, informal and uncoordinated 

insurance scheme with a formal and planned system that can be coordinated with the 

objective of reducing overexploitation. In this paper we develop a methodology to 

estimate the fair risk premium  and the potential water savings associated with drought 

insurance for irrigated agriculture. This method is illustrated with its application to the 

Campo de Cartagena Agricultural District in the Segura River Basin (Spain). Results show 

that although the potential for illegal abstractions is high (9.5 hm
3
/year), the cost of the 

insurance system is ten times lower than the amount that risk-averse farmers are willing 

to pay for water security. This information may serve as the starting point for the design 

of a drought insurance system able to cope with other relevant institutional challenges. 

 

Keywords: Agriculture, Drought insurance, Drought Management Plan, Groundwater 

Stochastic models. 
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1. INTRODUCTION 

 

Water scarcity is the most pressing environmental issue in EU Mediterranean areas. This 

situation is to a large extent attributable to irrigated agriculture, which in less than 50 

years has doubled its surface and now represents between 70% and 80% of total water 

use (Massarutto, 2003; EEA, 2009). Although irrigation expansion has significantly 

enhanced agricultural income, it has also increased the water dependency of the sector 

and has progressively brought water demand closer to water supply, thus making 

agriculture more vulnerable to drought. This has generated powerful incentives for illegal 

water abstractions, which have increased along with drought frequency and intensity 

(WWF, 2006a; 2006b). Illegal abstractions may threaten the sustainability of the 

ecological system and are particularly difficult to control, since they are usually located 

over dependable and uncontrolled groundwater sources (Gómez & Pérez, 2012). As 

groundwater stocks have been depleted, water scarcity has become chronic and policy 

makers have called for measures to reduce overexploitation and increase water security.  

However, the effectiveness of these measures has been burdened so far by the prevailing 

paradigm that considers water demand as an exogenous variable outside the field of 

water policy. A direct consequence of this paradigm is that water policy has been mostly 

based on expensive supply oriented policies, such as the construction of major 

infrastructure or the modernization of irrigation devices, which paradoxically have ended 

up increasing water use, reducing water availability and undermining the robustness and 

resilience of the system and its ability to cope with future droughts. More recently, the 

high costs of supply policies in a time of crisis and the continuous increase in water use 

have forced EU authorities to implement command and control (C&C) policies. Unlike 

traditional supply policies, C&C policies introduce clear water abstraction rules to avoid 

overexploitation during droughts (Drought Management Plans, DMPs) and new coercive 

mechanisms to enforce these rules (River Basin Management Plans, RBMPs) (CHS, 2008; 

2013). However, although these policies increase the likelihood of detecting and 

penalizing offenders, they do not alter the existing incentives behind illegal water use, 

which in some irrigated areas may generate profits that exceed the potential costs of 

being detected. Accordingly, C&C policies may be mostly ineffective in areas where the 

income gap between irrigated agriculture and rainfed agriculture is large, as is the case in 

many Mediterranean areas (Mendelsohn & Saher, 2011). 

At present, economic instruments are gaining momentum as an alternative means of 

reducing water use. Economic instruments were first introduced into the EU water policy 

agenda through Article 9 of the Water Framework Directive (WFD), dedicated to water 

pricing (EC, 2000)  Economic instruments can be defined as incentives designed and 

implemented with the purpose of adapting individual decisions to collectively agreed 

goals (e.g. the environmental objectives of the WFD). There is a diverse range of 

economic instruments being applied in different EU member states, including tariffs for 

water services, trading schemes or voluntary agreements, among others. On the other 

hand, there are other economic instruments that are still being investigated and for 

which there is no available ex-post evidence on their performance. In these cases, an ex-

ante assessment is necessary to determine whether or not they are implementable, and 

if so, if they will produce the desired environmental outcome. This is the case with 

drought insurance for irrigated agriculture.  
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The EU has mostly classic, individually tailored agricultural insurance schemes (e.g., yield 

insurance in the case of drought insurance for rainfed agriculture). Although alternative 

collective insurance schemes such as index-based or financial derivative products have 

been explored, they have not succeeded so far due to a series of problems
1
 (Bielza et al., 

2008b). Agricultural insurance in the EU is generally private, although a certain degree of 

public support is necessary in a number of cases (as with drought insurance). Competition 

is low and in many countries the market is in the hands of no more than two or three 

insurance companies, who may operate within a pool and assume the risk in a co-

insurance regime. In general, the development of agricultural insurance in the EU 

member states is heterogeneous and depends on the risk level faced by each country and 

the financial support for the insurance system by the public sector (Bielza et al., 2008a). 

Drought insurance for irrigated agriculture may have the capacity to improve drought 

management and reduce illegal overexploitation in EU Mediterranean areas. This system 

guarantees a stable agricultural income during droughts so that the incentives for 

groundwater depletion are reduced. Accordingly, drought insurance may replace the 

current scheme in which farmers are transferring their individual risk to water 

ecosystems and thus to future generations by a formal risk-sharing scheme based on 

intra-generational and voluntary agreements. However, this mechanism requires a 

proper institutional set-up in which data on piezometric levels are transparent and up to 

date, drought indicators are objective, water users are sensitive to the overexploitation 

problem and drought insurance systems for irrigated agriculture are implementable. 

While the implementation of the DMPs and RBMPs has served to make relevant progress 

with the first three preconditions (CHS, 2008; 2013), the latter is still pending since 

drought insurance for irrigated agriculture does not exist in Europe (Bielza et al., 2008a). 

The main problem for the development of drought insurance for irrigated agriculture is 

related to the systemic nature of droughts. Droughts may affect large areas and 

consequently drought indemnity in profitable irrigated areas may result in unaffordable 

losses for a conventional insurer. In addition, insurance markets are usually plagued with 

moral hazard and adverse selection problems, and drought insurance for irrigated 

agriculture is no exception. Nonetheless, insurance systems have developed strategies to 

reduce the impact of these problems: moral hazards can be significantly reduced with the 

establishment of a deductible of the insured product that avoids full loss recovery, and 

thus the existence of individual strategic behavior; the adverse selection problem can be 

addressed within the so-called combined insurance scheme — a system that offers 

                                                           
1
 Index-based products are best suited for homogeneous areas where all farms 

have highly correlated yields (for example, in the Corn Belt in the USA). Given 

the heterogeneity of climates, geography and production systems in many EU 

countries, the efficiency of index-based products is lower here. In addition, time 

series of yield losses in the EU are often only available at a regional level, 

comprising relatively large regions. Some of these regions (like Andalusia or 

Castile and León in Spain) are large and heterogeneous, making it difficult to 

create an index that can be used for all farmers in the region; in these cases, the 

use of yield data at a more disaggregated level would be advisable or even 

necessary. Finally, there are also some regulatory problems that may make 

index-based products incompatible with the Community directives (Bielza et al., 

2008b).  
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drought insurance only as a part of a comprehensive insurance package that covers a 

varied range of agricultural risks (not only those that are more likely to happen) and thus 

reduces the uncertainty for the insurer; and the systemic risk is tackled with public 

support
2
. These strategies have made possible the development of drought insurance 

markets for rainfed agriculture in some EU countries (e.g., Austria, France, Italy and 

Spain) (Gómez et al., 2011).  

However, drought insurance for irrigated agriculture has not been developed, and 

drought losses in irrigated areas in these countries are covered through expensive and 

publicly supported emergency funds (Meuwissen et al., 2003; Rejda, 2008). It thus seems 

that the main explanation for the absence of drought insurance for irrigated agriculture in 

the EU has more to do with insufficient institutional development than with the cost, 

which would actually be lower for the public sector than with the current system. Indeed, 

drought insurance for irrigated agriculture is increasingly regarded in some member 

states as an inexpensive means of compensating farmers and reducing illegal abstractions 

in an economic context marked by budget cuts. For example, preliminary negotiations 

between the insuring firms and the Ministry of Agriculture, Food and Environmental 

Affairs are already ongoing in Spain (Representatives of the Spanish Association of 

Agrarian Insuring Firms, personal communication) 

In such a policy context, assessing the implementability and advancing the potential 

water savings that can be attained through drought insurance for irrigated agriculture 

becomes of paramount importance. This paper presents a methodology which combines 

a stochastic water availability model, a decision model and site-specific agronomic 

production functions in order to estimate i) the potential water savings and ii) the fair risk 

premium that would stem from a hypothetical drought insurance market. The fair risk 

premium is the quotient of the expected indemnity (which is equivalent to the share of 

the yield losses effectively compensated by the insurer
3
, measured in constant prices

4
) to 

the production value in a normal hydrological year (i.e. without drought), and can be 

interpreted as the minimum long-term cost for this scheme to be provided by a 

competitive and risk-neutral insurance firm. Thus, it is a crucial value in assessing the 

financial viability of private drought insurance for irrigated agriculture. It is important to 

note that the fair risk premium is a first step in the development of drought insurance 

markets for irrigated agriculture and does not imply that the final risk premium will be 

close to this value; as stated above, this will depend on the incidence of the moral hazard, 

adverse selection and systemic risk problems and on the availability of public support. 

                                                           
2
 For example, in Spain catastrophic losses are covered by the Insurance 

Compensation Consortium. The Consortium assumes cover for the extraordinary 

risks on a subsidiary basis and will pay indemnification when a private insurer 

has assumed cover and is subsequently not able to settle claims. The Consortium 

is funded via a surcharge on insurance policies and a fixed percentage of every 

premium contracted by insurance companies is paid to the organization. 
3
 Insurance systems compensate only a fraction of the yield losses. This avoids 

full loss recovery and thus reduces the incidence of moral hazard. 
4
 Neither income insurance (price, yield and costs) nor revenue insurance (price 

and yield) exist in the European Union, where yield insurance prevails (Bielza et 

al., 2008a). As a result price variability is not considered in our model. 
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This methodology is illustrated by applying it to the irrigated ligneous crops
5
 in the 

Campo de Cartagena Agricultural District in the Segura River Basin (Spain). 

The paper is structured as follows: in Section 2, we introduce the area where the case 

study is applied — the Campo de Cartagena Agricultural District. Section 3 presents the 

methodology used to estimate the fair premium risk, and Section 4 presents the results 

obtained. Section 5 discusses the results and concludes the paper. 

 

2. THE CASE STUDY AREA: CAMPO DE CARTAGENA IN THE SEGURA RIVER BASIN 

(SPAIN) 

 

The Campo de Cartagena Agricultural District is located in the Segura River Basin (SRB) in 

the south-east of Spain (see Figure 1). The SRB is a good example of the abovementioned 

trends. In order to reduce water scarcity, supply side policies have been common in the 

basin. This has included the construction of dams and canals, intense irrigation 

modernization within the framework of the National Irrigation Plan 2000-2008 and, more 

importantly, the construction of a massive water transfer in the 1970s with the capacity 

to transfer up to 600 million cubic meters (or cubic hectometers, hm
3
) per year from the 

Tagus’ headwaters to the SRB, known as the Tagus-Segura Water Transfer (CHS, 2013). 

However, none of these infrastructures delivered the expected outcome, and water use 

continued to increase and eventually exceeded water supply. More recently, C&C policies 

have complemented traditional supply policies. As a result, the SRB has already approved 

its DMP (CHS, 2008) and is about to publish its RBMP, for which there is already a 

preliminary report available(CHS, 2013).  

The SRB has traditionally been an overexploited basin. Many hydrogeological units in the 

basin were declared overexploited in the 1980s (CHS, 2013) and several restrictions to 

water use have been formally established since. This includes a prohibition on issuing 

additional water rights for irrigation since 1986 (CHS, 2013). However, between 1990 and 

2000 irrigated surface grew at an average rate of 6,500 ha/year, and currently only 

155,313 ha of the 225,356 ha under irrigation in the Region of Murcia (comprising 71.4% 

of the total irrigated land in the SRB) has formal water rights (IDR-UCLM, 2005). At the 

same time water use for irrigation, which amounts to 89% of overall water use (CHS, 

2013), continued growing steadily: in 2003, the ratio between water abstraction and 

renewable resources in the river basin was an alarming 1.27; by 2009, this ratio had shot 

up to 2.5, denoting one of the most serious cases of overexploitation in Europe (EEA, 

2009; CHS, 2013). In spite of the development of a new regulatory framework based on 

the SRB’s DMP and RBMP, the economic and political cost of enforcing water use rights is 

recognized as prohibitive given the high income from irrigated lands, which in Campo de 

Cartagena is 80 times larger than from rainfed agriculture (Maestu et al., 2008). As a 

result, illegal abstractions have continued and the SRB accumulated groundwater 

overexploitation now amounts to 7,000 million cubic meters (hm
3
), including aquifers 

whose resources have been exhausted to such a degree that, even in the absence of 

                                                           
5
 Ligneous crops refers to crops from woody plants (i.e. plants that produce 

wood as their structural tissue) which includes trees and shrubs (fruit and berry 

trees, bushes, vines, olive trees). 
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more abstractions, it would take more than a century for them to completely recover 

(CHS, 2008).  

