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A B S T R A C T

This study presents a bibliometric and systematic review of economic calibrated mathematical programming 
models for agricultural water reallocation. Our analysis describes trends and emerging directions in research, 
identifies major scientific challenges, and discusses related advances and research gaps. Key challenges and 
research gaps emerging from our review include lack of model (particularly of forecasting errors) and data 
(particularly water use data) validation, insufficient uncertainty quantification, issues of model performance 
beyond the calibration range, and uncoordinated coupling (and other) experiments with limited impact. We 
diagnose research gaps and identify key drivers, explore promising research avenues with the potential to 
address them, and provide a synthetic list of recommendations with potential of significantly advancing the state 
of the art.

1. Introduction

Water has multiple uses, including basic human needs (e.g., sup
porting health and the environment) and economic uses for food, en
ergy, manufactures, and services provision (United Nations, 2021). The 
widening gap between an increasing water demand (due to population 
growth and changing living standards) and a decreasing supply (due to 
climate change), aggravated by inflation, mass migration, pandemics, 
and other crises, is amplifying the trade-offs among alternative and 
increasingly competing uses of water, and constraining decision makers 
to reallocate available resources towards strategic uses that enhance 
welfare (Joseph et al., 2024). Most of these reallocations originate in the 
agricultural sector, because of two reasons: first, agriculture is the largest 
water user worldwide, representing 70 % of the global freshwater 
withdrawals (United Nations, 2024); second, agriculture typically con
centrates the marginal uses of the resource, i.e., those that generate the 
least value added (e.g., EUR of income or number of jobs created per 
m3), and therefore offers the greatest potential for enhancing economic 
output (via water reallocations) and welfare (provided a suitable level of 
income redistribution) (United Nations, 2024).

Economic models help us understand, forecast, and manage the 
behavior of agricultural water users, as well as their ecological and 

socioeconomic impacts, and thus are instrumental to inform and design 
water reallocations (UNDRR, 2019, 2021). Economics methods to model 
the behavior of agricultural water users include econometrics (Basnet 
et al., 2021), mathematical programming (Sapino et al., 2023), behav
ioral economics (Mesa-Vázquez et al., 2021), Agent Based Models 
(Huang et al., 2016), Data Envelopment Analysis (Kouriati et al., 2023), 
survey-based methods (e.g., contingent valuation) (McGurk et al., 
2020), and field experiments, of which the most frequently used are 
Mathematical Programming Models (henceforth, MPMs) (Graveline, 
2016b). MPMs build upon the fundamentals of microeconomics theory, 
assuming rational and utility maximizing individuals with stable, com
plete, and transitive preferences that can be represented in a utility 
function (Chilaka et al., 2024; Graveline, 2016; Heckelei et al., 2012). 
MPMs leverage observed data to reproduce real life agricultural water 
users and agricultural production systems, and test whether simulated 
responses align with what theory predicts, thus deepening our under
standing of the link between human behavior, water use, and policy. 
Two major strands of MPMs can be distinguished: normative, which aim 
to identify optimal water resources allocations based on a priori as
sumptions by the modeler (e.g., “what decision should farmers take to 
maximize profit?“); and positive or calibrated, which aim to calibrate a 
model that can reproduce the observed behavior of agricultural water 
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E-mail address: giammauro.soriano@imdea.org (G. Soriano). 

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2025.106628
Received 11 March 2025; Received in revised form 4 June 2025; Accepted 19 July 2025  

Environmental Modelling and Software 193 (2025) 106628 

Available online 19 July 2025 
1364-8152/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0009-0005-6878-3333
https://orcid.org/0009-0005-6878-3333
mailto:giammauro.soriano@imdea.org
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2025.106628
https://doi.org/10.1016/j.envsoft.2025.106628
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2025.106628&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


users (i.e., “what is the rationale behind farmers’ choices?“), and fore
cast their responses to stimuli (Sapino et al., 2020). This study reviews 
and critically discusses the evolution of calibrated MPMs of agricultural 
water users over the past decade, following up on the last available re
view by Graveline (2016).

The paper is structured as follows. Section 1.1 presents the basic form 
of a MPM and briefly discusses its key features, while Section 1.2 sum
marizes the key challenges in the calibrated MPM literature that were 
identified by Graveline (2016) a decade ago. Section 2 presents the 
methods used for our bibliometric and systematic review of MPMs over 
the past 10 years (2015–2024), while Section 3 and Section 4 categor
ically present and discuss the results of the bibliometric and systematic 
review, respectively. Section 5 concludes the paper and provides a list of 
recommendations for future research.

1.1. Calibrated MPMs

MPMs represent the behavior of an economic agents at spatial scales 
that range from an individual farmer to clusters of them (e.g., an irri
gation/agricultural district). In a typical MPM, the economic agent can 
decide on land and water use, technology adoption, and capital in
vestments, to maximize his/her utility subject to a domain conformed by 
a set of constraints (such as water availability or agronomic constraints). 
The basic and static form of a MPM can be represented as follows: 

Max U(x)
x =U(z1(x); z2(x); z3(x)… zm(x)) (1) 

s.t. : 0 ≤ xi,j (2) 

∑

i
xi,j ≤ bj (3) 

x ∈ Rn is the input portfolio, which consists of a matrix representing 
the land, water, technology, capital and other relevant inputs j allocated 
to the production of the crop i, where the amount of input j allocated to 
the crop i can be represented by xi,j. U(X) is the utility function, which 
can be driven solely by profit (z1, single-attribute), but also by other 
potentially relevant attributes such as risk avoidance or management 
complexity avoidance (z2, …, zm, multi-attribute). The utility function 
can adopt multiple forms, such as Cobb-Douglas, linear, or quadratic, 
among others, and can be calibrated using a wide array of techniques 
(Sapino et al., 2020).

Positive MPMs can be broadly classified into three families, which 
reflect on the key modeling features discussed above: Linear Program
ming (LP) models, Positive Mathematical Programming (PMP) models, 
and Positive Multi-Attribute Utility Programming (PMAUP) models 
(Graveline, 2016; Sapino et al., 2020).

LP modeling is a method for the optimization of a linear objective 
function subject to linear constraints. In positive LP models, the linear 
objective function is calibrated to observed choices, which can be done 
using a wide variety of methods that typically yield information on 
calibration errors. One such method is to calibrate the objective function 
using an external econometric model, with the option of subsequently 
adjusting the resultant parameter values to feasible parameter values 
within the domain of the LP model (Galko and Jayet, 2011). Another 
method to calibrate LP models is to increase the degrees of freedom by 
incorporating additional attributes, such as risk aversion (multi-
attribute LP). For example, the Minimization of Total Absolute Devia
tion (MOTAD) approach calibrates a risk aversion parameter by 
minimizing the distance between a modeled baseline and observations 
(Hazell, 1971). Another method to calibrate multi-attribute LP is to 
define the objective function as a function of weighted attributes, where 
weights are calibrated to minimize the distance between simulations 
and observations, as in the Weighted Goals Programming (WGP) 
approach (Sumpsi et al., 1997).

The key advantage of LP is its low computational cost as compared to 

alternative calibrated MP, which has made it possible for LP models to 
operate at a high granularity farm level (Jayet et al., 2023). A disad
vantage is that LP models often lead to unrealistic corner solutions, 
where the agent chooses the crop with the highest profit until a 
constraint is binding, and then jumps to the second-best crop. To address 
this caveat, scientific literature has developed more sophisticated LP 
models such as the cross-mix approach (McCarl, 1982), which adds an 
ad-hoc constraint to ensure a convex combination of historical crop 
mixes. This method nonetheless prevents agents from choosing crop 
portfolios that have not been observed, leading to “overly constrained” 
results that call for further ad-hoc components such as the addition of 
“synthetic” crop portfolios to the feasible set, which are nonetheless 
based on heuristics rather than the result of a mechanistic model 
simulation (Chen and Önal, 2012; Graveline et al., 2014).

PMP modeling is “an intermediate” between mathematical pro
grammers’ deductive approaches and the inductive approach of 
econometric-based methods, and is arguably the most widely used MPM 
to study the behavior of farmers (Graveline et al., 2014). PMP features a 
non-linear objective function that avoids corner or other unrealistic 
solutions and perfectly replicates observed agent behavior (i.e., the 
calibration error is zero). Such objective function is calibrated using 
“information contained in dual variables of calibration constraints, 
which bound the solution of the original linear programming problem to 
observed activity levels” to “specify a non-linear objective function such 
that observed activity levels are reproduced by the optimal solution of 
the new programming problem without bounds” (Heckelei and Britz, 
2005). The non-linear form of the objective function is typically ob
tained by adding an ad-hoc non-linear cost or yield function whose 
calibration results mimic observed choices without error. Several 
methods to calibrate the parameters of the non-linear cost or yield 
functions exist, including the original approach that relied on a yield 
function (Howitt, 1995), as well as several methods relying on a cost 
function (Dagnino and Ward, 2012; Júdez et al., 2002). The major 
criticism to PMP models is the difficulty to find an “economic or tech
nological rationale” for this ad-hoc non-linear component in the objec
tive function, “despite several attempts” (Heckelei et al., 2012); albeit it 
is worth noting the use of a mean-variance risk analysis where the 
non-linear component can be rationalized by the covariance matrix 
(Cortignani and Severini, 2009). This difficulty can be seen as a logical 
consequence of the nature and design of PMP models, which were 
created for modelers who, “for lack of an empirical justification, data 
availability, or cost, find that the empirical constraint set does not 
reproduce the base-year results”, i.e., as a method to bypass data or 
conceptual problems towards reproducing observed choices (Howitt, 
1995).

