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Abstract

The risk assessment of chemicals relies on multiple tools to quantify the ecological responses of ecosystems to existing
chemical pollution. These tools are broadly categorized into three major groups: toxic pressure assessments, bioassays, and
ecological monitoring. Here, we examine the strengths and limitations of these approaches, their current level of
implementation for freshwater ecosystems across Europe, and their ability to evaluate the impacts of chemicals under field
conditions. Additionally, we analyze the correspondence between results obtained from these tools when applied to a
monitoring dataset from German streams. Our evaluation showed that no single tool can perfectly characterize the
environmental impacts of chemical mixtures. However, each provides distinct lines of evidence, enabling the identification
of chemicals driving ecological risks and the biological endpoints most likely to be affected, with ecological monitoring
tools having the potential to show long-term ecosystem impairment. Finally, we propose recommendations to better
understand the discrepancies between the outcomes of different methods and explore their potential integration into a unified
water quality evaluation framework.
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Introduction

Aquatic ecosystems are exposed to multiple organic and
inorganic chemicals, including pesticides, pharmaceuticals,
metals, and industrial compounds (Busch et al.,, 2016;
Wilkinson et al., 2022). These chemicals form complex
mixtures that can affect aquatic organisms simultaneously
and in sequence (Van Gils et al., 2020; Rorije et al. 2022).
Such complexity highlights the importance of diagnostic (or
retrospective) risk assessments, which aim to identify the
impacts of chemicals that are in use or that have already
been emitted into the environment, relying on advanced
tools to characterize chemical exposure and effects, and
supporting regulatory decisions on restricting, phasing out,
or banning of substances (Vijver et al. 2017; Rico et al.
2021a). To date, our ability to quantitatively assess the risks
of chemicals to aquatic ecosystems remains limited due to
several challenges. These include difficulties in measuring
every single substance that contributes to the environmental
exposome (Scholz et al., 2022), the lack of toxicity data for
many substances (Treu et al. 2024), the extrapolation of
individual-level effects assessed under laboratory conditions
to higher levels of biological organization (Schneeweiss
et al., 2023), and accounting for multiple (non-)chemical
stressors that collectively influence the structure and func-
tion of ecosystems (Rico et al., 2016; Van den Brink et al.,
2018).

In Europe, the Water Framework Directive (WFD)
incorporates multiple lines of evidence to assess the eco-
logical status of aquatic ecosystems and to try to establish
causality between measured sources of ecosystem impair-
ment and ecological effects (EC, 2010), following methods
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The toolbox that supports the diagnostic risk assessment
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(Fig. 1). For instance, toxic pressure assessment metrics,
which estimate the likelihood that contaminants will
adversely affect biological communities by integrating
exposure concentrations with toxicity data, enable the cal-
culation of risk measures based on deterministic or prob-
abilistic methods (De Zwart and Posthuma, 2005; Van den
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Fig. 1 Toolbox for the diagnostic risk assessment of chemicals in freshwater ecosystems
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molecular structural identifications and characterization of
complex environmental exposures (Escher et al., 2020).
Additionally, the repertoire of biological indices that pro-
vide quantitative metrics derived from the presence, abun-
dance, and structural and functional parameters of
biological communities has grown substantially (Ofogh
et al., 2024).

Despite these advances, the complementary use of these
tools for diagnostic risk assessment of contaminant mixtures
remains limited (Brack et al., 2017; Munthe et al., 2017;
Nowell et al. 2024). Integrating these tools into the eco-
toxicological risk assessment framework presents opportu-
nities to partially validate the outcomes obtained by other
assessment methods, to elucidate toxicological mechanisms,
and extrapolate effects to higher levels of biological orga-
nization. In light of this, the aims of this paper are: (1) to
discuss the development and current implementation status
of these tools in diagnostic risk assessment for chemicals in
aquatic ecosystems; (2) to evaluate how and to what extent
these tools have been employed to validate ecosystem-level
effects; and (3) to provide recommendations for further
integration of these tools into the ecological risk assessment
framework. These discussions are based on the outcomes of
a workshop organized by scientists from the NORMAN
network (https://www.norman-network.net/), which focuses
on improving the risk assessment of chemicals of emerging
concern at the ecosystem level. Furthermore, the article
presents an evaluation of pesticide mixtures’ effects in
German streams, where a suite of diagnostic tools has been
used as an example.