Campo de Cartagena, in the Sistema Cuenca Sub-basin of the SRB, is an agricultural 

district with approximately 13,000 ha of irrigated ligneous crops (28.9% of the total 

irrigated land), of which 39% is devoted to citrus trees. Water use for irrigation amounts 

to 58 hm
3
 in a normal hydrological year, of which 16.7 hm

3
/year is supplied by the 

aquifers in the area (Campo de Cartagena, Mazarrón, Sierra de Cartagena and Triásico de 

Carrascoy, see Figure 1). Since Campo de Cartagena does not possess a stable supply of 

surface water (rivers in the area are non-perennial), aquifers are severely overexploited 

and on average 36% of the formal groundwater abstractions are non-renewable (CHS, 

2008). In addition, illegal abstractions during drought incidence are widespread, in spite 

of the high abstraction costs. This is explained by the profitability of local agriculture, 

which is one of the most productive areas of Spain (Pérez et al., 2011). In this context, the 

implementation of drought insurance for irrigated agriculture may serve to significantly 

reduce the cost of controlling illegal abstractions.  

 

Figure 1: Location of the Segura River Basin in the Iberian Peninsula and detail of the 

Campo de Cartagena Agricultural District. 

 

 

Source: Authors’ elaboration 

 

3. METHODOLOGY 

 

The fair risk premium is the key element in the design of any commercial insurance and is 

estimated as the ratio between the expected indemnity (a function of the expected yield 

losses described above) and the expected yield value in a reference year (in this case, a 
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normal hydrological year). The expected indemnity and agricultural production are 

estimated from an assessment of the historical evolution of the insured product (Martin 

et al., 2001), in this case water availability, and its impact on the agricultural output 

through the use of agronomic production functions. We follow the standard procedure 

which makes the production functions dependent only on water availability, assuming 

the remaining variables to be constant (Pérez et al., 2011). The methodology that we 

present below allows the calculation of the expected indemnity and the expected 

agricultural production, as well as the resultant fair risk premium, through the 

development of a risk-production model which depends on three stochastic variables 

(rainfall, runoff and stock), institutional decision rules, site-specific agronomic production 

functions and a set of agricultural and insurance market variables. The model is made up 

of five stages: 

i) The first stage calculates the amount of water available in different 

scenarios and its associated probability, which is a function of the three 

stochastic variables: local rainfall (which satisfies plants’ water needs 

through the effective rainfall directly captured by crops) runoff, and the 

amount of water stored in the reservoirs in the whole basin (which are 

used to determine the amount of water delivered to the irrigation system) 

(CHS, 2008).  

ii) The second stage estimates the amount of water delivered to the irrigation 

system in accordance with runoff levels and stored water available and a 

set of decision rules (CHS, 2008). 

iii) The third stage first obtains the expected evapotranspiration. This value 

and the results in i) and ii) are used to calculate the percentage of 

evapotranspiration satisfied in each water availability scenario and the 

water demand in excess of available resources (irrigation deficit), which 

gives incentives to engage in illegal abstractions. 

iv) The fourth stage develops a deterministic agronomic model that estimates 

the yield (and yield value, using agricultural market variables) of every crop 

in each scenario as a function of the percentage of evapotranspiration 

satisfied obtained in iii).  

v) Finally the fair risk premium is estimated as the ratio of the expected 

drought indemnity to the expected production value, taking into account 

some special features of the drought insurance markets traditionally used 

to limit the impact of systemic risk and asymmetric information. 

 

3.1. First Stage: Water availability 

In Campo de Cartagena the water authority assigns the irrigation resources accounting 

for the amount of water stored in the reservoirs of the SRB and the basin’s annual runoff 

(CHS, 2008). Consequently, water availability in Campo de Cartagena is a function of the 

local rainfall and of the annual runoff and water stored in the reservoirs of the whole 

basin. Local rainfall is much lower than in other locations within the basin and has a 

negligible incidence over total runoff or water stock in the SRB due to the downstream 

location of Campo Cartagena. Thus, we consider rainfall as an independent variable. On 

the other hand, although the reservoirs of the SRB are partially dependent on the SRB’s 

runoff, a large share of the water stored in the reservoirs comes from external resources 

transferred from the Tagus’ headwaters through the Tagus-Segura Water Transfer, which 

has the capacity to transfer 600 hm
3
/year (as compared with the SRB average runoff of 
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650 hm
3
/year) (CHS, 2013). In turn, the amount of water transferred from the Tagus River 

Basin (TRB) is a complex decision which depends on a discretionary assessment made by 

institutions based on the runoff and the water stored in the reservoirs of the TRB (CHS, 

2008). In addition, the SRB is an extensively regulated basin and its reservoirs have the 

capacity to store up to 1,141 hm
3
 (1.75 times the average runoff), which means that its 

surface water stored depends not only on annual runoff and water transfers, but also on 

the runoff and transfers (and thus on the runoff and surface water stored in the TRB) of 

preceding years. Consequently, the link between runoff in the SRB and surface stored 

water in the SRB is weak and we treat both variables as independent.   

In the following sections we obtain the probability density functions (PDF) of the three 

relevant variables (rainfall, runoff and surface water stored) in order to determine the 

probability associated with each level of water availability.  

3.1.1. Rainfall 

Rainfall is a stochastic variable which can be adjusted to a PDF. This allows assigning a 

probability ( ) to each rainfall level ( ). Climatological research has supported the 

use of a gamma distribution to characterize the distribution of climatological variables  

exhibiting a physical lower bound of zero but no upper bound, such as precipitation or 

runoff (Martin et al., 2001; [Yue et al., 2001; Scholzel & Friederichs, 2008). Accordingly, 

we obtain the rainfall PDF as the best fit gamma function of the following type: 

     [1] 

where a and b are, respectively, the scale and the shape parameters. Table 1 presents the 

maximum likelihood estimators (MLEs) of the parameters. We use rainfall data for the 

Campo de Cartagena Agricultural District in the period 1941-2008 (AEMET, 2012). 

 

Table 1: Rainfall gamma function. The dependent variable is mm of rainfall per year. 

Variable Coefficient 

a (scale) 16.358
a
 

(2.821) 

b (shape) 22.9964
a
  

(2.286) 

No. of observations 68  

Estimated by maximum likelihood. Standard errors in parentheses. 

a: significant at 1 the per cent level.  

Source: Authors’ elaboration from MARM, 2009b 

 

3.1.2. Runoff 

Annual runoff in our model is measured as a percentage over the storage capacity of the 

reservoirs in the river basin. As with rainfall, we adjust the runoff to a gamma PDF (see 

discussion above). This allows assigning a probability ( ) to each runoff level 

( ). The gamma function can be represented as follows: 
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     [2] 

where a and b are, respectively, the scale and the shape parameters. Table 2 shows the 

best fit parameters for the runoff function. We use runoff data for the SRB in the period 

1941-2008 (MARM, 2008). 

 

Table 2: Annual runoff gamma function. The dependent variable is the percentage of 

annual runoff over the total surface water storage capacity.
 

Variable Coefficient 

a (scale) 6.1813
a
 

(1.088) 

b (shape) 0.1143
a 

(0.012) 

No. of observations 68 
Estimated by maximum likelihood. Standard errors in parentheses. 

a: significant at the 1 per cent level. 

Source: Authors’ elaboration from MARM, 2008 

 

 

3.1.3. Water stored in reservoirs 

Surface water stored is usually closely linked to runoff and rainfall patterns, and thus 

could also be adjusted using a gamma PDF (Scholzel & Friederichs, 2008). However, this is 

not the case in interconnected and extensively regulated basins, where the link between 

surface water stored and runoff is weak. Spanish south-eastern river basins like the 

Segura and Andalusian Mediterranean River Basins and some areas of the Guadalquivir 

and Júcar river basins are a good example of this type of water management. In these 

cases, the literature supports the use of Weibull functions for the adjustment of surface 

stored water PDFs.  (Gómez-Ramos et al., 2002; Pérez et al., 2011; Gómez & Pérez, 2012). 

A Weibull function assigns a probability ( ) to each amount of surface water stored ( ), 

measured as a percentage over the dam storage capacity (DSC) of the SRB. The Weibull 

function can be represented as follows: 

     [3] 

Table 3 shows the MLEs of the parameters in the function above. We use data on the 

water levels of the reservoirs in the SRB during the period 1941-2008 (MARM, 2008). 

These data are then aggregated to obtain a synthetic index of the total surface water 

stored as a percentage over the DSC of the SRB dams, which is the dependent variable in 

the function above: 
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Table 3: Surface water stored: Weibull function. The dependent variable is the 

percentage of dam-stored water over dam storage capacity (DSC). 

 

Variable Coefficient 

a (scale) 0.3411
a
 

(0.063) 

b (shape) 4.1286
a
 

(0.497) 

No. of observations 68 
Estimated maximum likelihood. Standard errors in parentheses. 

a: significant at the 1 per cent level. 

Source: Authors’ elaboration from MARM, 2008. 

 

 

3.2.  Decision rules 

At the beginning of every irrigation season, the water authority estimates the amount of 

water required for irrigation ( )
6
 according to the crops present in the sub-basin and 

their historical evapotranspiration data. Then, the water authority assesses annual runoff 

and water availability in the reservoirs (CHS, 2008) and determines the percentage of  

 that will be effectively satisfied ( ).  

Traditionally, the percentage of   effectively satisfied has followed discretional 

decision rules. This situation changed with the approval of the DMPs, which clearly 

establish a set of drought thresholds with specific restrictions associated. Nonetheless, 

DMPs still offer the possibility to follow discretional criteria during exceptional junctures 

(e.g. during extreme droughts or after a lasting drought, to speed up the recovery) (CHS, 

2013), so actually both decision rules are in force.  

3.2.1. Traditional decision rules to determine water delivery for irrigation 

In contrast with the situation created by the recently approved DMPs, the decision rules 

followed until now have been the result of a combination of social agreements, opinions 

of expert judges and discretion, with no written rules to be applied in any case, 

depending on the water available for the crop season. To formalize these decisions, we 

use the available data on the amount of water effectively delivered to farmers measured 

as a percentage of   satisfied. The available data span a range of 15 years (1992 to 

2007) (CHS, 2008). We found that the only relevant variable explaining the percentage of 

 satisfied in the past has been the runoff ( ). The relationship between the 

percentage of   satisfied ( ) and runoff ( ) is linear ( ) (Gómez-Ramos et al., 

2002). The parameters of the function are estimated using ordinary least squares
7
. 

 

                                                           
6
 Spanish river basins estimate TIR as the amount of water required to cover the 

80
th

 percentile of annual historical evapotranspiration with a global efficiency of 

the water provisioning system of 60%.  
7
 For values of  over 100%, the function is truncated and equals 1. 
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Table 4: Irrigation resources estimation under the traditional decision rules. The 

dependent variable is a percentage of TIR conceded in the SRB. 

Variable Coefficient 

Runoff (percentage over 

dam storage capacity) 

1.351
a
 

(.131) 

R2 89.14 

Adjusted R2 88.31 

No. of observations 15 
Estimated by ordinary least squares. Standard errors in parentheses. 

a: significant at 1 the per cent level. 

Source: Authors’ elaboration from CHS (2010b) 

 

3.2.2. DMP decision rules over water for irrigation 

The recently approved DMP for the SRB quantifies the particular situation at hand and 

the severity of the problem by using an objective and publicly observable drought index 

dependent on the values of the annual runoff and stock ( ). The drought index is 

calculated as follows (CHS, 2013): 

  [4] 

where  is an indicator that is unique for each sub-basin. In Sistema Cuenca, Campo de 

Cartagena’s corresponding sub-basin,  is obtained as follows: 

  [5] 

where  is the annual runoff as a percentage of the total dam storage capacity ( ) and 

 is water stock in reservoirs as a percentage of the total . Using  and  maximum, 

minimum and average values during the reference period, we obtain  and 

, respectively. 

The DMP establishes the following four drought thresholds: i) when water stored levels 

are regarded as normal ( ), there are no explicit restrictions, and thus the 

percentage of   effectively satisfied ( ) is the same as in the baseline or traditional 

decision rules scenario ( ); ii) water for irrigation is reduced by 10% ( ) 

when available water falls below the pre-alert threshold ( ); iii) if the alert 

limits are exceeded ( ), water for irrigation is reduced by at least 25% 

( ); and iv) in emergency situations ( ), water for irrigation is halved 

( ) (CHS, 2008).  