PMAUP models build on portfolio theory to create a multi-attribute 
objective function that aligns with a finite set of observed choices, 
yields, costs, and prices (Gutierrez-Martin and Gomez, 2011). The utility 
function can adopt alternative nonlinear forms (although a 
Cobb-Douglas function is typically used due to its flexibility), where its 
parameters assign weights to the competing attributes of the function (e. 
g., profit maximization v. risk minimization). Instead of using dual 
variables for calibration as in PMP, PMAUP models use numerical 
methods to build a production possibility frontier representing the 
optimal combinations of attributes within the feasible set (i.e., the 
maximum profit that can be achieved for a given value of risk, or 
alternatively the maximum risk that can be avoided for a given value of 
profit–all within the domain), and then identify the parameter values 
that make the objective function tangent to the point of the production 
possibility frontier that matches the observed choices by the agent. This 
method aligns with the fundamentals of microeconomic theory and has 
a sound economic rationale; however, like LP, PMAUP leads to cali
bration errors that may be nontrivial, especially where significant con
ceptual (e.g., a relevant attribute cannot be measured or is not included 
in the problem definition), or data gaps exist and the observed crop 
portfolio is distant from the production possibility frontier. Moreover, 
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“calibration of PMAUP models is challenging where there is a large 
number of choice variables (several alternatives in the crop portfolio) 
and cross-sectional variation is low (time-series variation might be 
confounded with other trends)”, since this can lead to “instability in the 
model calibration that is difficult to rationalize (e.g. abrupt changes in 
parameter values following the introduction of an additional attribute)” 
(Sapino et al., 2020).

1.2. State of the art of MPMs in 2016

Several literature reviews on calibrated MPMs are available in the 
literature. Heckelei & Britz (2005) survey PMP models with a focus on 
assessing the empirical improvements in calibration practices. Frahan 
et al. (2007) identify the most relevant critiques to PMP models at the 
time and present the key developments in the field that in their view 
have addressed or can contribute to address these critiques. Heckelei 
et al. (2012) present methodological and calibration advances in the 
PMP literature, critically reflect on the lack of “technological or eco
nomic rationale” in PMP models, and identify promising approaches to 
address this major challenge. The most recent literature review of cali
brated MPMs of agricultural water users is that of Graveline (2016), 
which takes stock on previous reviews and further expands their anal
ysis. Albeit using a more systematic approach to data analysis, the 
literature review adopts, like that of its predecessors, an heuristic/expert 
judgement approach for the bibliographic search, which results in a 
selection of MPMs that is biased towards PMP (which admittedly is the 
most relevant of MPMs) and LP, while treating in a limited way general 
multi-attribute theory and PMAUP, whose employment in the area of 
agricultural water reallocations was emerging at the time. Building on 
the above-mentioned precedent reviews and her own systematic review 
on the topic, Graveline (2016) identified six key challenges to the MPMs 
research community, namely: 1) validation, 2) incorporation of water 
inputs, 3) incorporation of risk in the objective function, 4) incorpora
tion of uncertainty, 5) spatial detail, 6) adoption of new technologies 
and practices, and 7) far from reference simulations. For each challenge, 
the author highlighted relevant advances and gaps, which are reported 
in Table 1.

2. Methods

Existing reviews of MPMs for agricultural water reallocation rely on 
heuristics/expert knowledge for bibliographic search and data extrac
tion and analysis rather than adopting a more systematic approach 
(Graveline, 2016; Heckelei et al., 2012). This has led to biases such as 
the exclusion of PMAUP or LP models. In this study, we adopt a sys
tematic and structured methodology to our literature review, articulated 
in two parts: i) search criteria and data extraction and ii) data analysis. 
The search criteria and data extraction methodology adopts the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 
approach and is presented in Section 2.1. The data analysis methodol
ogy comprises two distinct parts: Bibliometric review methods pre
sented in Section 2.2; and Systematic review methods presented in 
Section 2.3.

2.1. Search criteria and data extraction

The search criteria and data extraction procedure adopted in this 
review follows the PRISMA approach, comprising the following steps: (i) 
research questions, (ii) sources of information, (iii) searching strategy, 
(iv) eligibility criteria, (v) risk of bias, and (vi) data extraction (Page 
et al., 2021). Below we present how this workflow was implemented in 
our review of calibrated MPMs for agricultural water reallocation. 

i) Research question: We aim at tracking progress (advances and 
persisting/emerging gaps) in the challenges identified in the re
view by Graveline (2016), as well as identifying novel challenges 

Table 1 
Research challenges in MPMs and related advances and gaps as of 2016 (adapted 
from Graveline, 2016).

Challenge Relevant advances Research gaps

Validation Some ex-post validation of 
MPMs conducted through 
experiments (Blanco et al., 
2008; Gocht, 2005; Heckelei 
and Britz, 2000; 
Kanellopoulos et al., 2010) 
suggest a protocol for model 
validation, with limited 
application.

Validations of MPMs are still 
rare. The few publications 
that validate the forecasting 
capability of MPMs in the 
literature focus on ex-post 
experiments, ignoring other 
approaches like ‘out-of- 
sample’ testing typically 
adopted in other economic 
models (e.g., econometrics) 
and the ecological modeling 
community.

Incorporation of 
water inputs

Multiple techniques 
available: 
- Discrete points that 

represent yield responses to 
different levels of input 
application (Cortignani and 
Severini, 2009; Graveline 
et al., 2012; Taylor and 
Young, 1995).

- Integration of production 
functions in PMP using a 
quadratic yield-input func
tion (Cai and Wang, 2006; 
J. Connor et al., 2009; J. D. 
Connor et al., 2012, p. 201; 
R. Howitt et al., 2001).

- Use of CES yield-input 
functions in PMP (Howitt, 
1995)

- Integration of agronomic 
production functions into 
otherwise LP (J. Connor 
et al., 2009; Dinar et al., 
1991; Posnikoff and Knapp, 
1996; Weinberg and Kling, 
1996).

- Integration of agronomic 
production functions into 
PMP using CES (Frisvold 
and Konyar, 2012; R. E. 
Howitt, 1995; 
Medellin-Azuara et al., 
2010; Merel et al., 2011) or 
nested CES (Frisvold and 
Konyar, 2012; 
Medellín-Azuara et al., 
2012).

- Calibration of model to 
agronomic data (Merel 
et al., 2014).

- Calibrate the CES model 
against observed 
agronomic input-yield 
response curves (Graveline 
and Mérel, 2014; Merel 
et al., 2014)

- Most models still allocate 
water, and other relevant 
inputs, in fixed proportion 
to land

- The rationale for choosing 
quadratic yield-input func
tions is not supported by 
agronomic research (it 
does not fit the agronomic 
plateau) (Graveline, 2016), 
and in the case of two in
puts may allow for too 
much substitution (Knapp 
and Schwabe, 2008).

- CES function allows for 
limited input substitution 
and is closer to the 
agronomic plateau; but 
does not decrease after a 
certain threshold which is 
necessary to represent loss 
of yield due to 
waterlogging.

- Integration of production 
function into LP does not 
allow for economies of 
scale (increasing acreage 
has no impact on yields). 
This is resolved by PMP 
models integrating 
agronomic production 
functions, but this assumes 
the same substitution 
among different types of 
inputs.

- Nested CES functions can 
provide different 
substitution elasticities for 
different inputs, but like 
the preceding PMP models 
they do not calibrate the 
CES function to agronomic 
functions. This is 
addressed by PMP models 
calibrated to the 
agronomic function by 
adding an extra adjustment 
cost term to increase the 
degrees of freedom.

Incorporation of 
risk in objective 
function

- Risk incorporated 
implicitly rather than as an 
additional attribute in PMP 
through Constant (CARA) 
or Decreasing Absolute Risk 
Aversion (DARA) (Arata 
et al., 2014; Petsakos and 
Rozakis, 2011).

- Risk incorporated as 
attribute in multi-attribute 
LP models such as MOTAD 
(Hazell and Norton, 1987), 

- PMP water reallocation 
models do not account for 
risk. Advances towards the 
incorporation of risk in the 
objective function have 
been adopted in PMP 
applications other than 
water.