Progress in the development of
diagnostic tools

Toxic pressure assessment tools

The measurement of chemical exposure concentrations
under field conditions enables the characterization of theo-
retical toxic pressure or ecological risks posed by chemical
mixtures, utilizing laboratory and/or semi-field toxicity data
for individual substances. Laboratory toxicity data for
standard test species have been applied to calculate Toxic
Units (TUs), which scale measured environmental con-
centrations of chemicals to a reference toxicity value, such
as the acute Effective Concentration for 50% of organisms
(EC50) for Daphnia magna. Aggregated measures,
assuming additivity, have also been developed, such as the
summation of TUs for individual compounds in a mixture
(Liess and von der Ohe 2005). Additionally, Predicted No
Effect Concentrations (PNECs), derived using assessment
factors, are employed to calculate risk quotients (RQs) for
individual compounds (Ginebreda et al., 2010). One of the

most extensive PNEC datasets is maintained by the NOR-
MAN network, encompassing PNECs for 93,556 sub-
stances (accessed 9th of March 2025) derived from
experimental data and QSAR models for various environ-
mental compartments (https://www.norman-network.com/
nds/ecotox/).

The RQ approach is widely recommended for identifying
unacceptable ecological risks in regulatory frameworks
such as the WFD (EC, 2013). Under the WFD, environ-
mental quality standards are employed using both max-
imum exposure and annual average concentrations
measured across various sites. This approach has been
effective in risk prioritization for large chemical monitoring
datasets due to its minimal data requirements (e.g., Wilk-
inson et al., 2022). However, the RQ approach falls short of
estimating the actual magnitude of ecological effects on
individual trophic levels when the calculated RQ of one or
the sum of RQs for multiple chemicals exceeds one.

Laboratory toxicity data for multiple species can be used
to construct Species Sensitivity Distributions (SSDs). These
distributions allow for a probabilistic estimation of the
potentially affected fraction (PAF) of species impacted by
individual chemicals. When applied to multiple substances,
this approach is referred to as the multi-substance poten-
tially affected fraction (msPAF; De Zwart and Posthuma,
2005). The msPAF is derived by applying SSD parameters
to all monitored compounds in a sample, using mixture
models such as concentration addition or independent
action (De Zwart and Posthuma, 2005). The approach relies
on extensive toxicity datasets to estimate a theoretical SSD
and the calculation of the proportion of species affected by a
contaminant mixture (Posthuma et al., 2019). Similarly to
the TU or RQ methods, a significant limitation of the
msPAF approach is its inability to quantify the magnitude
of impacts on populations and its omission of ecological
processes, such as species interactions and indirect effects
caused by changes in water quality or ecosystem functions.
Despite these limitations, the msPAF approach has been
used for diagnostic chemical risk assessments in several
countries (Ramo et al., 2018; Posthuma et al., 2019; Rico
et al., 2021b; Oginah et al., 2025).

Micro-/mesocosm studies have traditionally been used to
derive No Observed Effect Concentrations (NOECs) from
which PNEC values are extrapolated for use in high-tier
prospective risk assessments (Fig. 1; EC, 2011); EFSA,
(2013). The advantage of model ecosystem studies (i.e.,
micro- and mesocosms) lies in their greater ecological
realism, as they account for both direct and indirect che-
mical effects on populations and community-level respon-
ses. Moreover, data from these studies can be used to
inform predictive models for ecosystem-level effects. One
example is the PERPEST model (Van den Brink et al,,
2002), which utilizes a database of model ecosystem

@ Springer


https://www.norman-network.net/
https://www.norman-network.com/nds/ecotox/
https://www.norman-network.com/nds/ecotox/

Environmental Management

experiments to estimate the probability of slight or severe
effects on various biological endpoints caused by chemical
mixtures measured in the environment. This is achieved
using machine learning tools such as case-based reasoning.
Currently, the source dataset is populated with model eco-
system studies focused on pesticides, which means that, to
date, the model has been used exclusively for risk assess-
ments of these compounds (Van den Brink et al., 2006a;
Ridmo et al., 2018). However, the use of probabilistic
approaches based on micro- and mesocosm experimental
results, or similar high-tier datasets, shows significant pro-
mise for advancing diagnostic chemical risk assessments
encompassing higher levels of biological organization (e.g.,
Mentzel et al., 2024).