3.2.3. Combined decision rules 

We define  as a discrete water restriction variable whose value depends on the 

drought index (and thus on runoff and surface water stored values): 
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     [6] 

Water delivered for irrigation is thus a function of runoff and water stored in reservoirs 

( ): 

     [7] 

3.3. Third stage: Evapotranspiration satisfaction, irrigation deficit and illegal 

abstractions 

We measure the expected crop evapotranspiration ( , in mm) for every irrigated 

ligneous crop in La Campiña according to the Spanish Ministry of Environment standard 

method, using data for the period 1941-2009 (MARM, 2011)
8
. The evapotranspiration 

thus obtained is partially covered by effective rainfall ( , in mm).  is a function of 

stochastic rainfall ( ), whose PDF was obtained in [1], and a series of parameters which 

can be safely assumed to be constant
9
: 

    [8] 

The part of evapotranspiration ( ) that is not covered by effective rainfall is the 

irrigation water requirements ( , in mm): 

     [9] 

 can either be satisfied with irrigation or left uncovered, depending on the available 

water resources and the decision rules in force. The total amount of water delivered for 

irrigation was obtained in the previous section ( ). Nonetheless, only a fraction 

of the  effectively contributes to satisfying evapotranspiration due to water 

losses during the abstraction, transportation and irrigation processes. The effective 

irrigation resources ( ), or the part of the irrigation resources that effectively 

satisfy evapotranspiration, is a function of  and the overall efficiency of the 

irrigation system ( ), which is around 87% in Campo de Cartagena (CHS, 2008): 

    [10] 

The percentage of the evapotranspiration satisfied ( ) for a random year with a given 

rainfall ( ), runoff ( ) and water stored in reservoirs ( ) can now be obtained from the 

previous equations, as follows:  

                                                           
8
 MARM methodology follows a combination of the Thornthwaite and Penman-

Monteith Methods (see, for example, Allen et al., 2006).  
9
 Effective rainfall (ER) is estimated using the Soil Conservation Service–USDA 

methodology for Spain (Cuenca, 1989), which is a function of the humidity 

deficit (f(D)) (whose value for the SRB can be taken from Cuenca (1989)), rainfall 

(p) and expected evapotranspiration (ET) (constant). It is measured in annual 

mm: 
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     [11] 

Each  value has an associated probability ( ), which depends on the stock (s), 

runoff (r) and rainfall (p) values for that year. Using expressions [1], [2] and [3] this 

probability can be expressed as follows: 

Ç Ç      [12] 

Finally, the expected evapotranspiration satisfaction ( ) and the resultant expected 

irrigation deficit ( ) and expected potential for illegal groundwater abstractions 

( ) are defined as follows: 

     [13] 

     [14] 

      [15] 

Where ,  and  are the values of the variables ,  and  that make the 

cumulative density function equal to 1 (i.e. the probability of any value above this limit is 

zero),  is the efficiency of illegal groundwater abstractions in the SRB, estimated at 

25% (CHS, 2008). 

3.4.  Fourth stage: Agronomic production functions and production value 

The agronomic production of a given crop depends largely on available water, either from 

rainfall or irrigation ( ). However, making the production function of a crop 

dependent only on the evapotranspiration satisfied suggests the exclusion of other 

variables that may affect the production function (soil type, fertilizers and 

phytosanitaries, climatic variables, etc.). On the other hand if we consider this set of 

variables to be constant ( ) it is still possible to develop sound and rigorous agronomic 

production functions that provide results close to observed values (SCRATS, 2005; Pérez 

et al., 2011). Thus we obtain the agronomic production in kg/ha ( ): 

     [16] 

The reference agronomic production functions for the crops considered are obtained 

after a comprehensive bibliographical review (Almarza, 1997; Pérez-Pastor, 2001; 

SCRATS, 2005; Alarcón et al., 2006; Mañas et al., 2007; Vivas Cacho, 2010). In the cases 

where there are no site-specific production functions available, production functions are 

adapted to the characteristics of the area of the case study (SCRATS, 2005; MARM, 2010). 

To do so it is assumed that the local characteristics have fixed effects that shift the 

reference agronomic production functions but maintain their elasticity and marginal 

productivity. The resultant production functions are quadratic:  

     [17] 

Where .  and  are the parameters that determine the impact of 

water availability over the agronomic production and  is a constant that captures 

the effect that the remaining variables ( , assumed constant) have over the agronomic 

production. For all the crops it is considered that the agronomic production is null when 
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 falls below 50% (SCRATS, 2005)
10

. This value is increased to 70% for citrus trees 

and 85% for Pyrus communis and Prunus persica. Then we obtain the value of the 

production, which is the product of agronomic production ( ) times the updated 

average prices of the last 10 years ( )
11

 (MARM, 2007).  

     [19] 

During a normal hydrological year without drought (i.e. when ), we 

refer to the agronomic production as normal agronomic production ( ). Accordingly, 

the production value in a normal hydrological year is denominated as the normal 

production value ( ).  

3.5.  Fifth stage: Fair risk premium 

The key element of any insurance market is the estimation of the fair risk premium that, 

given the likelihood of a catastrophic event, guarantees a certain level of coverage for the 

insured with no losses for the insurer in the medium-long term. The fair risk premium is 

thus obtained as the quotient of the expected indemnity ( ) to the production value in a 

normal hydrological year without drought ( ). The latter has already been obtained 

in the previous section; in what follows, we estimate the expected indemnity for drought 

insurance in irrigated agriculture.  

The indemnity conceded by a drought insurance system in the EU after a drought is 

subject to two prerequisites:  

i) First, the drought must be institutionally acknowledged. This is of crucial 

importance for private insurers, as financial public support is only available 

when a drought is institutionally declared. In Spain, a drought is officially 

declared when the DMP comes into force (i.e., there is a prealert, alert or 

emergency state) and irrigation restrictions are implemented. In the 

particular case of the SRB, this happens when  . We generate a 

dichotomous variable,  , to include this condition in our model: 

     [20] 

ii) Second,  insurance systems cover at most a fraction of the yield losses, in 

order to avoid moral hazard. This means that a deductible ( ) applies. In 

                                                           
10

 Actually, there is no data on production values for any species for 

below 50% (70% for citrus trees). Below this value, water availability is 

not enough for agricultural production, and may even put at risk the survival of 

ligneous crops (SCRATS, 2005). Moreover, DMPs consider ligneous crops a 

priority use (only after household and environmental supply) and guarantee a 

minimum water supply to avoid catastrophic losses. As a result of this, once 

calibrated the quadratic functions of these species may show a negative 

agronomic production under extreme droughts. We rule out this possibility and 

for production values < 0, the function is truncated and equals 0. 
11

 In the EU, drought insurance systems insure only yield losses, excluding price 

variability. As a result, the yield/production value is obtained using constant 

prices. In the case of Spain, prices are assumed to be an average of the previous 

years (Bielza et al., 2008a;2008b; Gómez et al., 2011). 
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Spain this deductible is 30%, implying that a maximum of 70% ( ) of 

the yield losses would be compensated by the insurer (Bielza, 2008b). For 

example, in an extreme situation in which all the yield is lost ( ), 

the indemnity would equal 70% of the normal production value 

( ) and thus 70% of the yield losses would be recovered. 

However, if there have been yield losses due to a drought ( ) 

but the observed production value is still greater than or equal to this 

maximum compensation threshold ( ), the 

indemnity would be zero (0% loss recovery). Finally, if the production value 

is between  and , the indemnity would equal the 

maximum possible indemnity minus the observed production value 

( ), meaning that the loss recovery ratio would be in 

the interval (0%, 70%). Indemnity in every possible scenario ( ) 

is thus defined as follows: 

     [21] 

 

Now we use the equations [20] and [21] and the PDFs obtained in Section 3.1 (equations 

[1], [2] and [3]) to obtain the expected indemnity ( ) for each crop: 

     [22] 

where again  ,  and  are the values of the variables ,  and  that make 

the cumulative density function equal to 1, and  and  are the probabilities 

for every value of ,  and , respectively.  

Finally, the fair risk premium ( ) is obtained as follows:  

     [23] 

4. RESULTS 

The methodology above has been applied to the particular case of the Campo de 

Cartagena Agricultural District. First, we estimated the expected evapotranspiration 

satisfaction ( ) and the subsequent expected irrigation deficit ( ) and expected 

potential for illegal groundwater abstractions ( ). We estimated expected 

evapotranspiration satisfaction at 43.3 hm
3
/year, 92.3% of the total evapotranspiration of 

45.7 hm
3
/year. Accordingly, the expected irrigation deficit amounts to 2.4 hm

3
/year, 

which given the low efficiency of illegal groundwater abstractions results in an expected 

potential for illegal groundwater abstractions of 9.5 hm
3
/year (more than half of annual 

legal groundwater abstractions, estimated at 16.7 hm
3
). It is important to note that this is 

an expected value: for example, during emergency situations ( ) the expected 

potential for illegal groundwater abstractions soars up to 38.8 hm
3
/year according to our 

model (while in normal hydrological years it is 0). 

 can be interpreted as the potential of drought insurance to prevent illegal 

groundwater use during drought. Accordingly, a successful drought insurance system can 
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help to both stabilize farmers’ income and significantly improve the quantitative status of 

groundwater bodies. However, the viability of this system needs to be assessed first. This 

viability depends on the long-term cost of the drought insurance for the insurer ( ). In 

order to estimate the  we start by calibrating the parameters of the agronomic 

production functions for the ligneous crops in the Campo de Cartagena Agricultural 

District. 

 

Table 5: Agronomic production functions, ligneous crops in Campo de Cartagena 

Agricultural District (kg/ha) 

 

Crop/Coeff.   ( )  

Prunus dulcis -7,796.7
 a

 15,609
 a

 1,346.7
 a

 0.89 

 
(364.2) (1680.6) (160.9) 

 
Prunus armeniaca 6,224.1

 a
 52.41

 a
 8,933.4

 a
 0.81 

 
(859.5) (6.5) (1395.3) 

 
Citrus × limon -16,967

 a
 53,265

 a
 -13,288

 a
 0.99 

 
(2282.6) (5874.9) (1601.2) 

 
Citrus reticulata -13,712

 a
 49,445

 a
 -12,335

 a
 0.92 

 
(1650.9) (5005.5) (583.4) 

 
Prunus persica -61,794

 a
 110,955

 a
 -24,804

 a
 0.86 

 
(6571.4) (13261.9) (3314.4) 

 
Citrus × sinensis -16,013

 a
 52,947

 a
 -13,208

 a
 0.93 

 
(2148.4) (6266.0) (1485.3) 

 
Pyrus communis -43,034

 a
 88,101

 a
 -25,626

 a
 0.79 

 
(4392.6) (9480.1) (3886.1) 

 
Vitis -11,918 

a
 23,859 

a
 2,058.4 

a
 0.83 

  (562.8) (3452.5) (313.6)   
 

Estimated by OLC. Standard errors in parentheses. 

a: significant at the 1 per cent level. 

Sources: Authors’ elaboration from MARM (2010) (all crops), SCRATS (2005) (citrus trees), Mañas et al. (2007) 

(Prunus dulcis), Almarza (1997) (Vitis), Alarcón et al. (2006) (Prunus persica), Vivas Cacho (2010) (Pyrus communis) 

and Pérez Pastor (2001) (Prunus armeniaca). 

 

Once the agronomic production functions have been calibrated, we apply the 

methodology above to obtain an estimation of the long-term cost of this scheme, both in 

absolute terms (expected indemnity, ) and as a percentage over the production value 

in a normal hydrological year (fair risk premium, ). The table below shows these 

results and also the intermediate values of the agronomic production ( ) and the 

production value ( ) in a normal hydrological year. Results are displayed for every 

ligneous crop in the Campo de Cartagena Agricultural District: 
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Table 6: Normal Agronomic Production ( ), Normal Production Value ( ), 

Expected Indemnity ( ) and Fair Risk Premium ( ) for the ligneous crops in Campo 

de Cartagena Agricultural District. 

Variable/Crop 
Prunus 

dulcis 

Prunus 

armeniaca 

Citrus 

× 

limon 

Citrus 

reticulata 

Prunus 

persica 

Citrus × 

sinensis 

Pyrus 

communis 
Vitis  

 

(kg/ha/year) 9 159 15 210 

23 

010 23 398 25 001 23 726 19 441 13 999 

 

(EUR/ha/year) 5 428 5 286 5 825 2 559 9 630 2 351 3 775 2 313 

 

(EUR/ha/year) 0.5 49.7 213.2 233.6 13.5 199.4 5.3 0.2 

 (%) 0.01% 0.94% 3.66% 9.13% 0.14% 8.48% 0.14% 0.01% 

 

Source: Authors’ elaboration 

 

Citrus trees have the highest : 9.1% for the Citrus reticulata, 8.5% for the Citrus × 

sinensis and 3.7% for the Citrus × limon. This is largely explained by their comparatively 

high drought vulnerability and the resultant high  (which ranges between 199 and 234 

EUR/ha/year), which makes these crops the most expensive to insure. These results are 

particularly important as citrus trees are the most significant ligneous crops in Campo de 

Cartagena, representing 11% of the total irrigated surface and 39% of the surface of 

irrigated ligneous crops.   

The remaining fruit trees show lower . Prunus persica has the highest , but a 

low vulnerability to drought and thus a low , which results in a  of only 0.1%. 

Prunus armeniaca has a lower but still high , a small  and a   of 0.9%. Pyrus 

communis has a particularly low  and a  of 0.1%
12

. 

Finally, the lowest  is that of the Vitis and the Prunus dulcis (0.01%). Vitis and Prunus 

dulcis have traditionally been rainfed crops in the SRB and this explains their higher 

drought resilience (  for the Prunus dulcis and Vitis is 0.5 and 0.2 EUR/ha/year, 

respectively) and their low  .  

The low  of crops like Pyrus communis does not mean that they are not vulnerable to 

suffering drought losses; rather, this means that the largest losses appear in droughts 

with a low probability (very low local rainfall and low runoff and water stored 

                                                           
12

 Although both Pyrus communis and Prunus persica need a high  

(above 80%) in order to have a positive production, the total evapotranspiration 

of these crops ( ) is low and therefore the irrigation water requirements ( ) 

are low or even null during years with sufficient rainfall. As a result, the 

likelihood of suffering the impacts of a drought are more reduced than with 

crops with a higher , such as citrus trees.  