(continued on next page)
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emerging in the scientific literature over 2015–2024 (and 
tracking related gaps and advances), to determine the current 
state of the art and identify research directions with high 
potential.

ii) Sources of information: The literature review leveraged scien
tific databases accessible through the platform Web of Science 
(WOS). This source was prioritized due to their extensive data
bases, precision, reliability, and recognition within the scholarly 
domain, as well as meta-data availability necessary for the bib
liometric approach.

iii) Searching Strategy: Given the focal point of this study on cali
brated MPMs of agricultural water users, search keywords were 
tailored around prominent models pertinent to this context, 
namely “Linear” (LP), “Non-linear”, “Positive” (PMP), “Weighted 
Goal” (WGP), and “Multi-Attribute” (PMAUP), which were com
plemented with the keywords “mathemat*“, “program*" and 
“model”, where "*" is a wildcard allowing for any possible word 
ending. These modeling families formed the foundational basis of 
the search protocol. In this review, all bibliographic searches 
were performed using the Topic Search (TS) field, which queries 
the title, abstract, and keywords of each record. In a second filter, 
the search protocol selected, among the papers that met the re
quirements above, those that included the search keywords 
“water*” or “agric*” (also in title, abstract and/or keywords). 

Table 1 (continued )

Challenge Relevant advances Research gaps

which adds one more de
gree of freedom that is 
useful for calibration. 
[Albeit not reported in the 
original Graveline (2016)
review, risk had been also 
added explicitly in PMAUP 
at the time (see, e.g., 
Gutierrez-Martin & Gomez 
(2011)]

Incorporation of 
uncertainty

Probabilistic risk and input 
uncertainty are incorporated 
using scenario-based 
approaches, notably discrete 
stochastic programming 
models where the decision 
problem is done in several 
stages (e.g., different periods 
of the year) in which new 
information is available (e.g., 
water available). Constraints 
link periods with each other 
(e.g., capital investments in 
first stage remain over time) (
Calatrava and Garrido, 2005; 
Dono et al., 2013; McCarl 
et al., 1999; Rae, 1971a, 
1971b)

- Sensitivity analysis to 
quantify input 
uncertainties is local and 
limited to scenario-based/ 
one-at-a-time (OAT) ap
proaches (e.g., simulating 
the impact of alternative 
water pricing policies). 
Global Sensitivity Analyses 
not reported in the 
literature.

- Parameter uncertainties 
within models are ignored.

- Structural uncertainties 
within models are ignored. 
Multi-model ensembles are 
not reported in the 
literature.

Spatial detail - Regional scale modeling 
has been adopted to explore 
the social optimum of a 
region and in homogeneous 
areas (large farm 
assumption), which 
reduces computational 
costs and data 
requirements.

- Downscaling of regional 
modeling used to increase 
granularity (Cantelaube 
et al., 2012; Chakir, 2009; 
Gocht and Britz, 2011; R. 
Howitt and Reynaud, 
2003).

- Scale conditions results, 
but the choice of model 
scales is rarely discussed. 
Farm-level modeling, 
which seems appropriate 
for representing the sys
tem, is often unfeasible due 
to lack of data and 
computational constraints. 
Regional modeling is inad
equate for water where 
aggregation is large (e.g., 
freely reallocating water 
between different basins).

- Downscaling does not 
account for farm-level 
conditions and constraints, 
such as water constraints 
or infrastructures.

Adoption of new 
technologies 
and practices

None besides yield-input 
functions (see challenge on 
incorporation of water 
inputs) [Albeit not mentioned 
in the original Graveline 
(2016) paper, Multi-Agent 
Cellular Automata (MACA) 
models applied to land use 
cover/land use change offer 
the possibility to couple a 
cellular component 
representing an 
environment/space with 
human agents representing 
decision-making to assess 
how social and spatial 
interactions among 
autonomous agents (e.g., 
irrigators) in an 
environment/space (e.g., the 
basin) affect the meso-scale 
(e.g., technology adoption) (
Kremmydas et al., 2018). 
These models have been used 
for long (Berger, 2001), 
including for the study of 
water reallocations albeit 
typically relying on 
normative MP(Becu et al., 

- Limited research on 
technology/practices 
adoption and adaptation 
processes at the micro, 
meso and macro scale.

- Limited integration with 
meso and macro models.

Table 1 (continued )

Challenge Relevant advances Research gaps

2003). MACA applications 
using calibrated MP existed 
pre-2016 (e.g., Morgan and 
Daigneault, 2015) use a 
PMP), but they did not 
address water-related 
aspects].

Far from reference 
simulations

None Empirical observations show 
that PMP and LP models 
often fail at predicting abrupt 
and unprecedented changes 
in behavior. Reasons for this 
limitation include: 
- Limited technical and 

economic data concerning 
transformational change 
(e.g., yield, costs, price, 
etc. of crops under climate 
change).

- Where these changes have 
not been observed (and 
thus not used in the 
calibration), the non-linear 
component of the PMP 
model can penalize/pre
vent the adoption of better 
performing choices (i.e., 
the non-linear component 
may have different prop
erties when remote from 
the baseline, such as non- 
constant first derivatives, 
which we cannot 
anticipate).

- LP models at the farm scale 
often work with farm 
typologies that might 
evolve with time 
(expansion of farms, or 
evolution of technical 
constraints) and structural 
changes in typologies 
would require additional 
specifications to be 
included.
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Fig. 1 presents the precise search strings employed in WOS 
database alongside the corresponding outcomes denoted by the 
number of publications retrieved. Applying this initial searching 
strategy yields 425 papers.

iv) Eligibility Criteria: To avoid redundancy in our analysis, we 
excluded conference proceedings, as these are frequently 
expanded and published as journal articles. Book chapters and 
other document types were also excluded due to limited acces
sibility. The results were further constrained to publications 
exclusively written in the English language and published be
tween 2015 and 2024. Research areas that considered topics far 
from the objective of this paper were excluded (e.g., ‘Tropical 
Medicine or Transportation’). This approach ensured the coher
ence and relevance of the selected literature with the pre-existing 
review from Graveline (2016). After applying this eligibility 
criteria, 223 publications were marked as ineligible, reducing 
the number of papers in the sample to 202 (see Fig. 1). A final 
evaluation was carried out to assess relevance of the publications 
yielded by the abovementioned search criteria through an ab
stract screening (e.g. excluding publications using MPMs for 
agricultural supply chain or agri-industrial planning), which 
further constrained the final list by 83 publications, resulting in a 
final sample of 119 publications.

v) Risk of bias: Despite these precautions to minimize selection and 
reporting bias through a transparent and collaborative screening 
process, we acknowledge that an inherent risk of source bias re
mains due to the use of bibliographic databases with differing 
coverage and indexing policies. As documented in recent 
comparative studies (Franceschini et al., 2016), no single data
base provides complete and perfectly accurate coverage of the 
scientific literature. Thus, it is possible that some relevant studies 
may not have been retrieved or fully indexed, and this limitation 
should be considered when interpreting the results of our review

vi) Data Extraction: For the bibliometric review, this step concerned 
the extraction of meta-data necessary for the methods presented 
in Section 2.2, such as name of the publication, year, author(s), 
title, abstract, cited references, etc. A complete list and descrip
tion of the meta-data extracted for the bibliometric review is 
presented in the bibtex file available in Annex I. For the systematic 
review, data extraction was designed to gather information rele
vant to the research challenges and related advances and gaps. 
Initially, data on advances and gaps relevant to Graveline (2016)
seven challenges (validation, incorporation of water inputs, incor
poration of risk, incorporation of uncertainty, spatial detail, adoption 
of new technologies and practices, far from reference simulations), as 
well as related information on modeling family (PMP, LP, PMAUP, 
other), methodology overview, case study region, results, and model 

innovations, was collected. Building on this initial data extraction 
and the bibliometric review, authors surveyed trends in the 
literature and identified two additional relevant challenges 
emerging over the past decade not included in the original review 
by Graveline (2016), namely, coupling processes and data valida
tion, for which we collected relevant data on research advances 
and gaps. A complete list and description of the data extracted for 
the systematic review is available in Annex I.

2.2. Data analysis: bibliometric review

The data analysis for the bibliometric review was performed using R 
4.0.2 software (RStudio Team, 2023) and the open-source RStudio 
‘Bibliometrix’ package developed by Aria & Cuccurullo (2017). The 
bibliometric review includes two parts: Descriptive analysis and 
Network analysis (Price, 1965).

2.2.1. Descriptive analysis
The descriptive analysis leverages the basic meta-data (author’s name, 

number of citations, country, institution, journal) to identify annual 
publication trends and pinpoint seminal publications by number of ci
tations, track author productivity, and identify the most relevant jour
nals. Author productivity is assessed through the number of publications 
and the H-index (Hirsch, 2005), which adopts a value of h where the 
author has published at least h articles that have each been cited at least 
h times. Journal relevance is studied following the approach developed 
by Bradford (1934) which states that if journals in a specific field are 
ranked by number of articles into three groups, each group with about 
the same amount of articles, then the number of journals in each group 
should be proportional to 1:n:n2. If this is observed, the smaller group of 
journals (“core sources”) holds a similar number of publications as the 
second and third group combined, and typically also concentrates the 
high-impact and seminal publications (Bradford, 1934).