Bioassays

A comprehensive battery of bioassays is available to eval-
uate the impact of chemical mixtures at the sub-individual
and individual levels (Fig. 1; Schuijt et al., 2021). These
bioassays, which include in vitro and in vivo techniques,
enable the detection of chemical effects on morphological
and physiological responses in model species and/or (sub)
cellular systems (Barata et al., 2007; Konig et al., 2017). In
vitro bioassays utilize cell cultures or subcellular systems
derived from organisms such as mammals or fish, or mod-
ified bacteria. Reporter gene assays are particularly popular,
as they amplify and visualize cellular processes such as the
activation of estrogen receptors by estrogenic chemicals.
When native nuclear receptors or transcription factors—
activated at specific steps in cellular toxicity pathways—
bind to chemicals, they trigger the transcription and trans-
lation of a reporter gene. This gene encodes easily measur-
able proteins, such as fluorescent proteins or enzymes (e.g.,
B-galactosidase or luciferase). The resulting measurable
response (e.g., fluorescence intensity or enzyme activity)
correlates with the degree of receptor binding, providing a
direct proportional measure of the chemical’s (toxic) effect,
which is usually expressed in dilution times needed to find a
non-toxic effect (i.e., a non-significant measurable response
of the endpoint or the measured enzymatic activity; Escher
et al., 2021). Some of these bioassays have been used to
establish effect-based trigger (EBT) values for surface water
(Escher et al., 2018; Neale et al. 2023). Furthermore, these
assays can be supplemented with sequential chemical ana-
lyses to confirm the specific chemicals responsible for the
observed biological activity. Additionally, fractionation
techniques, applied under the framework of Effect-Directed
Analysis (EDA), can be used to select chemical compounds
exhibiting specific activities from complex contaminant
mixtures (Brack et al., 2016), helping in the risk prioritiza-
tion of substances and on the determination of toxic mode of
action of single substances or mixtures.

@ Springer

Active monitoring is conducted using sentinel organisms
either caged within the study area (Liess and Schulz 1999)
or tested under laboratory conditions using water samples
collected from the field, which are commonly termed
in vivo bioassays. As contaminants often occur at low
concentrations without obvious effects, water samples used
for in vivo testing are typically enriched, e.g., via solid-
phase extraction, to cover a wider range of exposure con-
centration levels and amplify response detection (Neale
et al,, 2018). The assays measure a broad spectrum of
response endpoints, encompassing both exposure bio-
markers that identify pollutants through tissue bioaccumu-
lation analysis or metabolite detection, and effect
biomarkers that evaluate biological responses to pollution.
Effect biomarkers include molecular and biochemical
responses such as oxidative stress, acetylcholinesterase
inhibition, and DNA damage, as well as cellular and his-
topathological alterations like lysosomal membrane stabi-
lity, hepatic lesions, and micronucleus formation.
Additionally, physiological and behavioral changes
including reproductive output, swimming behavior, and
heart rate are assessed, along with population-level indica-
tors such as sex ratio. These assays frequently employ
model organisms like zebrafish (Danio rerio) and water
fleas (Daphnia magna) for laboratory testing and Gam-
marus sp., Dreissena sp., or sticklebacks for field mon-
itoring, with results typically expressed as percentage effect
relative to acute endpoints (for further details see Schuijt
et al., 2021).

One of the primary strengths of both in vitro and
in vivo techniques is their capacity to identify key toxicity
mechanisms influenced by chemicals in environmental
samples. When conducted with water extracts, these
techniques primarily capture the effects of retained
organic chemicals. Conversely, when water is directly
dosed, they can reflect the combined impacts of organic
contaminants, inorganic contaminants, and organic mat-
ter, as well as the influence of the sample’s physico-
chemical properties (e.g., pH or dissolved oxygen levels),
which may contribute to the mixture’s overall toxicity.
These techniques are highly effective for detecting phy-
siological damage at the cellular or individual level in
sentinel organisms, providing valuable insights into
cumulative stress responses. However, their ability to
predict broader population- or ecosystem-level impacts
remains limited.