C.D. Pérez-Blanco and C.M. Gómez (2013) (in press)                                               18 

 

 

 

simultaneously). In any case, low  crops are still vulnerable to moderate losses 

during likely droughts, and insurance can help to stabilize agricultural income. 

Nonetheless, the relatively low evapotranspiration of low  crops implies that their 

potential to reduce illegal groundwater abstractions is limited (e.g. the irrigation water 

demand of Vitis is 47% of that of Citrus x limon). In comparison, the production value of 

water-intensive crops with high , such as citrus trees, may drop as much as 100% 

during likely droughts.  

All the FRPs obtained are at least ten times lower than the amount farmers in Southern 

Spain are willing to pay for water security, as estimated by Gutiérrez-Martín & Gómez 

(2011). This is consistent with economic theory, as there is considerable evidence 

showing that farmers are risk-averse individuals who are ready to pay in excess of their 

expected loss in order to have a more secure income (Torkamani & Haji-Rahimi, 2001; 

Binici et al., 2003; Tobarra & Castro, 2011). 

 

 

5. DISCUSSION AND CONCLUSION 

 

Water overexploitation, particularly from agriculture, is the most important 

environmental threat faced by EU Mediterranean areas. This problem is delaying the 

fulfillment of the environmental goals prescribed by Community law and is reducing or 

even stopping household water supply during drought occurrence, which are both 

priority objectives of the Water Framework Directive (EC, 2000). The authorities have 

tried to address this problem with the systematic implementation of supply and C&C 

policies. The most significant drawback of these policies is that they do not change the 

powerful incentives that drive water demand. For example, supply side policies that 

increase the availability of water resources have often been perceived by users as an 

opportunity to increase agricultural income (by shifting from rainfed to irrigated 

agriculture, for example) rather than as a chance to increase water security through the 

improvement of the quantitative status of overexploited water bodies. Consequently, 

these policies have backfired and have ended up reinforcing the trajectory of the system 

towards higher water scarcity and more frequent and intense droughts. 

An effective response to the problem of water overexploitation needs to put in place the 

necessary instruments to orientate individual voluntary choices towards the collectively 

agreed goal of improving the status of water bodies. In the particular case of illegal water 

abstractions in profitable irrigated areas, drought insurance may constitute a powerful 

economic instrument to reduce water use and transfer the cost of water security to 

intensive water users at an acceptable cost. In our case study area the implementation of 

drought insurance schemes would have the potential to save up to 9.5 hm
3
/year on 

average at a basic cost of less than 10% of the production value in a normal year.  

Although drought insurance for irrigated agriculture does not exist in Europe, the 

necessary conditions for its development in drought-sensitive areas of Southern Europe 

may be in place with the new Community legal framework, characterized by the DMPs 

and the RBMPs. RBMPs and DMPs indicate a clear commitment to stop illegal 

abstractions during drought occurrence through an improved surveillance mechanism 
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(which includes an up-to-date groundwater inventory), clear abstraction rules and more 

rigorous application of sanctions. However, the effectiveness of these plans has been 

limited so far due to the incentives to engage in illegal groundwater abstractions during 

drought as a result of the high agricultural income. Drought insurance systems for 

irrigated agriculture can stabilize agricultural income and therefore present relevant 

synergies with DMPs and RBMPs that may be used to reduce the incentives for illegal 

abstraction.  

However, even if the right packaging is found, this does not guarantee its success. There 

is a vast amount of literature that shows how past institutional choices influence the cost 

of changing institutions and may eventually block the adoption of a policy, even if this 

policy is desirable (institutional lock-in, North, 1990). According to this literature, the 

transition towards the implementation of an instrument such as drought insurance may 

be as relevant as the very design of the instrument. There are two key variables in this 

process: transaction costs and sequencing (McCann et al., 2005; Garrick et al., 2013). 

Transaction costs are particularly relevant in the case of insurance markets. The most 

relevant include moral hazard, adverse selection and systemic risk. Assessing the impact 

of transaction costs over the drought insurance premium is beyond the scope of this 

paper, and further research is needed in this direction. In any case, the  obtained 

with our model are shown to be at least ten times lower than the amount of money that 

farmers in Southern Spain would be willing  to pay for water security (Gutiérrez-Martín & 

Gómez, 2011). In principle, this difference leaves enough room to deal with the costs 

stemming from asymmetric information problems (moral hazard and adverse selection) 

and systemic risk, as suggested by recent research (estimations of transaction costs for a 

variety of agricultural insurance markets can be found for example in World Bank, 2005; 

Bryla & Syroka, 2007; Dick, 2007; and Breustedt et al., 2008). 

Sequencing is based on the concept of adaptive efficiency (e.g. Carey & Sunding, 2001). 

The objective is to select the sequence of institutional innovations with the highest 

potential to reduce the implementation costs of a given policy over time. These 

institutional innovations must be designed with a double purpose: i) to reduce the direct 

transaction costs through cumulative processes of demonstration, learning by doing, etc. 

in order to enhance the acceptability of the scheme such that the transaction costs of the 

next institutional change are reduced (as the policy becomes more socially acceptable); ii) 

the gradual tuning of the instrument so that its effectiveness is increased by the 

progressive improvement of its design.  

One central element in this process is the opportunity to assess how the instrument 

performs and its contribution to the objectives of the water policy. In this sense it is not 

only important to produce evidence on, for instance, the number of farmers using 

drought insurance for irrigated agriculture, but to show that this instrument contributes 

to reducing scarcity through the better quantitative status of groundwater bodies. This is 

an essential requirement to show that the scheme is beneficial not just for those directly 

involved, and to make third parties aware of the advantages of proceeding in this way. 

If these obstacles can be successfully addressed, drought insurance may become a useful 

means of reducing illegal groundwater abstractions during droughts. In fact, drought 

insurance for irrigated agriculture is increasingly regarded in some member states as an 

inexpensive means (when compared to expensive emergency funds, Meuwissen et al., 

2003) of reducing illegal abstractions in an economic context marked by budget cuts, with 

preliminary negotiations already ongoing between the public and private sectors in Spain 
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(Representatives of the Spanish Association of Agrarian Insuring Firms, personal 

communication). 
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Appendix I: Summary of variables and parameters. 

 

Variable Description 

 Rainfall (mm) 

 Runoff (percentage over the storage capacity) 

 Water stored in reservoirs (percentage over the storage capacity) 

 Gamma PDF (Rainfall) 

 Gamma PDF (Runoff) 

 Weibull PDF 

 Scale parameter, Gamma/Weibull PDF 

 Shape parameter, Gamma/Weibull PDF 

 Amount of water required for irrigation according to the crops 

present in the sub-basin and their historical evapotranspiration 

data 

 Percentage of  satisfied under traditional decision rules 

 Percentage of  satisfied under the DMP decision rules 

 Water restriction variable resulting from the combination of 

 and  

 Percentage of  satisfied 

 Expected crop evapotranspiration 

 Effective rainfall 

 Irrigation water requirements 

 Overall efficiency of the irrigation system 

 Effective irrigation resources 

 Percentage of ET satisfied 

 Probability of  

 Expected evapotranspiration satisfaction 

 Expected irrigation deficit 

 Efficiency of illegal groundwater abstractions 

 Expected potential for illegal groundwater abstractions 

 Agronomic production function (kg/ha/year) 

 Other variables in the production function, assumed constant 

 Average prices, 10 years 

 Production value (EUR/ha/year) 

 Expected production in a normal hydrological year (without 

drought) (kg/ha/year) 

 Expected production value in a normal hydrological year (without 

drought) (EUR/ha/year) 

 Dichotomous variable – Drought threshold 

 Deductible (30% in our case study area) 

 Indemnity  

 Expected indemnity (EUR/ha/year) 

 Fair risk premium (%) 
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5.3 Water pricing  

 

According to the Article 9 of the WFD: “Member States shall take account of the 

principle of recovery of the costs of water services, including environmental and 

resource costs […]” (EC, 2000). However, while water pricing has been extensively 

used as a financial instrument (i.e., to recover the investment and maintenance 

costs of water infrastructures), the recovery of environmental and resource costs 

(i.e., its role as an economic instrument) has been largely neglected. As a result, 

current water pricing policies do not reflect the actual cost of the resource and do 

not provide the “[…] adequate incentives for users to use water resources efficiently, 

and thereby contribute to the environmental objectives of this directive” (i.e., the 

WFD) (EC, 2000). 

As a result of this narrow interpretation, most of the water pricing instruments that 

have been implemented so far in the EU focus exclusively on the recovery of the 

financial costs of water supply. This is the case of the most emblematic 

“environmental” taxes in Spain, which in reality are tariffs designed in most of the 

cases to recover the costs of sanitation and wastewater treatment infrastructures 

built to comply with EU standards (EC, 1998, 1991). Some of these pricing schemes 

include the Tax on water treatment (region of Castile-La Mancha, NUTS2: ES42), 

Tax on coastal wastewater discharge (Andalusia -ES61-, Murcia -ES62), Tax on 

radioactive waste (Andalusia), Tax on water (in the Balearic Islands -ES53-, Navarra 

-ES22-, Valencia -ES52), Tax on water and water pollution (Navarra, Aragón -ES24- 

and Cantabria -ES13), Tax on certain activities that cause environmental harm 

(Castile-La Mancha), Tax on the environmental damage caused by some uses of 

water from reservoirs (Galicia -ES11) and Tax on wastewater treatment (Madrid -

ES30) (EEA&OECD, 2013). 

 

Although narrowly focused on financial costs, water pricing has rapidly become a 

very widely used tool in water policy and this offers a good opportunity to extend its 

use to environmental and resource costs. In the case of Spanish agriculture, water 

pricing basically consists of three parts: the regulation fee (canon de regulación, 

covering the abstraction and storage costs of surface water), the water use tariff 

(tarifa de utilización del agua, covering the transportation costs of surface water) 
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and some quotas to pay the expenses of the irrigation communities
23

. For 

groundwater only the latter exists, since the financial costs of supplying water are 

assumed by the users (Maestu and Villar, 2007). This complex system generates a 

wide variety of water prices over the different basins. For example, average water 

prices in the Segura River Basin (0.061 €/m
3
) are 1.6 times larger than those of the 

Tagus River Basin (0.038 €/m
3
) (SRBA, 2013; TRBA, 2008). It is necessary to 

underline that this gap does not reflect the higher environmental and resource costs 

of water in water stressed Mediterranean areas, but rather the higher financial costs 

of abstracting and distributing the water in the Segura River Basin.  

Water pricing in Spain has failed to recover the environmental and resource costs, 

which are particularly relevant in the case of agricultural water use (EEA, 2013). 

Moreover, financial cost recovery is below 100% in all the Spanish basins (it ranges 

between 50% and 90% for the abstraction and storage costs and between 54% and 

98% for the transportation costs)
24

 (Maestu and Villar, 2007). Therefore, in these 

areas the mere implementation of the full cost recovery principle for financial costs 

may encourage a more sustainable water use (Caswell et al., 1990; EC, 2000).  

 

Traditionally, it has been assumed that higher prices do reduce water demand. 

Nonetheless, there is a very intense discussion ongoing regarding the capacity of 

water pricing to actually achieve this objective. According to some authors (Caswell 

et al., 1990; Kampas et al., 2012; Rivers and Groves, 2013), whose views are close 

to those of EU institutions (EC, 2012, 2000; EEA, 2013), higher water prices do 

reduce agricultural water demand. These authors state that water pricing has the 

highest potential to balance water demand and supply and may serve as a 

mechanism to achieve the river basin closure. Moreover, water pricing systems can 

be designed to prevent aquifer overexploitation where metering is available. In 

                                                           
23

 This payment can adopt different forms from one irrigation community to the other and 
from one area to the other. In traditional irrigation communities that use surface water, 
users make an annual payment according to the surface under irrigation. In more water 
stressed irrigation communities, a dual payment system applies: a payment for the surface 
under irrigation and a payment for the time during which the land is being irrigated. In new 
irrigated areas and irrigation communities with mixed water sources (surface and 
groundwater) a dual payment system applies as well. This is also the case in irrigation 
communities that rely mostly on groundwater, since the most relevant cost is that of the 
energy needed to pump the resource. Only where more efficient irrigation systems are in 
place (drip irrigation) a volumetric system applies (Maestu and Villar, 2007). 
24

 In addition, on May 2012 the Spanish government approved the Royal Decree-Law 
17/2012 on urgent measures regarding the environment. The most relevant modifications 
are in the articles 1.3 and 4, which include a clause creating exceptions to the application of 
the cost recovery principle for water (BOE, 2012). 
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conclusion, always according to these authors, water pricing contributes to make the 

economy more resilient by increasing buffer stocks and reducing conflicts around 

water. However, other authors state that water pricing not only does not reduce 

agricultural water demand (due to the large gap between the price and value of 

irrigation water) (Hellegers and Perry, 2006; Perry, 2005), but also may end up 

increasing water consumption through the incentives to adopt more efficient 

irrigation technologies that reduce return flows and aquifer seepage (see the 

Hydrological Paradox in Chapter 3) (Medellín-Azuara et al., 2012).  