2.2.2. Network analysis
The network analysis leverages the basic meta-data to identify the 

intellectual (how authors influence the community), conceptual (main 
themes and trends of scientific research) and social (how authors and 
institutions interact in the production of research) structures of the field 
(Verma and Gustafsson, 2020). Network analysis was implemented 
using three techniques: co-author, co-citation, and co-word analysis.

Co-author analysis is adopted to explore the social structure of the 
research field following the method developed by Peters and Raan 
(1991), who unravel the structure of collaboration networks within a 
field by considering the number of co-authored publications.

Co-citation analysis is a widely used bibliometric approach at 
author and document level that utilizes citation counts to gauge simi
larity among documents, authors, and journals (Nerur et al., 2008). The 

Fig. 1. Search Criteria with number of documents retrieved for each search (Retrieved in October 2024).
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co-citation analysis measures the number of citations per paper as well 
as the relationship between two authors or documents, by counting how 
many times two publications are cited jointly by a third publication 
(Eom, 2008).

Co-word analysis technique is employed to explore the thematic 
profile of specific research domains (Callon et al., 1983). This approach 
involves the examination of key terms that encapsulate the core content 
of papers, with the assumption that co-occurring terms denote related 
concepts. The resultant semantic maps derived from co-word enable a 
depiction of the evolution and present state of the literature, thus of
fering insights into the cognitive structure of the field (Aparicio et al., 
2019). Co-word analysis is carried out building a co-occurrence matrix 
based on the keywords for each of the selected publications, including 
Authors’ keywords (i.e., those provided by the author(s) at the time of 
publication) and other alternative approaches such as Keywords Plus (i. 
e., words or phrases frequently appearing in references titles, but not the 
article itself). The resulting set of keywords is then divided into different 
clusters, which are positioned on a thematic map and divided into four 
quadrants following the concepts of Callon’s Centrality and Density 
(Callon et al., 1991). Callon’s centrality (x-axis) measures the degree of 
interactions of themes (or clusters) with other themes, where Clusters 
with strong connections to other clusters and themes can be considered 
‘central’ and indicative of influential significance within the conceptual 
structure of a field. Callon’s density (y-axis) measures the degree of 
interconnectedness of keywords present inside a cluster, by calculating 
the number of co-occurrences between the terms inside a cluster to the 
actual number of maximum possible connections. Density therefore 
measures how much a cluster of terms has been overall developed 
compared to other clusters.

2.3. Data analysis: systematic review

The systematic review leverages data reported in Annex I to cate
gorically compare the state of the art in 2016 with that of 2024 for each 
challenge, identifying and discussing the most relevant research ad
vances and gaps (Graveline, 2016). To assess trends in the seven chal
lenges originally identified in Graveline (2016) (namely, validation, 
incorporation of water inputs, incorporation of risk, incorporation of un
certainty, spatial detail, adoption of new technologies and practices, far from 
reference simulations), we use her paper as a point of reference and 
compare the research advances and gaps summarized in Table 1 to the 
advances and gaps identified in the literature for the period 2015–2024 
reported in Annex I. To assess how literature addresses the novel chal
lenges identified in our study (namely, coupling processes, and data 
validation), we rely on the progress observed in our own literature re
view over 2015–2024.

However, while Graveline (2016) discussed the adoption of new 
technologies and practices, as well as the challenges of far from the 
calibration range analysis, as distinct aspects of mathematical pro
gramming model simulation, we take a more integrated approach. In 
this review, these themes are considered together under a broader sec
tion on data validation and data-related limitations. This reflects the 
understanding that the ability of models to simulate technological 
adoption or to perform reliably outside of observed conditions funda
mentally depends on the availability, quality, and representativeness of 
input data. By addressing these topics within a unified framework, we 
highlight the central role of data uncertainty, measurement errors, and 
information gaps as one of the main drivers of models structural vul
nerability—whether in the context of emerging technologies, trans
formative scenarios, or general calibration and validation challenges.

3. Bibliometric review

3.1. Descriptive analysis

Applying the search protocol in Section 2.1 yielded 119 different 

documents from 64 different journal sources. A total of 330 different 
authors with an average of 3.5 co-authors per publication were found. 
133 individual models appear in the sample (note that some publica
tions employ model ensembles), of which 82 are PMP (61,6 %), 37 LP 
(27,8 %), 12 PMAUP (9 %), and 2 (1,6 %) other non-linear programming 
models (1,5 %). A larger time series (1990–2024, using the same search 
criteria without abstract screening described in Section 2.1) than the one 
considered for the review (2015–2024) is used in Fig. 2 to represent the 
annual publication trends and highlight the growing number of articles 
focusing on MPMs for agricultural water reallocation. A total of 117 
were retrieved for the time series 1990–2014. In the last 10 years of 
series (2015–2024) the average number of publications per year 
increased to almost 12 (11,9), compared to the previous 25 years 
(1990–2014) where the average publications per year retrieved was 
4.68, representing an increase of 154 %.

Fig. 3 assesses journal relevance through Bradford’s Law. The “core 
sources” include 8 journals that accumulate almost 34 % (41 out of 119) 
of the total publications, while the remaining 56 journals in the sample 
represent 66 % of the total publications (81 out of 119). The “core 
sources” in the field of economic calibrated MPMs for agricultural water 
reallocation are: Agricultural Water Management (12 publications), 
Journal of Cleaner Production (8), Australian Journal of Agricultural 
and Resource Economics (4), Science of the Total Environment (4), 
Water Resources Management (4), Agricultural Systems (3), Bio-Based 
and Applied Economics (3), Environment Development and Sustain
ability (3), Environmental Modelling & Software (3).

3.2. Network analysis

Fig. 4 presents the collaborative network that results from the meta- 
data using co-author analysis. The 50 most important collaborations are 
plotted, removing the isolated authors. The wider the circle the greater 
the number of publications, with the filling colors being related to the 
cluster of collaborations authors pertain to. Results show that collabo
rations between authors are frequent (significantly more common than 
single authorship) and persistent in the field (collaborations typically 
occur more than once). A key takeaway from this co-author analysis is 
that collaborations by nationality and type of MPM (e.g., PMAUP au
thors do not collaborate with PMP authors) are the predominant drivers 
of co-authored literature.

Fig. 5 presents the results of the co-citation analysis, which identifies 
citation patterns and tracks those influential publications serving as a 
foundation of the field. A co-citation link between publications is 
created when the same two papers are cited in at least two different 
articles. The diameter of the circle in the figure is proportional to the 
number of citations received by that paper. The color of the circle is 
given based on the similarity of authors and thematic communities and 
is automatically generated by the bibliometric software. Two clear color 
patterns emerge from the co-citation analysis: the blue cluster includes 
publications that employ multi-attribute approaches (PMAUP, LP) and/ 
or coupled (hydro-economic, agroeconomic, micro-macroeconomic) 
models integrating MPMs (see e.g. Parrado et al., 2019); while the red 
cluster includes mostly PMP models focusing on calibration methods or 
Common Agricultural Policy analysis. The dense area in the center of the 
red cluster comprises the seminal PMP model by Howitt (1995) and the 
early PMP review by (Heckelei et al., 2012), together with other influ
ential work in the area (Cortignani and Severini, 2009; Frahan et al., 
2007; Heckelei and Wolff, 2003; Paris and Howitt, 1998; Merel et al., 
2011). The blue cluster appears more evenly spread, with Graveline 
(2016) review and the seminal works of the PMAUP by Gómez-Limón 
et al. (2016) and Gutierrez-Martin & Gomez (2011), appearing in the 
dense area. Like the co-author analysis, the co-citation analysis exposes 
a rift between Single and Multi-Attribute models.

Figs. 6 and 7 show the thematic profile of the field using co-word 
analysis. The figures use two types of keywords, namely Authors’ key
words (Fig. 6) and Keywords Plus (Fig. 7), and cluster them based on the 
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Fig. 2. Annual publication trends, 1990–2024.

Fig. 3. Core sources by Bradford’s law.

Fig. 4. Co-author analysis.
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number of co-occurrences. We set the minimum level of co-occurrences 
for a word to be clustered at 5, where synonyms are treated as a single 
word (e.g. ‘farm-level model’ with ‘farm level’ or ‘Common Agricultural 
Policy’ with ‘CAP’). The results are presented using the concepts of 
Callon’s centrality (x-axis) and density (y-axis) (Callon et al., 1991). 
Following the Authors’ keywords co-word analysis (Fig. 6), the four 
clusters with high centrality and density (or “motor themes”) showed in 
the upper right corner of the figure are ‘PMP’, ‘Uncertainty’, ‘Climate 
Change’ and ‘CAP’. Notably, the CAP cluster also includes the ‘farm-
level model’ keyword, indicating that CAP ex-ante policy analysis is 
often performed at the farm level.