Ecological monitoring tools

Ecological monitoring typically involves collecting biolo-
gical samples to characterize aquatic ecosystems’ ecological
status over time. This approach enables assessment of
responses to both chemical and non-chemical stressors,
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which can be jointly monitored (Fig. 1). Biological samples
are used to calculate integrated ecological indices that
account for ecosystems disturbances at various trophic
levels, e.g., primary producers, primary and secondary
consumers, or predators. These indices are integral com-
ponents of large-scale monitoring programs, serving to
assess the ecological status of water bodies as part of the
European WFD (Birk et al. 2012). Diverse metrics have
been established in many of the EU member states, whose
results have been compared in laborious intercalibration
studies to determine reference conditions and ecological
status classes for different water body types (Furse et al.
2009). These include, for example, the more general taxo-
nomic indices for macroinvertebrates, such as diversity,
richness or evenness, and the Saprobic Index (Rolauffs
et al., 2004), the % of Ephemeroptera, Plecoptera, Tri-
choptera (%EPT) index (Weber, 1973) or the Biological
Monitoring Working Party (BMWP) index (Hawkes 1997),
which indicate general degradation compared to a reference
situation. One of the main advantages of these methods is
that they attain a high level of ecological realism, thus
providing an integrated measure of community differences
with undisturbed systems due to natural or anthropogenic
perturbations. Moreover, such indices can be harmonized
into Ecological Quality Ratios, which are used for
European-level assessments of aquatic ecosystems (Solheim
et al. 2025). However, the use of these ecological indices for
the diagnostic risk assessment of potentially toxic chemicals
is challenging, mainly due to their correlation with a wide
range of non-chemical stressors, including organic matter
pollution, nutrients, habitat modification or hydrological
alterations (Schuwirth et al. 2015; Rico et al. 2016; Liess
et al. 2021). This correlation has led to discussion on
whether chemical-specific indices (i.e., indices that
unequivocally determine the effects caused by chemicals
with specific toxic mode of action) could be developed,
with limited success so far (Schuwirth et al. 2015).

During the last decade, there has been a plea for the
development of ecological indices based on biological
traits, as these allow clearer links to be established between
chemical effects and functional ecosystem responses,
facilitating comparison of community responses across
water bodies and (eco)regions (Menezes et al. 2010;
Aazami et al. 2015). Several trait-based approaches exist,
such as those for insecticides (Rico and Van den Brink,
2015) and salinity (Schéfer et al., 2011). Among these, the
SPEAR index is notable for incorporating species’ relative
sensitivity to pesticides and specific traits related to the
probability of exposure and recolonize/recover from con-
taminant pulses (Liess and von der Ohe, 2005; Von der Ohe
and Goedkoop 2013). The SPEAR index has been used in
several research studies in Europe and other continents (see
Hunt et al. 2017 and references therein) to evaluate the

effects of pesticides, but the widespread inclusion of such
trait-based indices into regulatory risk assessment has been
limited so far.

Ecological monitoring research has also evolved to incor-
porate molecular tools, such as environmental DNA (eDNA)
metabarcoding techniques, to estimate species diversity and
assess chemical impacts on ecosystem functions (Zhang,
2019). A key advantage of these methods is their non-lethal
nature for certain monitored organisms, minimizing habitat
disruption while enabling assessments of diversity across a
wide taxonomic spectrum, including rare species often over-
looked by conventional sampling methods (Deiner et al.,
2016). Over the past decade, there has been a growing effort
to adapt indices used in the WFD to incorporate eDNA
monitoring data for fish and other biological quality elements
(Hering et al., 2018; Pont et al., 2021). However, the use of
eDNA monitoring to assess chemical risks—particularly to
establish connections between exposure and adverse effects
across different levels of biodiversity—remains relatively
limited (Schuijt et al., 2024). Moreover, linking chemical
exposure to population- or community-level effects using
eDNA data requires robust statistical correlations or the
development of calculated indices.

The establishment of environmental specimen banks and
biobanking programs (based on gene diversity studies)
represent a valuable approach to collecting high-quality
biological samples in a standardized manner through long-
term ecological monitoring initiatives (Garmendia et al.,
2015). Cryopreserved specimen banks facilitate spatial and
temporal comparisons between historical and present sam-
ples with chemical datasets, providing insights into the
historical evolution of pollutant effects or abrupt (genetic)
diversity changes caused by the environmental release or
the ban of certain contaminant classes. Ideally, these efforts
require a thorough evaluation of the chemical fingerprint at
the sites where the specimens and biobanking samples are
collected or, at the very least, robust knowledge of nearby
contamination sources. To date, specimen banks have been
successfully implemented in countries like Germany to
monitor changes in chemical bioaccumulation patterns
across various aquatic organisms and pollutants (e.g.,
https://www.umweltprobenbank.de/en/). Meanwhile, bio-
banking has primarily been applied within conservation
biology. The integration of data from both specimen banks
and biobanking, alongside other risk assessment tools, holds
significant promise for inferring long-term chemical effects
on aquatic biodiversity and environmental health.