If any evidence is to be extracted from the literature, this would be that both 

positions may be right and that the impact of water pricing over water use is case 

study sensitive. In any case, what this debate clearly points out is that water pricing 

policies should not be regarded as a panacea. A thorough ex-ante assessment is 

necessary prior to the implementation of this instrument in order to control for any 

possible rebound effect in water consumption. Although a null or positive effect of 

higher prices over water demand would not affect the role of water pricing as a cost 

recovery instrument, it would demand the implementation of alternative policies to 

attain the environmental goals of water policy. For example, in areas where an idle 

capacity of non-conventional water resources is available (e.g., desalinated water), 

water pricing can be used to make these resources more attractive to farmers and 

promote the substitution of overused and (financially) cheap conventional resources 

by (financially) expensive and underused desalinated water. 

  

In the following paper, prepared by the doctoral candidate and the Professors 

Gonzalo Delacámara and Carlos Mario Gómez Gómez, we develop a revealed 

preferences model that is used to assess the impact of water pricing over water 

demand in the Segura River Basin in Spain. The paper is entitled Water pricing and 

water saving in agriculture. Insights from a Revealed Preferences Model in a 

Mediterranean basin, and is under second review in Agricultural Water 

Management.  
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Abstract:  The large irrigation expansion of the last 50 years has significantly increased 

pressures over water resources in EU Mediterranean basins. Under these circumstances 

water pricing has been especially encouraged, since within the EU policy context it is 

widely believed that higher water prices reduce water demand. This paper presents a 

Revealed Preference Model that provides a clear intuition of the logic behind farmers’ 

choices by using standard economic analysis and implementing a multi-attribute utility 

function. The model is calibrated for the Agricultural Districts (ADs) in the overexploited 

Segura River Basin (SRB) in southeastern Spain. Results show that in highly profitable ADs 

such as those of the SRB, farmers may react to higher prices by reducing their gross 

margin instead of reducing water use (or employment). These results support the 

implementation of more ambitious cost-recovery policies and, where possible, the 

replacement of overexploited conventional resources by more expensive and mostly 

unused non-conventional resources.  
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1. INTRODUCTION 

 

The large irrigation expansion of the last 50 years has increased the pressures over water 

resources worldwide. In Southern Europe, irrigated land has doubled its area during this 

period and now represents between 70% and 80% of the total water use (Bosello and 

Shechter, 2013; EEA, 2009).  Some basins have been declared overexploited, and this has 

reportedly been aggravated by more recurrent and intense droughts as a result of climate 

change (Bosello and Shechter, 2013; Jenkins, 2013; EC, 2008).  

This water crisis has led EU institutions to consider different mechanisms to save water in 

the agricultural sector. In particular, water pricing has gained special momentum during 

the last years. Article 9 of the Water Framework Directive (WFD) states: “[…] water-

pricing policies provide adequate incentives for users to use water resources efficiently, 

and thereby contribute to the environmental objectives of this directive” (EC, 2000).  

The assertion that higher water prices can per se reduce water use was already supported 

in the seminal works by Caswell et al. (1990), Dinar and Subramanian (1997) and Tsur and 

Dinar (1997), among others. More recently, this negative relationship between prices and 

water use can also be found for example in Balali et al. (2011), Kampas et al. (2012), 

Rivers and Groves (2013) and Ward and Pulido-Velazquez (2008), and from an 

institutional perspective in EEA (2013), Bogaert et al. (2012) and EC (2012). However, 

there is also a significant body of literature that contends that this assumption is at best 

debatable (Cornish and Perry, 2003; Cornish et al., 2004; Hellegers and Perry, 2006; 

Molle, 2001; Perry, 2005; Steenbergen et al., 2007). Using empirical data from different 

agricultural areas around the world, these authors show that the large gap between the 

price and value of irrigation water demands a significant increase in water prices in order 

to attain relevant water savings, this resulting in substantial socio-economic losses in 

turn.  

In addition, recent evidence shows that higher water prices may put in place the 

necessary incentives to invest in the modernization of irrigation systems to reduce water 

use per output unit (Medellín-Azuara et al., 2012; Perry, 2011). However, after an 

increase in irrigation efficiency, although water use and withdrawals may actually fall, 

water availability for other uses may drop through increased consumptive use
1
 (either 

through a rise of the irrigated area or through a more water intensive crop portfolio), 

reduced return flows and lost aquifer seepage, in what is known as the hydrological 

paradox (Jensen, 2007; Rodríguez-Díaz et al., 2012; Scheierling et al., 2006; Ward and 

Pulido-Velazquez, 2008). As a result, water bodies may end up with higher exhaustion 

levels than before the water price was increased to "save" water. 

                                                           
1
 Water withdrawals refer to water removed from its source for a specific use, 

while water use is the amount of water demanded by users. The two flows are 

not the same because of leaks. Finally, water is consumed when a part of the 

water evaporates or becomes contaminated (Kohli et al., 2010).  
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Accordingly, although much work has been done on the economics of irrigation water 

pricing, there is still a remarkable lack of understanding of what impacts can be 

realistically expected from water pricing policies. This paper intends to shed light on this 

debate and applies a Revealed Preference Model (RPM) to explore the effects of water 

pricing over agricultural water demand and consumption and the potential of this policy 

for water savings and/or conservation. RPMs offer an edge on the traditional agricultural 

decision models used to date (i.e., linear programming, positive mathematical 

programming and multi-criteria decision models), such as multi-attribute and non-linear 

utility functions, more flexibility, a sound calibration mechanism and in general a stronger 

coherence with basic economic principles (see Section 3 for a more in-depth discussion 

on this). The model is calibrated for each of the 12 Agricultural Districts (ADs) in the 

Segura River Basin (SRB) in Spain. After the calibration process, a simulation is run in 

which the price of conventional water sources (groundwater and surface water) is 

progressively increased. After several iterations, the water demand curve for each AD is 

estimated. Lastly, these results are aggregated in order to obtain the water demand curve 

for the entire SRB District.  

It is important to note that the ratio of water demand/use over water consumption 

remains constant along the curve, since the high irrigation efficiency in the area 

discourages further investments to the irrigation systems in place
2
. Results show that 

water demand in the SRB is highly inelastic, mainly as a result of the high gross margin 

characteristic of irrigated areas in southeastern Spain, which absorbs most of the price 

shock. Thus, the potential of water pricing per se to induce water savings and/or 

conservation in the agricultural sector in this area is very limited.  

However, water pricing can be used to promote the swap of overused and cheap 

conventional resources by more expensive and underused desalinated water.  

In addition, the inelastic water demand and the large gross margins observed in 

agriculture may serve as an argument in favour of more ambitious cost-recovery policies.  

This paper is structured as follows: section 2 introduces the area where the case study is 

applied, the Segura River Basin in Spain, one of the most overexploited and profitable 

basins in the EU (EEA, 2009). Section 3 presents the steps that we follow in the calibration 

process of the RPM and how the calibration errors are estimated. Section 4 shows and 

discusses the results obtained and aggregates them into a single water demand curve for 

the whole SRB. Section 5 concludes. 

 

                                                           
2
 Water scarcity, recurrent droughts, high expected income and government 

subsidies have already pushed irrigation efficiency in the SRB to levels above 

90% in many ADs (SRBA, 2013). At this point, shifting to more efficient devices 

without government subsidies may not be profitable due to the higher operation 

costs (e.g., energy demands) and more complex management practices 

(Corominas, 2010; Gutierrez-Martin and Gomez, 2011). 
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2. WATER USE AND WATER PRICING IN THE SEGURA RIVER BASIN (SRB), 

SPAIN 

 

The SRB is located in southeastern Spain, comprising most of the territory of the Region 

of Murcia (NUTS2: ES62, according to ISO 3166-2) and parts of Castile-La Mancha (ES42), 

Andalusia (ES61) and Comunidad Valenciana (ES52). This area benefits from several 

competitive advantages, including abundant and cheap land
3
 and labor

4
, adequate solar 

radiation
5
 and proximity to high demand markets.  

All these factors make the SRB a thriving agricultural area that shows some of the highest 

productivity values in Spain and in the EU (Pérez-Blanco et al., 2011). Agricultural land 

covers 679,976 ha (52.1% of the total area of the basin), of which 269,022 ha are irrigated 

(20.6% of the total area and 39.6% of the agricultural land). The SRB comprises 12 ADs or 

comarcas (i.e., shires), namely, Sierra Segura and Hellín (in the Castile-La Mancha Region), 

Vinalopó and Meridional (in the Comunidad Valenciana Region), Nordeste, Noroeste, 

Centro, Río Segura, Suroeste-Valle Guadalenti and Campo de Cartagena (in the Murcia 

Region), Vélez and Bajo Almanzora (in Andalusia) (see Figure 1)
6
. It should be noted that 

these ADs are highly heterogeneous: those located in the coastal areas have the most 

profitable crops and demand more water than those in upstream areas, where less water 

intensive and rainfed crops are grown.   

Competitive advantages of the SRB explain the significant irrigation expansion witnessed 

in the area during the last 50 years (Eurostat, 2013). However, water in the SRB is scarce. 

Eventually, renewable water resources were unable to meet the increasing water 

demand, and the SRB became an overexploited basin. Many hydrogeological units in the 

basin were already declared overexploited in the 1980s and several restrictions to water 

use have been formally established since. This included the prohibition to issue additional 

water rights for irrigation since 1986 (BOE, 1986). However, since 1990 irrigated surface 

                                                           
3
 Spain has 261,000 km

2
 of agricultural land, the largest in the EU only after 

France; this represents 52.9% of the total area, as compared to the EU average 

of 43% (Eurostat, 2013). 
4
 Due both to the local labour cost and an elastic labour supply fed for many 

years from immigration, average gross annual earnings in Spain are 26,568, only 

slightly above the EU-27 average of 25,942 and well below the Eurozone average 

of 30,462 (Eurostat, 2013). 
5
 Spain has 2,910 sunshine hours per year, while national averages of other 

member states – with the exception of Portugal, are below 2,500 (FAO, 2013). 
6
 Four ADs located within the limits of the SRB have been excluded of our study 

since they represented less than 1% of the agricultural water use. These ADs are 

Sierra Alcaraz, Centro and Almansa (in the Castile-La Mancha Region) and Sierra 

Segura (the part located in the Andalusia Region).  
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has grown at an average rate of 6,500 ha/year (WWF, 2006), and this has boosted 

agricultural water use, which currently represents 89% of the total water demand of 

1,900 million cubic meters (or cubic hectometers, hm
3
) in the basin. Since renewable 

water resources in the basin equal 760 million cubic meters (SRBA, 2013), there is a large 

water deficit that is mostly covered through the overexploitation (in some cases, through 

illegal withdrawals) of the water stock stored in the SRB’s aquifers (Gómez and Pérez-

Blanco, 2012). 

The traditional response of water authorities to water scarcity in Spain has mostly 

consisted in supply-side policies to increase water availability. In the SRB in particular, this 

entailed subsidies to drill new wells, the construction and modernization of 

transportation, distribution and irrigation networks and the building of the Tagus-Segura 

Water Transfer (TSWT), a major diversion project with the  to transfer up to 1,000 million 

cubic meters/year from the Tagus River Basin located 242 km away
7
.  

Although these policies have made new irrigation developments possible that have 

helped to invigorate the local economy and to retain population in rural areas, they have 

also caused severe environmental problems, such as aquifer depletion and the 

destruction of riverine ecosystems (e.g., the formerly perennial Segura River currently 

does not reach the Mediterranean Sea during most of the year).  

When it was clear that conventional water sources were already at their limit, authorities 

turned to non-conventional water sources, including treated wastewater and, especially, 

desalinated water. Only in the last decade, public authorities invested more than €400 

million in the construction and modernization of desalination plants in the SRB (GWI, 

2012). In an effort to maintain the pace of infrastructure investment, the Spanish Ministry 

of Agriculture, Food and Environment is now trying to negotiate an additional €700-

million loan, following a €500 million loan used to bailout the public water utility in 

charge of supplying desalinated water in southeastern Spain (Acuamed) in 2012 (GWI, 

2013). All this investment and rising energy prices have made desalinated water an 

expensive source with a production cost around 1€/m
3
 (Maestu and Villar, 2007). In spite 

of the subsidies to make this water source more attractive to farmers (bulk desalinated 

water is sold in many agricultural areas at 0.36€/m
3
) (GWI, 2012), the low when not null 

price of conventional water sources make desalinated water unattractive (in the SRB, 

conventional bulk water prices range from 0 €/m
3
 in irrigated areas supplied with 

groundwater to 0.22 €/m
3
 in those areas receiving water from the TSWT) (SRBA, 2013).  

                                                           
7
 Although the actual capacity of the TSWT is 1 000 million cubic meters/year, it 

has been limited to 600 million cubic meters/year by law. However, since its 

opening in 1978, this infrastructure has been working much below this legal limit 

and has transferred in average 329.3 million cubic meters/year (SRBA, 2013). In 

addition, it has been the cause of a major conflict between the regions of 

Castile-La Mancha (largely belonging to the Tagus River Basin District) and 

Murcia (largely belonging to the Segura River Basin District).  
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Consequently, desalinated water is mostly used as a buffer stock during drought events, 

and only in those areas without access to reliable groundwater sources. As a result 

desalination plants, with the capacity to supply up to 1/6 of the annual water demand, 

are being used below 20% of their capacity (i.e., they are supplying 1/30 of the annual 

water demand) (SRBA, 2013).  