Following the Keywords Plus co-word analysis (Fig. 7), the motor 
themes also include ‘Climate-Change’ and ‘Common Agricultural Pol
icy’. A key difference compared to the Authors’ keyword analysis is that 
‘Uncertainty’ has a lower density, while water-related keywords have a 
higher density and now appear as motor themes (e.g., water, irrigation, 
aquifer, drought). Furthermore, model names in the Authors’ Keyword 
co-word analysis (‘PMP’, ‘LP’) are replaced by their theoretical un
derpinnings (e.g., ‘expected utility’, ‘revealed preference’) or technical 
aspects (e.g., ‘calibration’, ‘elicitation’, ‘maximum entropy’) in the 
Keyword Plus co-word analysis.

Most of the seven key challenges for economic calibrated MPMs for 
agricultural water reallocation identified by Graveline (2016) (namely, 

validation, incorporation of water inputs, incorporation of risk, incor
poration of uncertainty, spatial detail, adoption of new technologies and 
practices, far from reference simulations) can be observed in the the
matic profile of the field in Figs. 6 and 7 —either directly (‘uncertainty’) 
or indirectly (e.g., ‘evapotranspiration’, ‘irrigation’, or ‘water [use]’ as 
part of incorporation of water inputs; ‘farm-level model’ and ‘river-ba
sin’ as part of spatial scale; or ‘ecosystem services’ as part of adoption of 
new technologies and practices). The only challenges that do not 
directly or indirectly emerge from the co-word analysis are validation 
and far from reference simulations, which as we will show below are the 
challenges that have received less attention over the past decade in the 
literature, with significant research gaps persisting. The thematic profile 
of the field in Figs. 6 and 7 also highlights indirectly two additional 
challenges that were not included in Graveline (2016) review, namely, 
coupling processes (e.g.,‘hydro-economic model’), and data validation 
(e.g., ‘decision-making’, ‘maximum entropy’), which we incorporate to 
our analysis.

4. Systematic review

We articulate our systematic review across a total of nine challenges 
(validation, incorporation of water inputs, incorporation of risk, incor
poration of uncertainty, spatial detail, adoption of new technologies and 

Fig. 5. Co-citation network.

Fig. 6. Co-word keyword analysis (Authors’ Keyword Level).
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practices, far from reference simulations, coupling processes, and data 
validation), for which we gather information on research advances and 
gaps. The relevance of each challenge across the sample is asymmetric: 4 
publications address validation (ex-post), 22 incorporation of water 
inputs, 30 incorporation of risk, 24 Uncertainty, 118 spatial detail 
(through scale choice), 28 coupling processes, and 37 data validation (of 
which, 28 related to Adoption of new technology and 7 related to Far 
from reference simulations). The data gathered on research advances 
and gaps for each challenge, as well as the related information on 
modeling techniques, methodology, case study region, results, model 
innovations, and model objectives, is available in Annex I. The following 
sub-sections categorically compare the state of the art in 2015 to that of 
2024 for each challenge and discuss advances and gaps.

4.1. Validation

Validation is an essential step in the development of predictive 
models like MPMs (Kanellopoulos et al., 2010), which encompasses the 
measurement and minimization of calibration (difference between 
observed and calibrated values) and forecasting errors (difference be
tween model forecasts and out-of-sample data, i.e., observed data not 
included in the model calibration) (Sarris et al., 2020). Historically, 
MPMs have given significant attention to the measurement and mini
mization of calibration errors—in fact, the most widely used MPM, PMP, 
is designed to mimic the observed behavior of the farmer and thus take 
the calibration error to zero. A low or zero calibration error has been 
often used in MPMs’ research as proof of validation, as noted by Cor
tignani & Dono (2020), who argue that MPMs can be “calibrated and 
validated by way [of a] positive approach” [emphasis added]. In this 
context, the measurement and minimization of forecasting errors has 
been widely disregarded in MPMs’ research, as was already noted by 
Graveline (2016).

However, low calibration errors do not preclude forecasting errors, 
which can be high including for models with a calibration error of zero. 
This was already shown in the pioneering work of Heckelei & Britz 
(2000) and Blanco et al. (2008) who measure the forecasting errors of a 
set of PMP models by measuring deviations of model forecasts from 
observed data in the context of CAP reforms in France (Heckelei and 
Britz, 2000) and Italy (Blanco et al., 2008). Both studies measure fore
casting errors using a fixed origin out-of-sample tests where fixed pe
riods of the observed data sample are used for the calibration (holdout 

data, e.g., 1990–2014) and validation (out-of-sample data, e.g., 
2015–2018). The authors report nontrivial forecasting errors, suggesting 
that their measurement should be integrated into MPMs’ validation and 
selection. More recently, Garnache et al. (2017) argue that MPMs are a 
calibration tool and not a statistical estimation method and should be 
assessed as such, while Petsakos and Rozakis (2022) contend that the 
calibration error “does not seem to be a relevant criterion” for MPMs’ 
validation, intercomparison and selection, particularly of PMP, and that 
“a more relevant interpretation of accuracy is that of forecasting perfor
mance [emphasis added]”.

Yet, our 2015–2024 review finds no significant improvement in the 
measurement of forecasting errors compared to the pre-2016 situation: 
the majority of studies in our sample address calibration errors, with 
only 4 studies measuring forecasting errors (Mack et al., 2020; Maneta 
et al., 2020; Moulogianni and Bournaris, 2021; Schroeder et al., 2015). 
This suggests that model intercomparison, validation and selection is 
currently largely driven by the calibration error criterion, which de
pends on the estimation method adopted. Notably, a PMP designed to 
adjust a nonlinear parameter that yields a calibration error of zero will 
systematically outperform other calibration methods (although its 
forecasting errors could be higher) (see e.g., Liu et al. (2020) and the 
criticism by Petsakos and Rozakis (2022).

It is worth noting that among the 4 sample studies that measure 
forecasting errors, 2 also address the issue of minimization of forecasting 
errors through calibration. Mack et al. (2020) measure the forecasting 
error of a PMP model and an LP model, develop an alternative coupled 
PMP-LP model, and find that the latter reduces the forecasting error. 
Maneta et al. (2020) develop a recursive Bayesian estimator that “per
mits to update the PMP model parameters as new observations become 
available at time k”, while providing a “parameter distribution that re
flects the quality of the information used for calibration”, thus correcting 
(albeit ex-post) issues related with forecasting errors through recursive 
calibration.

Finally, it should be noted that all 4 models measuring forecasting 
errors use fixed origin out-of-sample tests à-là-Heckelei & Britz (2000) 
and Blanco et al. (2008). This approach can be misleading where the 
time series contains outliers or abrupt changes that a poor model can 
predict better (and thus exhibit a superior performance). Alternative 
techniques such as rolling origin, where holdout and out-of-sample data 
sizes are modified, can generate a sequence of forecasting error mea
surements that give a better understanding of how the models perform, 

Fig. 7. Co-word keyword analysis (Keywords Plus Level).
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thus enhancing the robustness of the validation analysis (Tashman, 
2000).

4.2. Incorporation of water inputs

Graveline (2016) dedicates much of its review to the issue of how to 
better incorporate water inputs into crop production functions, noting 
that most models still allocate water in fixed proportion to land. More
over, Graveline (2016) also notes that the CES and (especially) quadratic 
crop-water functions in use at the time to allow for intensive margin 
adaptation (i.e., deficit or supplementary irrigation) on top of the 
extensive (crop portfolio changes among irrigated crops) and super
extensive (crop portfolio changes between rainfed and irrigated crops) 
adaptation enabled by models that allocate water in fixed proportion to 
land present significant limitations. Our review shows that 22 of the 119 
studies in the post-2016 sample incorporate water inputs through 
crop-water production functions—a low penetration (18.5 %) that 
contrasts with the growing evidence on the nontrivial impact that the 
crop-water production function has on water and economic modeling 
outputs. For example, Sapino et al. (2022) explore how allowing for 
deficit and supplementary irrigation can make the water demand func
tion of irrigators “significantly more elastic” as compared to the allo
cation of water inputs in fixed proportions to land, thus enhancing the 
cost-effectiveness of instruments like pricing; while Bruno et al. 
(2024) empirically show how the price elasticity of water can increase 
dynamically à-là-Samuelson (1947), suggesting changes in the 
crop-water function that cannot be accommodated by fixed proportion 
models.