Performance evaluation of diagnostic tools

The tools outlined above have been utilized to identify
chemicals of concern and ecosystem components
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particularly susceptible to damage (in a general sense) based
on measured chemical exposure levels. Despite their
inherent differences, these tools are expected to yield
complementary results, highlighting both the chemicals and
biological components at risk. Several studies have
attempted to compare the outcomes produced by different
diagnostic tools and to identify potential sources of dis-
crepancies through evaluation exercises (hereafter referred
to as evaluations or evaluation studies).

Such evaluations have often focused on comparing toxic
pressure tools and ecological monitoring outcomes. For
instance, field monitoring data has been employed to corre-
late TUs with various taxonomic indices, such as the BMWP,
the Saprobic Index, and the %EPT. Significant negative
correlations were observed, though the R? values were gen-
erally modest, typically not exceeding 0.3 in large rivers like
the Danube (e.g., Rico et al., 2016), and values of 0.4 (Liess
etal., 2021) and 0.7 (Liess and von der Ohe 2005) in streams
and small rivers. Moreover, the sum of pesticide TUs was
found to correlate with species richness derived from rar-
efaction curves, suggesting that current pesticide mixtures
may be responsible for up to a 42% decline in species
richness (Beketov et al., 2013). Toxic pressure units have
also been extensively assessed against trait-based indices,
particularly the SPEAR.icides index, showing significant
correlations across various water bodies (Beketov et al.,
2013; Liess et al., 2021). Schifer et al. (2013) evaluated the
predictive capacity of four toxic pressure units (TUs based on
Daphnia magna, TUs for the most sensitive species, TUs
based on SSD HCS5, and the msPAF approach) against the
SPEAR gicides index using samples from five European
countries. Their findings indicated that that either TUs based
on HCS values (in Australia), TUs based on the most sen-
sitive species (Denmark, France and Germany), or the
msPAF values (Spain) performed best, depending on the
location.

PAF and msPAF calculations have also been compared
with field-measured changes in species richness and other
biological indices. Carafa et al. (2011) reported significant
negative correlations between msPAF values and biotic
indices for macroinvertebrates (BMWP) and diatoms (IPS)
in Spanish rivers. However, other studies investigating
similar relationships with fish richness demonstrated weaker
correspondence, likely due to confounding factors such as
river flow connectivity and predominant non-chemical
stressors (Posthuma and de Zwart, 2006). Posthuma and
de Zwart (2012) investigated the relationship between
msPAF-EC50 values (calculated for 45 compounds using
laboratory acute EC50 data) and macroinvertebrate abun-
dance data obtained from ditches and streams in the Neth-
erlands. Their study involved modeling population
abundance declines for each taxon relative to reference
conditions, which are often unavailable or influenced by
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multiple abiotic variables. Using Generalized Linear Mod-
els, they predicted population abundance under both che-
mical stress and non-chemical stress conditions. Their
findings showed that the fraction of taxa exhibiting a 50%
or greater abundance reduction corresponded well with
msPAF-EC50 predictions for the most sensitive species.
However, msPAF tended to underestimate population
declines for less sensitive taxa, possibly due to species
interactions. Additionally, some taxa exhibited population
increases, which were not predicted by the msPAF
approach, being identified as a major source of discrepancy
between both methods. Posthuma et al. (2020) identified a
strong correlation between msPAF-EC50 values (95th per-
centile) for 24 priority substances monitored in European
rivers and their ecological status. They proposed msPAF-
EC50 thresholds for assessing the ecological status of riv-
ers, in line with the classification system established by the
Water Framework Directive (WFD). More recently, Oginah
et al. (2025) quantified toxic pressure levels at over
1,000 sites in the Netherlands using the msPAF approach
and compared these values to macroinvertebrate abundance
and species richness loss. Their findings revealed that
macroinvertebrate abundance and richness generally
decrease with increasing toxic pressure, with a nearly 1:1
relationship observed between msPAF-calculated values
and the potentially disappeared fraction of species.