On top of that, this water policy has generated unrealistic expectations on the capacity of 

the system to absorb additional pressures. As a result, all these investments have 

paradoxically ended up increasing water demand, reducing water availability due to 

aquifer depletion and undermining the robustness and resiliency of the system and its 

ability to cope with future droughts. Only in the last decade, the ratio between water 

abstraction and renewable resources in the SRB has nearly doubled: in 2003, it was an 

upsetting 1.27; by 2013, this ratio had hit up to 2.5, denoting one of the most serious 

cases of overexploitation in Europe (EEA, 2009; SRBA, 2013).  

The WFD explicitly states that water pricing has to be used as an incentive to adapt water 

demand to the EU environmental standards, especially in overexploited areas such as the 

SRB (EC, 2000). Higher prices for conventional water sources in agriculture may improve 

the status of water bodies in the SRB in two ways: i) they can reduce the expected 

income and thus constrain water demand from low productive crops; and ii) they favour 

the substitution of the overexploited conventional water sources by the largely idle non-

conventional water sources. 

Although the average bulk water price for agriculture in the SRB is the highest in Spain 

(0.096 €/m
3
 for conventional water sources, almost twice as large as the Spanish average 

of 0.05 €/m
3
) (Maestu and Villar, 2007; SRBA, 2013), this price only reflects the higher 

financial cost of supplying water in the SRB as compared to other basins in Spain (mainly 

due to the large infrastructure investments and maintenance costs). Therefore, this water 

price does not take into account the economic value of the resource, including (among 

others) the environmental costs of water supply, which could significantly increase water 

price
8
.  

Moreover, the observed water price is not even enough to guarantee a financial full cost 

recovery, with cost recovery ratios ranging between 54.08% (for own surface water 

resources) and 80.82% (for the TSWT) (Maestu and Villar, 2007). This is even more 

shocking once it is considered that most of these investments were ultimately aimed at 

                                                           
8
 According to the Article 9 of the WFD: “Member States shall take account of 

the principle of recovery of the costs of water services, including environmental 

and resource costs […]” (EC, 2000). However, while water pricing has been 

extensively used as a financial instrument (i.e., to recover the construction and 

maintenance costs of water infrastructures), the recovery of environmental and 

resource costs has been largely neglected. This can be extended to most EU river 

basins.  
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guaranteeing water security in agriculture, a private activity
9
. This alone could justify a 

price increase based on the grounds of the cost recovery rationale. However, such a 

policy may also have adverse effects over the local economy, which heavily relies on 

agriculture. In the Region of Murcia, comprising 71.4% of the total irrigated land in the 

SRB, agriculture represents 4.9% of GDP and 10.36% of employment. The latter figure has 

special relevance for a region that holds an unemployment rate of 30.4% (INE, 2013).   

Consequently, an appropriate evaluation of the impact of water pricing has to consider 

not only the effects over total water use, but also the implications of this policy over the 

economy as a whole. In the next section we develop a RPM that, once calibrated, allows 

for a comprehensive assessment of the trade-off between environmental and productive 

uses of water.  

 

Figure 1. Location of the Segura River Basin and detail of the Agricultural Districts 

 

Source: Own elaboration 

                                                           
9
 Water demand from priority uses, namely, environmental flows and household 

supply, represents less than 10% of the total water demand in the Segura River 

Basin and could be met with less than 25% of the renewable resources available 

in the basin (SRBA, 2013). Since water supply for priority uses is guaranteed by 

law (SRBA, 2008), investments to increase water security were actually aimed at 

reducing uncertainty in other sectors, and especially in agriculture (89% of the 

total demand).  
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3. METHODOLOGY 

 

Economic literature has placed much effort in the last decade to the ex-ante assessment 

of the impact of water pricing over water demand and water consumption. The most 

commonly used methods so far have been based on Linear Programming (LP), Positive 

Mathematical Programming (PMP) and Multi-Criteria Decision Methods (MCDM). 

However, in spite of being widely accepted, these methods are not exempt of some 

degree of criticism.  

The need to represent complex decision problems with limited information has fostered 

the use of Linear Programming (LP) and Positive Mathematical Programming (PMP) to 

simulate farmers’ response against water pricing and to elicit water demand functions.  

Although the origin of LP dates back to the 1950s, it has been widely used in recent years 

to assess water pricing policies due to its low data requirements and flexibility (see for 

example Dono et al., 2010 and Kampas et al., 2012). However, this method has been 

strongly criticized as a result of its failure to approximate, even roughly, realized farm 

production plans and, therefore, to become a useful methodology for policy analysis 

(Paris, 2011). This criticism is grounded on the linear nature of this method, which often 

results in overspecialization and corner solutions.  

In addition, LP might be criticized by the way it deals with the parameter specification 

problem: there is an infinite set of parameters and functions able to lead the model to a 

perfect calibration, and each set of parameters and functions leads to a different 

behaviour in response to changing economic prices and policy constraints. 

PMP came as a response to the above-mentioned critiques. PMP offers many advantages 

over LP, including full calibration, a significant reduction in the number of resource, 

technical, economic and policy constraints, and the use of nonlinear cost functions that 

guarantee smooth simulation results.  

The use of these models to simulate farmers’ behaviour and to obtain water demand 

functions can be found for example in Blanco-Gutiérrez et al. (2011), De Frahan et al. 

(2007) and Heckelei and Britz (2005)). The general idea of these models consists in using 

information contained in dual variables of the calibration constraints to bind the solution 

of the linear profit-maximizing problem to observed activity levels
10

. Once these dual 

variables are identified they are used to specify a non-linear objective function, such as 

the production cost, provided that the marginal cost of the activities is equal to its price 

                                                           
10

 This linear model maximizes the profit associated to a vector of activity levels 

(x, represented by surfaces dedicated to a set of crops), with prices and unitary 

costs considered as constant and subject to a set of resource constraints. 
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in observed activity levels. This guarantees that both the profit maximization and cost 

minimization problems simultaneously lead to an optimal solution that exactly matches 

baseline activity levels (Heckelei and Britz, 2005; Howitt, 1995; Paris and Howitt, 1998)
11

.  

Although effective, this calibration mechanism is not rooted on explicit economic 

principles, which makes this the main criticism against PMP. The analyst using PMP might 

be forced to use ad-hoc arguments to explain empirical results. PMP methods do not 

provide information about estimation errors making uncertainty analysis somewhat 

unfeasible. 

Finally, Multi-Criteria Decision Methods (MCDM) have also played a major role in the 

assessment of water pricing policies (Rodrigues et al., 2013; Chung and Lee, 2009; 

Gómez-Limón and Riesgo, 2004; Berbel and Gómez-Limón, 2000). Contrary to PMP 

methods, in MCDM farmers do not act simply as profit maximizing agents; instead of that, 

agents consider other relevant attributes in their decision. Therefore, MCDM assume that 

farmers’ preferences can be represented by a weighted sum of different criteria, such as 

expected profits, risk, management issues and/or others, which provides a better 

explanation of current decisions. Although this method has succeeded in reproducing the 

baseline decision, the assumption that farmers respond with linear preferences to 

changes in policy is again an issue prone to discussion.  

Therefore, the construction of water pricing simulation models has been confronted so 

far with a trade-off between the model’s capability to provide numerical results for policy 

evaluation and its coherence with basic economic principles. However, it is still possible 

to develop a methodology that is consistent with these principles and yields useful results 

for policy analysis through the use of Revealed Preference Models (RPM). These applied 

models provide a clearer intuition of the logic behind farmers’ decisions by using 

standard economic analysis and by implementing a multi-attribute utility function. 

Moreover, RPM do not need to assume linear preferences (as in LP and MCDM) or 

implicit costs functions that are not observable (as in PMP). Although the complex 

programming and optimization procedure and the high data requirements of these 

models have made difficult their use as a policy assessment and project analysis tool, the 

advances in computational methods of the last two decades and the recent proliferation 

of high quality agricultural microeconomic databases in several EU countries make their 

implementation feasible.    

 

3.1. The Revealed Preference Model (RPM) 

 

                                                           
11

 The dual variables, obtained in the first stage and used to build the nonlinear 

objective function in the second, are assumed to capture any type of 

aggregation or model specification bias, any kind of risk attitude or price 

expectation as well as any lack of data or data measurement error 
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This section presents a RPM able to calibrate observed decisions with a procedure rooted 

in basic microeconomic theory. This method not only allows to obtain simulation results 

but also offers a clear interpretation of farmers’ responses to changing incentives and 

resource and policy environments. In this model, agents (the ADs of the SRB) decide on 

their crop portfolio trying to maximize their utility, which is a function of a set of relevant 

attributes that may contain expected profit, risk avoidance, management complexities 

and/or others. It is assumed that the explanation of any decision, consisting in a 

distribution of the available land among the different crop options, relies on an 

underlying utility function formed by the many attributes that agents use to assess all the 

alternatives they have, given crop prices and costs, resource availability and the other 

relevant economic, agronomic and policy constraints. According to that,  the observed 

decisions respond to a decision problem as follows: 

   [1] 

s.t.:          [2] 

      [3] 

       [4] 

      [5] 

Where  is the decision profile or the crop portfolio (a vector), showing one way to 

allocate land among crops, and each  measures the share of land devoted to the crop i, 

including a reservation option ( ) consisting of rainfed agriculture. From the agent’s 

perspective any particular crop may be considered as an asset with a known present cost 

and an uncertain value in the future (as crop yields are not known in advance). As the 

available land is taken as given, this investment may be represented as a share ( ) of 

available land.  represents the space of feasible decision profiles, given the different 

constraints
12

: policy, economic, agronomic and environmental. Finally , or alternatively 

the vector , are the attributes that farmers value. For example, farmers might prefer 

decisions with high expected profits, highly predictable yields and prices and not too 

many managing actions besides planting and harvesting. To accept taking high-risk 

options, risk averse farmers will ask for a compensation, for example, higher expected 

profits, and the same can be said about the willingness to accept crop decisions that 

demand additional management skills.  

Let us assume that the observed decision profile and the whole set of constraints defining 

the feasible decision set are known. Also assume that the set of potentially relevant 

                                                           
12

 These constraints vary for each AD. In our model we consider the following: 

land availability, available water resources, agricultural vocation (crops that have 

not been planted in an area before cannot appear in that area in the short run), 

crop rotation, CAP restrictions and ligneous crops restrictions (the surface of 

ligneous crops cannot change significantly in the short run). 
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decision attributes such as, for example, the expected profit, the variance of the expected 

profit, the hired labour demanded, the cost of inputs over the total cost and all the 

variables that might be relevant from the farmers’ point of view are measurable.  

Therefore, the first problem that it is necessary to deal with in order to reveal farmers’ 

preferences is to know which among the potentially relevant attributes are actually 

relevant to explain the observed decision. The method to answer this question consists in 

assuming that the relevant set of attributes is the one to which the observed decision is 

closest to the attributes possibility frontier. In real situations this efficiency frontier 

cannot be analytically defined with a closed mathematical function and the only way to 

represent it is by using numerical methods. One practical solution consists in drawing a 

line from the origin ordinate and through the observed decision attributes and ranging 

them as far as possible in the space of feasible attributes. This way we can measure the 

distance from the observed attributes to the efficiency frontier attributes. This procedure 

can be repeated for any set of potentially relevant attributes and the best candidate to 

reveal farmers’ preferences will be the one whose observed values were closest to its 

associated efficiency frontier. Formally, this problem must be solved for every member of 

the Power set (P(z), which comprises all possible combinations of potentially relevant 

attributes for the farmer) and for its associated observed attributes in the Power set 

(P(zo)) 
13

. 

The solution to this problem is an application assigning a distance  to 

each member of the power set . Each member of the power set (i.e., each possible 

combination of potentially relevant attributes) is denoted by , and its associated 

observed attributes by  . The relevant set of attributes (  will be the one with the 

lower distance to the efficiency frontier measured by the parameter . Summing 

up, the preference-eliciting problem can be presented as: 

       [6] 

Where:

      [7] 

       [8] 

By solving this problem the set of attributes that better explains current farmers’ 

decisions ( is obtained. Among the many factors that might be of relevance in farmers 

preferences, this set of attributes is the one that takes the observed decision closer to the 

attributes efficiency frontier.  

Once a farmer’s decision is shown as close as possible to the efficiency frontier, the 

second problem consists in eliciting the farmers’ preferences that explain the observed 

                                                           
13

 A power set P(Z) is the set of all the 2
m

 subsets of Z and the power set P0(Z) is 

the set formed by the 2
m

 subsets of the numerical set of observed attributes.  
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decision as a utility maximizing choice. Taking into account the relevant decision 

attributes obtained at the calibration stage, the multi-attribute utility function is the one 

that is able to represent farmers’ preferences in such a way that the observed decision 

becomes the optimal choice. Using basic economic principles and knowing the efficiency 

frontier in the surroundings of the observed decision allows one to integrate such a utility 

function. Rational decisions imply that in equilibrium farmers’ marginal Willingness To 

Pay in order to improve one attribute with respect to any other is equal to the marginal 

opportunity cost of this attribute with respect to the other. In other words, the marginal 

transformation relationship between any pair of attributes over the efficiency frontier 

( ) is equal in equilibrium to the marginal substitution relationship between the 

same pair of attributes over the indifference curve tangent to the observed decision 

( ).  