Among the models that integrate crop-water production functions 
into MPMs (2015–2024), 5 models use discrete functions (piecewise) 
and 17 continuous functions. Among these publications, 13 are agro
nomic functions, 6 are CES and only 3 quadratic. The reduction in the 
use of quadratic functions responds to the limitation highlighted by 
Graveline (2016), i.e., their inability to approximate the plateau 
observed in agronomic crop-water production functions. The 6 CES 
functions in the review are typically calibrated to the agronomic func
tion à-là-Merel et al. (2014) that allow for different substitution elas
ticities for different inputs; while the remaining 13 studies use 
agronomic crop-water production functions, albeit the limitations 
highlighted by Graveline (2016) persist (lack of economies of scale, 
constant substitution among diverse types of inputs). Some innovations 
include the distinction between irrigated and non-irrigated crop-water 
production functions by separating total water availability in an exog
enous component made of precipitation and endogenous supplemental 
irrigation, which enables modelers to differentiate water costs for crop 
production between wet and dry conditions (Maneta et al., 2020); and 
the incorporation of multiple inputs in the production function, as it is 
done by Garnache et al. (2017), who couple the California StateWide 
Agricultural Production (SWAP) (Howitt et al., 2001) and the biogeo
chemical model Daycent (Del Grosso et al., 2005) to estimate crop- and 
region-specific production functions and simulate yield and greenhouse 
emissions with a and Humblot et al. (2017) who develop a calibration 
method for two-input (nitrogen and irrigation water) production func
tions in the AROPAj LP model building on previous work by Godard 
et al. (2008).

Overall, innovation is limited in this challenge, and crop-water 
production functions do not show significant variations to those used 
pre-2016. Although capacity to address (at least some of) water inputs 
modeling issues already exists, this would add a nontrivial layer of 
complexity and higher computational costs (Sapino et al., 2022). To 
adequately resolve this trade-off between model simplicity and real
ism/cost, we need information on how much accuracy we are gain
ing—but due to the focus of model validation on calibration errors, it is 
often unknown how much the incorporation of crop-water production 
functions improves the forecasting capacity of our model (two PMP, 
with and without crop-water production function, will yield the same 

error: zero).

4.3. Incorporation of risk

Graveline (2016) notes that the technical advances towards the 
incorporation of risk in the objective function through Constant (CARA) 
or Decreasing Absolute Risk Aversion (DARA) functions (Arata et al., 
2014; Petsakos and Rozakis, 2011) had limited penetration in the 
pre-2016 literature on MPMs for agricultural water reallocation. 
Importantly, no PMP incorporated CARA, DARA, or any other constant 
(CRRA) and decreasing relative risk aversion (DRRA) measure pre-2016 
explicitly, while LP focused on the minimization of total absolute de
viation (MOTAD) of income, which says “nothing about the economic 
agent’s risk preference with regard to either decreasing (constant, 
increasing) absolute or relative risk aversion” (Paris, 2018). Unnoticed 
to Graveline (2016), risk was introduced explicitly in the pre-2016 
literature on MPMs for agricultural water reallocation through PMAUP 
(Gutierrez-Martin and Gomez, 2011).

The penetration of risk measures in the literature on MPMs for 
agricultural water reallocation over 2015–2024 is significantly higher, 
with 30 publications incorporating risk in the objective function. Risk is 
modeled in single-attribute implicitly in PMP models (13 publications) 
and LP Models (2 publications), and explicitly in multi-attribute PMAUP 
(11 papers) and LP (4 papers). In PMP models, the calibration of the risk 
parameter is done implicitly through the cost function parameter, where 
the utility function can adopt different forms, including logarithmic 
(DARA-DRRA, 4 papers) (Petsakos and Rozakis, 2015) or exponential 
(CARA-CRRA, 9 papers) (Arata et al., 2014; Liu et al., 2020). A limita
tion of the more frequently used CARA approach is that it assumes the 
risk behavior of irrigators does not account for changes in wealth, which 
is “difficult to accept.” In contrast, DARA functions capture this effect, 
including in data-sparse contexts with insufficient farm-level informa
tion (Petsakos and Rozakis, 2015). However, DARA has been criticized 
for making supply responses “too sensitive” to changes in initial wealth, 
leading to comparatively higher calibration errors (Liu et al., 2020). 
Petsakos and Rozakis (2022) argue that model intercomparison and 
selection should not be based solely on calibration errors but should 
include assessments based on forecasting errors, which may be more 
favorable towards DARA. Yet, forecasting errors are absent in all 30 
models in the sample that incorporate risk, including those by Liu et al. 
(2020) and Petsakos and Rozakis (2015).

In the case of PMAUP, risk is modeled explicitly as an independent 
attribute within a multi-attribute utility function. Typically adopting a 
Cobb-Douglas functional form, PMAUP balances profit, risk, and other 
objectives (e.g., labor management) through calibrated weights 
assigned to each attribute, with risk behavior remaining constant across 
all wealth levels, implying proportional trade-offs between attributes. 
The Cobb-Douglas structure inherently supports this behavior because it 
models preferences as proportions rather than absolute quantities, 
aligning the PMAUP risk-behavior to CRRA.

4.4. Incorporation of uncertainty

A key objective of MPMs is forecasting, including under environ
mental (e.g., through yield and water availability changes under climate 
change) and socioeconomic change (e.g., through price changes), as 
shown in the co-word analysis in Section 3.2. The conventional 
approach to forecasting under socioeconomic and environmental 
change in MPMs is through a mean-variance framework where all 
plausible futures and their associated probabilities are known, i.e., 
probabilistic risk. Yet, forecasting MPMs’ responses of agents also in
volves uncertainties where modelers do not know, or cannot agree on, (i) 
the appropriate models to describe the interactions among a system’s 
variables, (ii) the probability distributions to represent uncertainty 
about key variables and parameters in the models, and/or (iii) how to 
value the desirability of alternative outcomes (Lempert et al., 2003). 
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These modeling uncertainties “must be taken in a sense radically distinct 
from the familiar notion of risk” (Knight, 1921).

Modeling uncertainties are typically classified in three categories 
(Marchau et al., 2019): 1) input uncertainty emerging from data inputs 
and assumptions, including forcings (external driving forces influencing 
the system model and their varying magnitudes, such as water avail
ability or allocation under climate change) and data uncertainty (reli
ability or accuracy of data inputs describing the baseline situation and 
quantifying essential aspects of the system under study, such as water 
use per crop); 2) parametric uncertainty emerging from the calibration 
process (e.g., CES function, risk parameter); and 3) structural uncer
tainty emerging from the connections between inputs and variables, 
among the variables themselves, and their relationship with the final 
output. 26 of the models in our sample quantify input (6), parameter 
(13), and/or structural uncertainty (12) (note that some papers quantify 
more than one type of modeling uncertainty). Structural uncertainty is 
quantified through the model spread in ensemble experiments that run 
simulations with alternative model designs (e.g., PMP v LP v PMAUP), 
while input and/or parameter uncertainties are quantified through 
sensitivity analyses that run the model with various values for the un
certain inputs (forcings, model data, parameters). Among the sensitivity 
analyses that quantify input and/or parameter uncertainty, all but one 
adopt a local sensitivity analysis (scenario-based, One-At-a-Time, and 
derivative-based local methods) where each input is individually altered 
to assess impact on outputs while keeping other inputs at their baseline 
values, then returning the input to its original value before repeating the 
process for other inputs. The key limitation of this approach is that in 
nonlinear models where there are interactions between inputs, the 
impact of each input on the output will change depending on the values 
of the other inputs, meaning that local sensitivity analysis will only 
provide a valid measure of uncertainty when the model is linear (the 
case of LP models, which represent 37,5 % of the sensitivity analyses in 
the sample) (Saltelli et al., 2019). In the case of nonlinear models such as 
PMP (representing 62,5 % of the sensitivity analyses in the sample), only 
global sensitivity analysis that assesses the impact on the output of 
changing multiple inputs simultaneously (e.g., factorial sampling, Latin 
hypercube) can provide a valid measure of input and/or parameter 
uncertainty. However, only one study in our sample conducts a global 
sensitivity analysis (Rodriguez-Flores et al., 2022), meaning that most of 
the uncertainty space is unaccounted for (Saltelli et al., 2019). More
over, no study in the sample implements a “grand ensemble” combining 
sensitivity analysis and multi-model ensembles to simultaneously 
quantify uncertainties emerging from inputs, model parameters and 
model structures.

Two key issues have been used to justify the adoption of partial 
uncertainty quantifications, including local sensitivity analysis, which 
can be easily refuted. The first issue relates to the computational cost of 
more comprehensive uncertainty quantifications, particularly global 
sensitivity analysis. However, while the adoption of local sensitivity 
analysis could be justified on the grounds of their lower computational 
cost a few years ago, workstations (let alone supercomputers) can 
nowadays perform a comprehensive global sensitivity analysis for most 
MPM within hours. The second issue relates to the number of factors 
(inputs, parameters, structures) considered in the analysis: having 
incorporated all uncertainties, the model output may vary “so wildly as 
to be of no practical use” (Saltelli et al., 2008). In other words, the 
conclusions of any sensitivity analysis will be robust enough “if the 
number and range of input values is wide enough to be credible and 
narrow enough to be useful” (Leamer, 1985). However, as noted by 
Saltelli et al. (2008), this “trade-off may not be as dramatic as one might 
expect”, and “increasing the number of input factors does not necessarily 
lead to an increased variance in model output.” A similar conclusion is 
offered by Beven & Binley (1992) and Beven & Freer (2001), who 
introduced the equifinality concept stating that distinct configurations 
of model components such as inputs, parameters, or structures, can lead 
to similar or equally acceptable representations of the real-world process 

of interest. Typically, a few inputs create most of the uncertainty, and 
the majority make a marginal contribution. This is visible in most global 
sensitivity analysis, where first (changing one input) and second order 
(changing two inputs simultaneously) effects explain most of the vari
ation in the output, with third and higher order effects having a marginal 
impact (Puy et al., 2022c). We thus argue that, despite improvement 
with respect to the pre-2016 situation where uncertainty quantification 
was limited to a few scenario-based local sensitivity analysis, this 
improvement has not kept pace with that of other scientific domains and 
disciplines, including within economics (e.g., econometrics). Enhancing 
the penetration of uncertainty analysis in the MPMs community should 
be considered a top priority—especially considering that most models 
are not sufficiently validated either.