TUs and msPAF results have also been compared with
outcomes from micro- and mesocosm experiments. TUs
calculated with toxicity data for standard test species
show strong correlations with observed effects in model
ecosystem experiments involving pesticides (Brock
et al., 2000a, 2000b). Furthermore, data from these
experiments have been used to assess the protectiveness
of the Hazard Concentration 5% (HCS5) values derived
from SSDs built with laboratory toxicity data. In most
cases, these HC5 values were between 1.1 and 4 times
lower than the lowest population NOEC obtained from
micro-/mesocosm  experiments (Maltby et al.,
2005, 2009; Van den Brink et al., 2006b; Del Signore
et al., 2016). Studies validating the SSD approach with
model ecosystem experiments have generally focused on
threshold (HCS5) values rather than the entire SSD curve
(Hose and Van den Brink, 2004). Rico et al. (2018)
compared SSDs built with chronic laboratory toxicity
data for the insecticide imidacloprid and a mixture of five
neonicotinoid insecticides with the fraction of species
significantly affected in a mesocosm experiment. They
found a very good agreement between the predictions
made with the PAF and msPAF values obtained from the
SSDs and the observed effects in the mesocosm experi-
ment at different toxic stress levels, supporting the use of
such predictive tools for determining direct toxic effects
in (semi-)natural species assemblages.
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Models like the PERPEST model, which leverage data
from micro- and mesocosm experiments, enable the calcu-
lation of chemical (or mixture) effects on structural and
functional ecosystem parameters. However, comparisons
between PERPEST predictions and other toxic pressure
tools, such as TUs or msPAF indices, remain unexplored.
Such comparisons would be highly valuable, as toxic pres-
sure tools primarily focus on direct chemical effects, whereas
the PERPEST model accounts for both direct and indirect
effects. Moreover, these approaches rely on fundamentally
different datasets—Ilaboratory toxicity tests for toxic pressure
tools versus outdoor mesocosm experiments for the PER-
PEST model. Consequently, any observed alignment
between the two would significantly bolster confidence in
diagnostic assessments and improve their reliability.

The integration of in vivo and in vitro bioassay
monitoring data with ecological monitoring data or toxic
pressure metrics remains a relatively unexplored field. In
vitro assay results are often compared directly with EBT
values, which are typically derived from environmental
quality standards by incorporating relative potency
estimates and mixture effects (Escher et al., 2018; Neale
et al. 2023). Within this framework, in vitro bioassays
are frequently regarded as analytical tools, used to
identify complex chemical mixtures and link them to
chemical analytical results through the application of
mixture models. For certain endpoints, such as hormone-
mimicking effects measured using estrogenicity assays,
nearly 100% of the observed mixture effects can be
attributed to detected estrogenic chemicals (Konemann
et al., 2018). Similarly, photosynthesis inhibition is lar-
gely driven by known herbicides (Glauch and Escher,
2020). However, the explanatory power diminishes sig-
nificantly for less specific toxicity pathways that are
further downstream from molecular initiating events.
Despite the detection of dozens of chemicals in surface
water or environmental samples, the modeled and mea-
sured mixture effects of these detected chemicals often
explain less than 1% of the observed effects for such
endpoints (Neale et al., 2020). This apparent discrepancy
may initially seem surprising but becomes more under-
standable when considering that a typical non-target
chromatogram contains tens of thousands of peaks, many
of which represent unknown chemicals likely con-
tributing to the observed mixture effects (Escher et al.,
2020). A recent study investigating the presence of 225
chemicals in Dutch surface waters found that in vitro
bioassay results could be directly linked to detected
chemicals in only 6% of cases. Furthermore, the detected
chemicals accounted for just 1-17% of the observed
effects, suggesting that the majority of the effects were
likely caused by undetected chemicals (Boonstra et al.,
2025).

Multiple diagnostic tools applied to German
streams

This section demonstrates how various diagnostic tools can
be utilized to assess the ecological risks posed by realistic
contaminant mixtures. The analysis is based on a dataset
that includes invertebrate monitoring data, in vitro bioassay
results, and pesticide concentrations measured in German
streams (obtained from Neale et al.,, 2020; Liess et al.,
2021). The subsequent sub-sections provide a detailed
description of the dataset, outline the diagnostic indicators
calculated, and explain the methods employed to enable a
comparative assessment of different diagnostic tools.