Now we obtain the relative opportunity cost of each one of the relevant attributes with 

respect to the others. This opportunity cost is measured by the marginal transformation 

relationship between any pair of attributes ( ). This value can be 

numerically obtained by solving partial optimization problems in the proximity of the 

observed decision (as for example, searching by how much expected profits would need 

to be reduced in order to have 1% less uncertainty or, equivalently, what is the maximum 

expected profit attainable with a slightly lower risk level). The numerical results of the 

marginal relationship of transformation of any pair of attributes in a reference point over 

the efficiency frontier ( ) are the basic information to integrate the farmers’ utility 

function. Provided that farmers behave rationally, in equilibrium, the value ( ) 

representing the relative opportunity cost of any attribute in terms of any other is equal 

to the marginal substitution relationship between the same pair of attributes (which 

represents the farmers’ marginal WTP for an improvement of a given attribute in terms of 

any other). In other words, in equilibrium, decisions over crop surfaces are such that: 

 ;   [9] 

This information for the reference point over the efficiency frontier is enough to integrate 

a utility function leading to the observed decision as the optimal decision given the 

existing resource, economic, balance and policy constraints. For example, if we assume 

utility function with constant returns of scale such as the Cobb-Douglas utility function 

below: 

;           [10] 

Then the marginal substitution relationship among any pair of attributes is:  

       [11] 

And the parameters of the Cobb-Douglas utility function are obtained from the following 

system: 
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      [12] 

      [13] 

In Section 4 we use this type of function, which offers the advantage of having a unique 

solution according to the Walras’ Law (a condition which is guaranteed by the constant 

returns of the utility function represented above). Thus the model is calibrated for each 

AD using the high-quality microeconomic data available in MAGRAMA (2009). This 

database contains data on land use, water demand, irrigation efficiency, employment 

(both hired and family labour), machinery and equipment, other direct costs, indirect 

costs, prices and yields for every crop during the period 2004-2009 and for 82% of the 

irrigated surface in the SRB.  

 

3.2. Calibration errors 

 

Farmers’ decisions are simulated in accordance to the observed crop portfolio, which is 

the crop portfolio that maximizes the representative farmer’s utility function in 

accordance to a set of relevant attributes. Therefore, deviations of the model’s crop 

portfolio ( ) from the observed crop portfolio ( ) during the calibration stage may 

result in prediction errors in the model, and this is the first calibration error ( ). The 

second source of error is the distance between the observed attributes and the 

attributes’ efficiency frontier ( ). A large distance would mean that the agent is actually 

taking a sub-optimal decision, and this goes against the main economic assumption that 

farmers are individuals that seek to maximize their utility. Finally, the third calibration 

error ( ) is the distance between the observed attributes ( ) and the calibrated ones 

( ). If this distance is large, it would mean that the model is not capturing the real 

source of utility for the representative farmer, and therefore it would be simulating 

someone else’s utility function.  

Summing up, the RPM provides three types of calibration errors that give an idea of the 

accuracy of the model’s adjustment: 

-The relative distance between the observed crop pattern and the model’s one: 

     [14] 

-The distance between the observed attributes and the attributes’ efficiency frontier: 

      [15] 

-The distance between the observed attributes and the calibrated ones: 
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     [16] 

Finally, the mean calibration error is defined as a combination of these three calibration 

errors: 

      [17] 

 

4. RESULTS 

 

The methodology as above is applied to the particular case of the SRB. First, we calibrate 

the RPM for each one of the 12 ADs considered in the basin (the agents). Second, we 

conduct a simulation in which we progressively increase water prices and we assess the 

effects over water demand, income and employment in agriculture. Finally, we aggregate 

the results obtained for every AD at a river basin level.  

 

4.1. Model calibration  

 

Farmers have to find their optimum crop portfolio subject to a set of feasible options. It is 

reasonable to think that farmers will choose that crop portfolio that maximizes their 

income and minimizes their risk and management complexities. Accordingly, we consider 

the following variables in our model:  

i)         Expected profit per hectare, measured by the gross variable margin: 

     [18] 

Where  is the gross variable margin per hectare of the crop i.  

ii)  Avoided risk, measured by the difference between the risk associated to 

the crop decision  leading to the maximum expected profit ( ) and the risk 

associated to the alternative crop decision  ( ):  

    [19] 

Where , being  the variance and covariance 

matrix of the per hectare crop profits ( ) of the crop decision . 
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iii) Total labour avoidance, the first way to measure management 

complexities avoidance through the reluctance to use too much labour (both 

hired and family labour). 

     [20] 

Where  is the total labour used per hectare, being  the total 

labour required per hectare for a crop i, and  is the labour required to 

implement the crop decision leading to the maximum expected profit.  

iv) Hired labor avoidance, the second way to measure management 

complexities avoidance through the reluctance to use too much hired labor. 

     [21] 

Where similar to previous case  is the total hired labor used per 

hectare, being  the total hired labor required per hectare for a crop i, and  is 

the hired labor required to implement the crop decision leading to the maximum 

expected profit. 

v) Direct avoided costs, the third way to measure management complexities, 

which includes all the seeds, fertilizers, hired equipment and all the other 

intermediate expenditures required to implement a particular crop decision.  

     [22] 

Where  is the direct cost of a crop decision x, being  the direct 

cost per hectare for a crop i, and  is the direct cost required to implement the 

crop decision leading to the maximum expected profit. 

 

As a result, our Cobb-Douglas Utility Function adapts the following form: 

;        [23] 

Where there are five unknown variables . Following the methodology 

above, we assess the relevance of each attribute by estimating the values of the alpha 

coefficients for every AD. These coefficients are used to calibrate the Cobb-Douglas Utility 

Function. Finally, we also obtain the calibration errors for every AD. The results are 

displayed in Table 1:  

 

Table 1. Alpha coefficients and calibration errors 
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AD/Variable          

Sierra Segura 0.24 0.09 - 0.23 0.44 13.06% 4.64% 13.61% 7.19% 

Hellín 0.13 0.52 - 0.35 - 7.34% 1.21% 7.13% 3.62% 

Meridional 0.29 0.09 0.15 0.11 0.37 12.23% 5.25% 9.59% 5.47% 

Vinalopó 0.38 0.03 0.20 0.07 0.32 2.42% 2.24% 2.04% 1.51% 

Nordeste 0.56 0.06 0.05 0.09 0.24 8.35% 6.77% 5.29% 4.29% 

Noroeste 0.18 0.11 0.30 0.41 - 8.31% 3.75% 5.30% 3.25% 

Centro 0.25 0.01 - - 0.74 6.06% 2.61% 7.36% 3.91% 

Río Segura 0.99 0.01 - - - 7.23% 5.14% 7.41% 4.51% 

Campo de 

Cartagena 
0.39 0.16 0.34 0.08 0.02 26.79% 6.97% 21.42% 11.26% 

Suroeste-Valle 

Guadalentí 
0.36 0.30 - - 0.33 18.02% 5.33% 16.77% 8.80% 

Bajo Almanzora 0.33 0.31 0.25 - 0.11 41.16% 16.81% 41.18% 22.24% 

Vélez 0.29 0.01 0.58 0.11 0.01 2.27% 11.09% 21.70% 12.19% 

Average 0.36 0.14 0.16 0.12 0.22 12.77% 5.98% 13.23% 7.35% 

 

Source: Own elaboration 

 

There are only two attributes present in the utility function of every AD: expected profit 

( ) and avoided risk ( ), though the former has a higher relevance in explaining farmers’ 

decisions. The alpha coefficient for the expected profit has a value over 0.2 in all the ADs 

with the exception of Hellín (0.13) and Noroeste (0.18). This attribute is of special 

relevance in the Río Segura AD (0.99), where it explains most of the farmers’ decisions 

(avoided risk has only a marginal relevance, with an alpha of 0.01). 

On other hand, avoided risk is relevant in the Hellín AD (0.52) and in the highly productive 

and drought exposed ADs of Campo de Cartagena (0.16), Suroeste-Valle Guadalentí (0.30) 

and Bajo Almanzora (0.31). 

Avoided management complexities ( ,  and ) are relevant in a number of ADs, 

especially in Sierra Segura (where the sum of the alpha coefficients of the avoided 

management complexities attributes equal 0.67), Meridional (0.63), Vinalopó (0.59), 

Noroeste (0.71), Centro (0.74) and Vélez (0.70).  

Our model shows in general low calibration errors. Most of the ADs have a mean 

calibration error below 10% (Sierra Segura, Meridional, Suroeste-Valle Guadalentí) and 

many below 5% (Hellín, Vinalopó, Nordeste, Noroeste, Centro and Río Segura). The mean 

calibration error is above 10% in the ADs of Campo de Cartagena (11.26%), Vélez 

(12.19%) and especially in Bajo Almanzora, which shows a calibration error of 22.24%.   
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4.2. Simulation and results 

 

Using the utility functions above we implement a simulation in which we progressively 

increase conventional water prices in all the ADs of the SRB and we study farmers’ 

responses in terms of water use, gross margin, employment generation and gross value 

added. We consider a price increase that ranges from 0 (baseline scenario) to 100 

Eurocents/m
3
 (Δ 1 €/ m

3
). Results are aggregated at a river basin level

14
 to obtain the 

water demand curve of the SRB (Figure 2). The ratio of water use over water 

consumption remains constant, since the high irrigation efficiency already present in the 

area (above 90% in many ADs) discourages further investments on the improvement of 

irrigation systems. Therefore, our results do not show the presence of a hydrological 

paradox.  

 

Figure 2. Water demand curve in the SRB (m
3
/ha) 

 

Source: Own elaboration 

 

Figure 2 represents the average water demand in m
3
/ha for the whole SRB. Water 

demand in the basin is highly inelastic for price increases below 0.5€/m
3
, and only starts 

showing a significant reduction in the water use for price increases above this threshold. 

At this point, the more water intensive crops start to be replaced by rainfed crops.  

This does not mean that an increase in water prices does not have significant impacts 

                                                           
14

 In the case of inter-basin ADs, we applied coefficients based on the 

percentage of the surface of the AD that is located in the SRB. 
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over water use below a value of 0.5 €/m
3
. For example, in the upstream ADs of Hellín and 

Sierra Segura, a price increase above 0.13 and 0.28 €/m
3
, respectively, would cause the 

substitution of all the irrigated crops in these areas by rainfed crops, with a much lower 

income (Pérez-Blanco et al., 2011). However, as a result of the low relevance of these ADs 

in terms of total water use (less than 100 h m
3
/year), this effect is diluted when 

conducting an assessment at a river basin scale. Nonetheless, from an equity perspective, 

this impact is by no means negligible.  

It is important to note that a water price over 0.6€/m
3
 is unrealistic for a river basin 

where the average bulk water prices are below 0.1 €/m
3
, since it would imply a price 

increase over 600%. Consequently, we should not expect a significant effect of water 

pricing policies over total water use in the SRB. However, an average water price increase 

of 0.26 €/m
3
 would balance out the prices of conventional resources (0.096 €/m

3
) and 

desalinated water (0.36 €/m
3
) (SRBA, 2013), provided that the latter are kept subsidized. 

This could be used to promote a substitution of the overexploited conventional resources 

by the largely idle desalinated water, thus improving the quantitative and qualitative 

status of the continental water bodies in the SRB.  

On the other hand, this highly inelastic water demand curve constitutes a strong 

argument in favour of more ambitious cost-recovery policies in the area. (Financial) cost-

recovery levels in Spain have been traditionally below 100%, and in the SRB they range 

between 54.08% and 80.82% (Maestu and Villar, 2007). Given the large amounts invested 

to increase water security in the agriculture of the SRB and in the light of our results, it 

may be reasonable to aim towards a progressive increase of the cost recovery ratio in the 

basin (always considering that the asymmetric impact over the different ADs explained 

above need to be balanced).  

However, even if water demand is not significantly altered, a higher water price may 

negatively affect gross margin and employment and thus the local economy. In Figures 2, 

3 and 4 we show the expected impact of a higher water price over Gross Variable Margin 

(GVM) (Figure 3), agricultural employment in the SRB (only hired labour, family labour 

excluded) (Figure 4) and Gross Value Added (GVA) (Figure 5). 
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Figure 3. GVM (€/ha) and water price increase (€/m
3
) 

 

Source: Own elaboration 

 

Figure 4. Employment generation (000s of working days) and water price increase

(€/m
3
) 

 

Source: Own elaboration 
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Figure 5. GVA (€/ha) and water price increase (€/m
3
) 

 

Source: Own elaboration 

 

Higher water prices have initially a small positive effect over agricultural employment. 