4.5. Spatial detail

The spatial scales at which the MPMs are calibrated can significantly 
influence the behavior of agents in the model, water use decisions, and 
policy implications (Graveline, 2016). Water users are subject to het
erogeneous conditions, with fundamental differences in technology 
endowment, preferences, and constraints (including water availability). 
The choice of spatial detail is linked to the problem definition that the 
modeler wants to explore and typically includes three scales, whose 
relative relevance has remained largely unchanged with respect to 
Graveline (2016): farm level (24,57 % of studies in our sample), regional 
scale (71,18 %), and hybrid approaches (4,23 %).

Farm-scale modeling allows us to explore farmers’ individual 
behavior and choices considering the actual technology endowment, 
preferences, and constraints, and has been adopted for policy analysis, 
notably CAP reforms (Ciaian et al., 2020), as well as in studies incor
porating risk (Arribas et al., 2020). However, modeling at the farm level 
involves a non-trivial use of resources as compared to the alternatives. 
Data at a farm scale can be difficult to find, and where available is 
typically anonymized, which precludes the geographical location of 
each individual farmer that is necessary to conduct spatially distributed 
studies at a basin scale (European Commission, 2019). Thus, water 
economists modeling at farm scales may need to resort to ad-hoc surveys 
to obtain spatially distributed data, significantly increasing the cost of 
the study as compared to the alternative of regional-scale modeling—
which is typically preferred. A breakthrough in this regard as compared 
to the situation in 2016 has come from recent advances in satellite-based 
irrigation data, which is producing increasingly accurate and dis
aggregated information on key physical variables such as land, yields 
and water use, thus allowing for the substitution of expensive and 
potentially biased (due to strategic responses, especially in the case of 
studies on noncompliance such as water theft) survey data with 
open-data from satellites. This spatially distributed and open data is not 
available for economic variables such as costs or prices, though. 
Accordingly, the few economic calibrated MPMs using satellite-based 
irrigation data (Maneta et al., 2020; Sánchez-Daniel et al., 2024) 
model at a regional-scale where the complementary economic data is 
readily available.

Regional-scale is the most commonly adopted modelling level in our 
sample and can be implemented through a wide array of aggregation 
units ranging from irrigation districts (31 papers), countries (12), sec
ondary administrative divisions (a highly heterogeneous group 
comprising EU’s NUTS2,1 Chinese provinces, and US states, inter alia) 
(15), tertiary administrative divisions (including EU’s NUTS3 or mu
nicipalities, US counties or boroughs, and Chinese prefectures, inter alia) 

1 The Nomenclature of territorial units for statistics, abbreviated NUTS 
(from the French version Nomenclature des Unités territoriales statistiques), is a 
geographical nomenclature subdividing the territory of the European Union 
(EU) into regions at three different levels: NUTS 1, 2 and 3, moving from larger 
to smaller territorial units.
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(8) or river-basins (4), to the less frequently used biomes (2), altimetric 
zones (1) or clustering (by technology endowment, income, or farm 
typology) (3). Key persisting challenges of regional scale modeling 
include hydrological integrity where the aggregation unit spans over 
disconnected water bodies, which may lead to unrealistic water reallo
cation outcomes (particularly relevant at coarse spatial aggregation 
levels such as countries or secondary administrative divisions); and 
aggregation bias that overlooks preferences, technology or resource 
disparities among irrigators (Chakir and Parent, 2009). Over the past 
decade these limitations have been addressed, as was done previously 
(Graveline, 2016), by increasing the granularity of aggregation units 
(including through novel clustering methods, see e.g., Cortignani & 
Dono (2015)).

Hybrid approaches combine both regional- and farm-scales to ac
count for heterogeneity in the aggregation. An example of hybridization 
is the CAPRI model, which combines farm and regional data to avoid 
aggregation bias in the calibration of the model (Ewert et al., 2011). A 
key limitation of the hybrid approach adopted by CAPRI is that model 
agents are aggregated at the level of NUTS2 (e.g., this yields 17 agents in 
Spain), spanning over multiple disconnected water bodies inside which 
water can be freely reallocated, thus violating hydrological integrity 
(Britz and Witzke, 2012). Leveraging increase in computational power, 
more recent hybrid approaches achieve higher granularity using the 
same farm-level data as CAPRI (Farm Accounting Data Network), thus 
addressing aggregation bias while observing hydrological integrity. 
Examples include Cortignani and Dono (2015), who calibrate at an 
irrigation district scale using hierarchical and non-hierarchical clus
tering methods that select the preferable number of farm-cluster groups 
and maximize the internal similarity of groups by k-means; and Cor
tignani and Dono (2019), who group farm samples by geographical and 
altimetric level to account for farm specialization. However, hybrid 
approaches are adopted by a minor fraction of the models in the sample.

4.6. Data validation

There is a growing research body that highlights the vulnerabilities 
of MPM calibration and forecasts to measurement errors or biased 
reporting in data (Foster et al., 2024), which compounds insufficient 
input uncertainty quantification (Puy et al., 2022a). This is particularly 
relevant for the case of water use data, which is prone to errors (e.g., in 
monitoring or estimates) and biases (e.g., strategic responses of farmers 
reporting water use) in measurement (Loch et al., 2020). Over the past 
decade, data validation has been highlighted as a key step to achieve 
reliability and robustness in water modeling and management (Puy 
et al., 2022b), and research on water use monitoring has experienced a 
significant growth through in situ (e.g., sensors, water metering) and 
remote sensing-based (Higginbottom et al., 2021) monitoring—albeit 
errors and uncertainties remain high (Foster et al., 2024). Yet, only 2 
MPMs in our 2015–2024 sample explicitly address data validation issues 
in model design (Maneta et al., 2020; Sánchez-Daniel et al., 2024). Both 
papers explore the influence of alternative water use data sources on 
model calibration and simulation outputs, suggesting that in these 
particular cases remote sensing technology can produce more reliable 
water use data than conventional survey data (which is typically 
collected through anonymized farm surveys with limited granularity 
and subject to strategic responses in self-reporting) (Maneta et al., 2020) 
or estimates from hydrologic or agronomic models (which are subject to 
nontrivial forecasting errors) (Sánchez-Daniel et al., 2024). Noteworthy, 
remote sensing data is not a panacea, and translating agricultural water 
consumption (from NDVI indices) into estimates of water withdrawals 
or applications at field scales needed to support MPMs, is also subject to 
nontrivial uncertainties and errors, which may exceed in some other 
cases those of conventional survey or modeling methods. Two other 
models in our sample explore water use data input uncertainty through 
sensitivity analysis using fuzzy sets (Zhang et al., 2021, 2022) and in
terval approach (Wang et al., 2022), but do not validate the data.

Adoption of new technologies and practices has become increasingly 
addressed in recent MPM research, overcoming earlier limitations 
identified by Graveline (2016), which were mainly due to the lack of 
relevant technical and economic information. Our review finds that, 
since 2015, a growing number of studies incorporate technological 
change, especially deficit/supplementary irrigation, but also in
novations such as organic farming (Galnaityte and Krisciukaitiene, 
2016; Prisenk and Turk, 2015), desalination (Baum et al., 2016; Welle 
et al., 2017), health-related interventions (Kassie et al., 2020), 
climate-smart agriculture (Dunnett et al., 2018), and eco-schemes (Baldi 
et al., 2023). However, most of these are simulated using LP-based 
models, as non-linear MPMs face greater challenges integrating new 
practices due to the difficulty in calibrating the nonlinear components of 
the objective function (Graveline and Mérel, 2014). Notably, model 
coupling—such as integrating MPMs with CGE or ABM frameworks 
(Baum et al., 2016; Baldi et al., 2023)—has emerged as an effective 
strategy to overcome these limitations, allowing more realistic repre
sentation of market, learning, and replication dynamics. Ultimately, the 
capacity of MPMs to capture technology adoption is less a function of 
calibration method than of the availability and quality of underlying 
data, echoing the central role of data validation highlighted earlier.