The dataset

The dataset encompasses 56 sampling sites randomly
selected from those monitored by Liess et al. (2021).
Sampling was conducted between April and June in 2018
and 2019, using event-driven sampling (i.e., automatic
sampling triggered by runoff events), which showed a
higher number of substances as compared to samples taken
during fair-weather conditions (Neale et al., 2020). Sites
with certain wastewater treatment plant (WWTP) influence
were excluded, to primarily focus on effects caused by
pesticides and exclude potential indirect effects caused by
ammonia and other organic decomposition by-products.
Pesticide and metabolite analysis involved 108 substances,
detected using UHPLC-MS/MS with detection limits in the
nanograms per liter (ng/L) range. Macroinvertebrate mon-
itoring was conducted during June of 2018 or 2019 using
the multi habitat sampling method. Macroinvertebrate
samples were identified to the lowest taxonomic resolution
possible. Detailed methodologies for pesticide and macro-
invertebrate sampling and analysis can be found in Liess
et al. (2021). Water samples were also used for in vitro
bioassays targeting endpoints such as cytotoxicity, estrogen
receptor activation (ERx), aryl hydrocarbon receptor acti-
vation (AhR), peroxisome proliferator-activated receptor
activation (PPARy), and oxidative stress response
(AREc32). The methods used for these in vitro tests are
described in detail in Neale et al. (2020).

Data analysis

The following diagnostic tools and indices were calculated
from the dataset:

Toxic pressure assessment
The maximum pesticide concentrations measured at each

sampling site were used by Liess et al. (2021) to calculate the
log(TUmax) (hereafter TUmax) based on LC50 toxicity values
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for Daphnia magna or Chironomus sp. Furthermore, these
maximum pesticide concentrations were used to calculate acute
and chronic msPAF values for aquatic organisms, following
the SSD parameters and calculation methods (assuming con-
centration addition) outlined by Posthuma et al. (2019), and
implemented in the Key Factor Toxicity tool (STOWA, 2025).
Additionally, the probability of observing significant effects on
macroinvertebrates based on the pesticide concentrations at the
sampling sites was calculated using the PERPEST model.
Effects were defined as the sum of the probabilities of obser-
ving effect classes 2 and 3. These correspond to slight effects
(partial reductions in population abundance on individual
sampling days) and clear effects (severe reductions in popula-
tion abundance over several consecutive sampling days), as
documented in the micro- and mesocosm experiments included
in the PERPEST database (Van den Brink et al., 2002). The
PERPEST model calculations were performed for pesticides
with a maximum hazard unit (the ratio of the maximum
measured concentration to the hazardous concentration for 50%
of organisms (HC50) obtained from the compound’s SSD)
exceeding 0.002, while the rest were excluded from the
PERPEST calculations as were assumed not to contribute to
the calculated toxic pressure. The 0.002 threshold was derived
by applying two extrapolation factors: A factor of 5 to extra-
polate from HC50 to HCO1 (based on the commonly reported
SSD slope of 0.7 by Posthuma et al., 2019), and a factor of 100
to account for the additive toxic pressure from the approximate
100 chemicals included in the analysis.

In vitro assessment

The effects detected with four reporter gene assays were
expressed in effect concentrations triggering 10% of max-
imum effect for the activation of the arylhydrocarbon
receptor (AhR), the estrogen receptor (ERa), the
peroxisome-activated receptor (PPARy) and the activation
of the oxidative stress response 50% over the control
ECIR1.5 (AREc32). The cytotoxicity IC10 (i.e., inhibitory
concentration 10%) measured for each of the four in vitro
bioassays (AhR, Era, PPARy and AREc32) by Neale et al.
(2020) in the water samples from each site was transformed
into in vitro TUs (TU = 1/IC10). Subsequently, the average
of the four in vitro TUs was calculated and used here as an
integrated measure of in vitro cytotoxicity.