Water is progressively replaced as a production factor by labour, and more labour 

intensive crops generate a higher agricultural employment. This happens until water 

prices hit 0.4 €/m
3
. Rather the opposite, a water price increase has a negative effect over

GVM and GVA. With a price increase below 0.4 €/m
3
, farmers maintain water use and 

employment at levels close to those observed in the baseline, but at the expense of 

significantly reducing their GVM and thus also the GVA of irrigated agriculture. This 

means that a price increase of up to 0.4 €/m
3
 mostly results into a transfer of farmers’

GVM to the public sector. Above this price increase, employment, GVM and GVA fall.  

 

5. CONCLUSION 

 

Within the EU policy context, it is widely believed that higher (also called right) water 

prices reduce water demand (EEA, 2013; Bogaert et al., 2012; EC, 2012, 2008, 2000). 

Therefore, water pricing has been traditionally regarded as an effective means to reduce 

water use in overexploited basins such as the SRB. However, our results show that in 

highly profitable ADs such as those located in the SRB, farmers may react to higher prices 

by reducing their gross margin instead of reducing water use. In our simulations, higher 

prices reduce the gross margin of the farmers, who maintain water use in similar levels 

and may even hire more workers to compensate for marginal water use reductions.  
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Consequently, water pricing may become largely ineffective as an environmental policy 

precisely in the areas where water is scarcest. The basic lesson that can be drawn from 

this and similar evidence is that water prices per se are not right or wrong, although these 

adjectives have been common in EU water policy. The efficiency and effectiveness (i.e., 

the rightness) of pricing policies needs to be assessed based on its ability to reach the 

collectively agreed objectives of EU water policy at a minimum cost (EC, 2000). This 

depends as much on the type of economic instrument being used (water pricing or any 

other) as on its design and the context in place (comprising a wide array of institutional, 

legal and socio-economic factors).  

Water policy should not confuse its goal with the instrument: aiming towards higher 

water prices per se may end up reducing farmers’ income and increasing fiscal revenue 

without any real environmental impact (in our case, until an unrealistic price increase 

over 600%). From a water policy perspective, this should be deemed as a failure. On the 

other hand, if we design a policy mix that promotes the use of available desalinated 

water at the same time that prices are increased, we may end up replacing a relevant 

share of conventional by non-conventional water resources (desalination capacity in the 

SRB equals 1/6 of the average annual water demand of 1,900 million cubic meters, but it 

is currently used below 20%). Such a policy could include a combination of subsidies (to 

the users of desalinated water, for example through lower prices) and higher water prices 

(to the users of conventional resources), but this is case sensitive and also needs to take 

into account the particular institutional setup of the study site. Further research is 

necessary in this direction.  

On the other hand, our findings support the use of water pricing as a tool to increase 

cost-recovery ratios and mitigate the large budgetary deficits of water authorities in 

Spain. Although the impacts of this policy over ADs may be asymmetric, the public sector 

could partially redistribute the acquired revenues through reduced taxes and higher 

subsidies in negatively affected areas. 

Another relevant policy implication from the financial point of view concerns the 

allocation of agricultural subsidies in the SRB and other highly profitable basins. Subsidies 

to the agricultural sector in OECD countries still represent 22% of the agricultural income, 

and over 50% of these subsidies are considered to directly distort trade and competition 

(OECD, 2010). Considering the large gross margins observed and the little impact of water 

pricing policies over farmers’ decisions, it could be advisable to review the allocation of 

these distorting subsidies in some areas.  

The methodology developed in this paper is flexible and can be used to assess the impact 

of different agricultural policies over farmers’ decisions, in the SRB or in other river basins 

where the necessary data is available. Future research should try to find a way to improve 

the current results through minimizing calibration errors. In our case study, calibration 

errors were above 20% in the Bajo Almanzora AD, and above 10% in the Campo de 

Cartagena and Vélez ADs. The solution to this problem may consist, for example, in 

finding new attributes that help explain better farmers’ behaviour or in finding a more 

suitable utility function form.  
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CHAPTER 6: CONCLUSIONS 

149 

6 General conclusions and 

recommendations 

 

Developing and implementing effective water policies is troublesome. First of all, 

water is a unique commodity. It is an essential good with many sequential uses that 

intersperse public and private uses in an often complex hydrogeological system. 

Besides, water is a heterogeneous and finite good, and this is aggravated by its 

bulkiness (it is not always possible to transport adequate water from the source to 

the potential user at an acceptable cost). All this makes water management a 

complex task. In addition, water management has become increasingly complicated 

over time as a result of the poor performance of supply and C&C policies that have 

been implemented precisely to address the water crisis. Shockingly, these policies 

have gone on for decades, resulting in a systemic policy failure that has left several 

regions worldwide facing a potential environmental catastrophe. 

This model, with its insistence upon increasing the system’s capacity through the 

use of already overexploited water sources, has contributed to exacerbate the water 

supply crisis induced by climate change. Furthermore, it has failed to put in place 

the necessary incentives to drive water demand towards the collectively agreed 

goals of water policy. This is a complex task of paramount importance: even if water 

policy goals are collectively agreed by the society, experience shows that individuals 

with common objectives cannot be always counted on to act voluntarily to achieve 

them. If the appropriate incentives are missing, agents may incur in free riding 

(individuals who do not contribute individually and still benefit from the efforts of the 

others) or rent seeking behavior (individuals who benefit from collective action and 

throw the costs on others). This may end up threatening the sustainability of the 

system. Therefore, the challenge is to find suitable tools that motivate collective 

action through the use of incentives. 

Economic instruments have the potential to provide powerful incentives for 

individuals to adopt certain behaviors that favor the collectively agreed goals of 

water policy. In spite of sharing this common ability, economic instruments are far 

from being homogeneous. As explained in the previous sections, there is a wide 

variety of economic instruments, including market (e.g., water pricing, water 

markets, drought insurance, subsidies) and non-market instruments (e.g., voluntary 
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agreements). While some of these instruments are still proposals, others have been 

already tested in many areas worldwide, with different results. For example, in the 

case of water markets, one can draw a thick line between the disappointing 

environmental performance in Australia and Chile and the promising outcomes 

achieved in Spain and the US up to this point. This means that economic 

instruments are not a panacea for water management problems. Instead, they are 

creatures of design. Moreover, their final outcome also depends on the context, 

i.e., on the policy mix and the institutional setup in which they develop. 

 

6.1 Design challenges 

 

Economic instruments can be designed in many different ways, and therefore may 

attain many different results. This means that in order to fully use the potential of 

economic instruments to translate existing opportunities into real outcomes in terms 

of protecting water resources, some drawbacks in traditional policy making need to 

be overcome. The most important are listed below: 

Cost saving does not mean revenue raising tools.  Economists understood long 

ago that economic incentives have the potential to improve the environmental status 

at a cost below that imposed by traditional C&C and supply policies. The experience 

of different countries with economic instruments over the past decades reinforces 

this point of view (NCEE, 2001; Stavins, 2003; Strosser et al., 2013). Although in 

some cases cost reductions do not materialize to the extent expected, it is generally 

acknowledged that economic instruments are usually more cost effective than their 

alternatives. However, this just means that financial resources can be spared 

through the use of economic instruments, but not always raised. Focusing on the 

latter may end up morphing an economic instrument for water management into a 

financial instrument without any positive environmental impact. This confusion 

needs to be clearly overcome. Economic instruments for water management must 

be primarily addressed towards attaining the collectively agreed environmental 

goals in water policy; otherwise, these may not be achieved at all. This confusion 

regarding the priority objective of economic instruments largely explains why the 

vast majority of economic instruments applied in the EU so far had limited to no 

direct impact on water users' behavior and on the status of aquatic ecosystems 

(Strosser et al., 2013). 
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Economic instruments should be visible. In some instances it is difficult to 

quantify the direct environmental gains that result from the use of specific economic 

incentives, let alone the indirect improvements such as those in human health. This 

is because the performance of a given economic instrument depends on many 

factors that interact with each other: the very design of the economic instrument, the 

policies with which it is combined (i.e., the policy mix), the institutional setup and 

also the macroeconomic trends existent at the time it is implemented. However, 

there is little doubt that economic instruments are providing a new and unique 

element to environmental management, which in many cases results in direct and 

indirect benefits beyond what is possible with conventional policies. Quantifying the 

impact of economic instruments then becomes of paramount importance to build a 

sound knowledge-base for successful policy making. This can be used to anticipate 

the effect that economic instruments may have in areas that resemble the conditions 

of previous study sites. Furthermore, although ex-post data is a good start, some of 

the most promising instruments are yet to be implemented (e.g., drought insurance). 

This demands also the development of methodologies that allow for an ex-ante 

assessment. This thesis intended to advance in this direction, but additional effort is 

needed.  

Transparency matters. Economic instruments may contribute to improve the 

technical efficiency of water use and thus offer a technical solution to disputes over 

competing uses of the resource (e.g., water pricing may encourage the adoption of 

modern irrigation technologies). Technical efficiency, though, is only part of the 

policy dilemma. Rebound effects and other undesirable outcomes may appear, 

threatening the ultimate objective of saving water. It is therefore crucial to introduce 

economic instruments through a meaningful dialogue with stakeholders. Acceptance 

of economic instruments and policy structures by water users requires transparency 

regarding the design of the instrument. 

Dynamism is the key. Economic instruments need to be dynamic if they are to 

drive a change from a static to an adaptive water policy. However, this has not been 

the case so far. For example, although the Article 9 of the EU WFD required water 

pricing policies to contribute to the environmental objectives of water policy (EC, 

2000), in reality European countries have focused on financial cost recovery and 

little has been advanced towards environmental cost recovery. Experience has 

shown that, once adopted, economic instruments may face rigidities (rent seeking 

practices, free riding behavior and other constraints) that resemble those faced by 

conventional policies. This is not to say that economic instruments are equally 

unable to attain an adaptive water policy; in fact, due to their limited dependence on 
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infrastructure development, economic instruments have a crucial advantage over 

conventional policies in the avoidance of sunk costs.  

Designed to minimize transaction costs. Transaction costs may block the 

adoption of socially desirable water policies. This is because policy makers tend to 

perceive transaction costs (especially the bargaining costs required to come to an 

acceptable agreement with all the parties involved) as being larger than 

environmental costs (Martin et al., 2008), thus delaying the implementation of the 

necessary policy reform. This perception is explained by the different barriers and 

obstacles to water policy reform that stem from the vested interests of some 

important water users (asking for financial support to overcome water management 

problems, instead of promoting a sustainable water use). Eventually, institutions 

tend to overcome these barriers driven by economic efficiency, although the 

transition is far from being automatic and smooth. A well designed economic 

instrument that minimizes transaction costs may considerably shorten this transition 

period and also minimize the negative environmental impacts of delaying the water 

policy reform.  

 

6.2 The relevance of the context: towards an effective 
policy mix 

 

If properly designed, economic instruments may be able to overcome many of the 

failures that are in the origin of some disappointing water policy performances. 

However, the effectiveness and efficiency of economic instruments to attain the 

water policy goals also depends on the context in which they are implemented. The 

particular role of an instrument cannot be understood in isolation, but as an integral 

part of a package (the policy mix) designed as an element of a major change in 

water policy. Besides, this whole performance is conditioned to the institutional 

setup in force. 

The institutional setup plays a relevant role in the performance of economic 

instruments. Its adaptation (or alternatively, the adaptation of economic instruments 

to it) might be a precondition for success. For instance, the way water use rights are 

defined in some countries may not allow for ordinary water trading, thus increasing 

transaction costs through costly negotiation processes involving high-level official 

decisions. In the same way, drought insurance for irrigated agriculture may only be 
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feasible in those countries where insurance systems are sufficiently developed (e.g., 

countries where drought insurance for rainfed agriculture already exists).  

Also an adequate policy mix is a prerequisite for water management to succeed. Up 

to this point we have stressed that this policy mix should include economic 

instruments, but it should not be limited to them either. Economic instruments are by 

no means substitutes for supply and C&C policies, but tools that can strengthen 

water governance, i.e., complementary instruments. For example, drought 

insurance in Spain would be unconceivable without the existence of DMPs and 

River Basin Management Plans, both being C&C policies. Similarly, water markets 

worldwide would not be possible without water transport infrastructures, which have 

been developed and maintained over time through supply oriented policies.  

Furthermore, although one particular instrument might seem to be better suited for a 

particular objective, if properly designed, each instrument can generate positive 

spillovers (e.g., drought insurance directly reduces agricultural water 

overexploitation during drought events, but it may also help to stabilize agrarian 

income and to regain the control over groundwater bodies on which urban users 

also rely). In addition, these synergies are often reciprocal (e.g., water pricing would 

allow better functioning water markets, while water trading would reduce the cost of 

water security –and thus water prices).  

 

The basic lesson to be drawn is that rather than being silver bullets to solve the 

problems of water management, economic instruments are key components of 

adaptation strategies that, working under a particular institutional setup, need to be 

designed and implemented in combination with other policies (either economic 

instruments or conventional policies) so as to exploit their self-reinforcing 

advantages. This may significantly improve the cost-effectiveness of water policy. 

Noteworthy, apart from these internal synergies, a successful policy mix may also 

have external spillovers; these include improvements in human health, the 

promotion of gender equity and school attendance rates in developing countries and 

an improved response to the food and energy crises, among others. Relevant 

byproducts and ramifications stem from water policy. 
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