Far-from-reference simulations, which test MPMs under conditions 
well outside their calibration range, expose the limitations of traditional 
models reliant on historical data (Graveline, 2016b). Our sample in
cludes studies stress-testing MPMs under scenarios such as nuclear 
winter (Wilson et al., 2023), extreme climate change (Gohar and Cash
man, 2016; Dunnett et al., 2018; Wineman and Crawford, 2017; 
Zelingher et al., 2019; de Moraes et al., 2018), and abrupt policy shifts 
(Layani et al., 2023). These works increasingly couple MPMs with 
external models to simulate nonlinear, abrupt, or disproportionate 
changes in key exogenous variables, aiming to assess the robustness and 
adaptability of model outputs. However, evidence shows that as 
real-world conditions deviate further from historical norms, adaptive 
responses may become abrupt and unpredictable (UNDRR, 2021; Loch 
et al., 2020; Wilson et al., 2023), and MPM parameters themselves may 
lose structural validity (Saltelli et al., 2019). This underscores the need 
for novel, micro-founded, and behaviorally informed models 
(Koundouri et al., 2023; Pradhan, 2021; Safarzyńska, 2018; Wuepper 
et al., 2023), but also highlights that the main bottleneck is often the 
availability of reliable, forward-looking data. As such, both the ability to 
simulate technological adoption and the validity of far-from-reference 
predictions ultimately depend on advances in data collection, integra
tion, and validation—reinforcing the centrality of rigorous data vali
dation practices in advancing the field of MPMs.

4.7. Coupling

Several of the MPMs challenges discussed above stem from exoge
nous variables to the model. One way to address these challenges in
volves coupling the MPM to an external sub-model that explores the 
challenge more in depth using relevant techniques to that specific sub- 
field. For example, to quantify input uncertainty in prices, a modeler 
can resort to an external CGE sub-model that simulates pricing sce
narios, obtain probability distributions for these variables, and run 
Montecarlo simulations with them using the MPM. Similar approaches 
using external sub-models can be employed to address incorporation of 
water inputs (e.g., through external agronomic models), adoption of 
new technologies and processes (e.g., through ABM), or far from refer
ence simulations (e.g., GCM).

In this context, model coupling has received growing attention 
during the past decade, with 28 studies in our sample incorporating 
some type of model coupling. Note that to qualify as a coupled model in 
our review, the resultant integrated model must include a full-fledged 
MPM. Holistic approaches that use part of or a simplified version of a 
MPM, such as an MPM-based piecewise demand function that is inte
grated into the architecture of a hydrologic model, do not appear in the 
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review. Accordingly, the coupled papers in our sample adopt a modular 
approach, meaning that models at each system level are run indepen
dently in modules, and then integrated through sets of protocols, which 
are rules designed to manage the interconnections among models (Csete 
and Doyle, 2002). The protocols adopted in 9 of the studies are 
bidirectional/two-way, where the MPM and coupled model feedback to 
each other, an approach that has been commonly used in the discipline 
of sociohydrology (Pande and Sivapalan, 2017; Sivapalan et al., 2012); 
while in 19 studies the protocol is one-way, where the coupled model 
produces inputs (e.g., agronomic production function, climate change 
scenarios, commodity prices) to feed the MPM simulations. Most of the 
models coupled to MPMs represent socioeconomic systems, notably 
through CGE (5 studies), ABM (1), MRIA (1), Analytic Hierarchy Process 
(1). Other system models coupled to MPMs include hydrologic, through 
Aquatool (1), HEC-HMS (1), WEAP (2), MODSIM (2), System Dynamic 
Model (1) Qual2K (1), Model Predictive Control (3), Artificial Neural 
Networks (2), HBV (1); climatic, through GCM (4) and LARS-WG (1); 
and environmental through LCA (2), MAGPIE (1), LPJmL (1). Finally, 
while most couplings are developed adopting a static setup (25 studies) 
and offer a ‘snapshot’ of the integrated system (Aghapour Sabbaghi 
et al., 2020; Hassani and Hashemy Shahdany, 2019; Parrado et al., 
2019), 3 studies allow the incorporation of dynamics by means of con
necting time-variant hydrologic models (HBV, HEC-HMS, Aquatool) to 
the otherwise static MPM (Maneta et al., 2020; Pérez-Blanco et al., 
2021a; Pérez-Blanco et al., 2021b), thus representing the co-evolution of 
the human and water system across multiple timesteps.

A major limitation to coupling efforts in MPMs is that they have not 
been organized around a common framework that allows a more sys
tematic design and validation, as has been occurring in other scientific 
areas such as ecological modeling of climate change (Eyring et al., 2016; 
Warszawski et al., 2014) or water systems (Schaake et al., 2006). A 
community-agreed framework is necessary towards mainstreaming mi
croeconomic MPMs research into major climate change forecasting 
scientific endeavors, as has been done in the field of macroeconomics 
through Integrated Assessment Models (IAM). As an example of the 
benefits this integration may yield, attribution science, a field of study 
within climate change research that aims at measuring how ongoing 
climate change directly affects extreme events and their damages in 
areas like droughts and agriculture, does not account for the adaptive 
behavior and responses of agents and how they affect the impacts of 
weather extremes. Agents’ responses are thus assumed to be propor
tional, i.e., a 50 % reduction in water availability will lead to a 50 % 
reduction in water application to each crop without changes in the crop 
portfolio. Addressing this and other limitations necessitates the devel
opment of a common framework and guidance for the design of coupling 
experiments that integrate MPMs into the climate and other ecological 
modeling communities—an effort from which both the scientific com
munity and society will benefit.

5. Conclusions and recommendations

This study reviews and critically discusses the evolution of calibrated 
MPMs for agricultural water reallocation over the past decade, following 
up on the last available review by Graveline (2016). Our bibliometric 
review shows an increase in the number of publications on the topic, 
where the average number of papers published per year during 
2015–2024 almost tripled compared to those published in the previous 
25 years (1990–2014). Integration across MPMs sub-fields is limited, 
with a wedge between papers focused on addressing calibration and 
technical aspects in PMP and multi-attribute and coupled papers. The 
systematic review shows some advances across the 9 key research 
challenges, but also significant gaps. Building upon our review and 
discussion, we propose the following recommendations for future 
research: 

1) Forecasting errors should be measured, ideally through rolling origin 
or similar methods that offer more robust performance indicators, to 
validate MPMs. Model validation is instrumental to inform model 
intercomparison and selection, particularly in the design of crop- 
water production functions (water inputs) and the incorporation of 
risk in MPMs.

2) Validate data, particularly water use data, leveraging recent advances 
in monitoring. Where data validation is not feasible or inconclusive 
(e.g., due to data constraints), input uncertainty should be 
quantified.

3) Separate the topics of uncertainty and risk. Risk is but one type of 
uncertainty, and the semantic confusion between the two leads to 
broad-brush uniform approaches that are inadequate to deal with 
higher levels of uncertainty.

4) Define a protocol for uncertainty quantification in MPMs that in
cludes, at the very least, a global sensitivity analysis of input and 
parameter uncertainties. Where the paper is applied/empirical (i.e., 
the contribution is not a new calibration method or similar technical 
development), the modelers should compare, as much as possible, 
the outputs from multiple models in ensemble experiments to 
quantify structural uncertainty.

5) Exploit model coupling to enhance spatial detail (e.g., hydrologic 
models working at a basin scale, ABM working at the meso-scale, 
CGE models working at the macroeconomic scale) and explore the 
adoption of new technologies and processes (e.g., through ecological 
models that simulate relevant technological processes, such as yield 
of novel crops) and far from reference simulations (e.g., through GCM).

6) Develop novel structural models that more strongly rely on micro- 
foundations, especially through the integration of cognitive pro
cesses identified in the behavioral economics literature (e.g., 
learning and replication, regret, loss aversion), to enhance our 
forecasting ability, including in far from reference simulations.

7) Develop a common framework and guidance for the systematic 
design of coupling experiments that underpins the integration of 
MPMs into major climate change forecasting scientific endeavors 
such as AgMIP, ISIMIP, or CMIP. This will bring benefits for scientific 
research through more detailed and accurate representation of 
agents’ adaptive behavior, while bringing higher visibility to mi
croeconomic MPMs research (as has happened with macroeconomic 
research).

These major recommendations, and the complementary scientific 
debate to further refine them, have the potential to overcome the novel 
and persisting research gaps in MPMs for agricultural water reallocation. 
We invite MPM researchers to join this debate, critically assess the state 
of the art and research gaps, and contribute to develop relevant ad
vances that enhance the ability of MPMs to inform robust agricultural 
water reallocations.
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Parrado, R., Pérez-Blanco, C.D., Gutiérrez-Martín, C., Standardi, G., 2019. Micro-macro 
feedback links of agricultural water management: insights from a coupled iterative 
positive multi-attribute utility programming and computable general equilibrium 
model in a Mediterranean Basin. J. Hydrol. 569, 291–309. https://doi.org/10.1016/ 
j.jhydrol.2018.12.009.
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