Ecological monitoring

The macroinvertebrate measurements (individuals/m?) were
used here to calculate four common biological indices: total
abundance, species richness, diversity (Shannon), and
evenness, using the CANOCO software version 5 (ter Braak
and Smilauer 2012). Furthermore, SPEAR values were
obtained from the calculations done by Liess et al. (2021).
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Finally, a Pearson correlation analysis was done to assess
the relationship between the toxic pressure tools employed here
(TUmax, msPAF acute, msPAF chronic and the probability of
finding effects as calculated with PERPEST), the in vitro
cytotoxicity indicator (in vitro TUs) and the ecological mon-
itoring indicators (abundance, richness, diversity, evenness and
the SPEAR index). The Pearson correlation analysis and gra-
phical interpretation was done with the SR plot software (Tang
et al. 2023). The correspondence between the different tools
and indicators was evaluated based on the significance of the
Pearson correlation coefficients. Significant correlations were
plotted using linear regression models built with Microsoft
EXCEL (Microsoft Corporation 2024). The pesticide and
invertebrate monitoring data used in this study, together with
the in vitro test outcomes and the calculated indices are pro-
vided in the Supporting Information file.

Study outcomes

Figure 2 presents the Pearson correlations between the various
toxic pressure metrics, in vitro bioassay results, and ecological
monitoring indices. Significant correlations were detected
between the TUmax and other indicators. The strongest was a
negative relationship with the SPEARpesticides index (Pearson
r=-040; p=0.002; R2 = 0.16;), indicating that higher
TUmax values correspond to lower abundance of pollution-
sensitive invertebrate species. TUmax also positively correlated
with msPAF acute and chronic (Pearson r=0.28 and 0.29;
p =0.04; R? = 0.08 for both), implying that elevated TUmax
increases the percentage of potentially affected species calcu-
lated with SSDs. Interestingly, TUmax showed a negative
correlation with in vitro TUs (Pearson r = —0.31; p = 0.02; R?
= 0.10), suggesting that higher toxic pressure in standard
macroinvertebrate tests aligns with greater stress in bioassays
(note that in vitro TUs represent 1/IC10 values; Fig. 3). Among
the in vitro results, ERa activation was notably high, alongside
markers of untreated wastewater contamination. This points to
inputs from human waste—likely via road runoff or discharges
from small urban areas with limited sewage treatment—despite
the streams being selected for agricultural influence. Other
bioassay endpoints showed activation, though mixture effects
generally remained below established effect-based thresholds
(EBTs). TUmax was not significantly correlated with trait
independent measures of the invertebrate community structure.

A significant positive correlation was observed between
msPAF (acute and chronic) and the probability of macro-
invertebrate effects predicted by the PERPEST model (Pearson
r=0.58 and 0.68, respectively; p < 0.001; R2 = 0.34 and 0.46).
This relationship may stem from the PERPEST model’s reli-
ance on HC50 values derived from SSDs for the calculation of
pesticide hazard units for querying its micro-/mesocosm data-
base. Additionally, msPAF acute exhibited a significant nega-
tive correlation with species evenness (Pearson r= —0.28;
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Fig. 2 Pearson correlations between toxic pressure (i.e., log(TUmax),
msPAFacute, msPAFchronic, PERPEST probability of effects),
in vitro toxicity (i.e., in vitro TUs, expressed as 1/IC10 values) and
ecological monitoring indices (i.e., abundance, richness, Shannon
diversity, evenness, SPEARpesticides) calculated for pesticides and
macroinvertebrates monitored in German streams based on the data
provided by Liess et al. (2021) and Neale et al. (2020). The circles
show the size and sign of the Pearson correlation coefficients (blue =
positive, red = negative). Significant correlations (p-value < 0.05) are
marked with a star inside of the circle. The dataset used for the Pearson
correlation analysis is provided in the Supporting Information file

p =0.03; R? = 0.09;), suggesting that exceeding the 5% spe-
cies protection threshold (msPAF acute) reduces the prevalence
of rare and potentially sensitive taxa (Fig. 3).

The results of this case study demonstrate that, among
the toxic pressure indicators evaluated, the TU approach
performs best, as it effectively predicts both bioassay out-
comes and biological monitoring indicators such as
SPEARpesticides. However, the overall correlation coeffi-
cients were relatively low, suggesting that confounding
factors influence each of these tools, limiting their ability to
perfectly align. Additionally, none of the indicators showed
a statistically significant correlation with classical inverte-
brate biodiversity metrics, such as the Shannon index and
taxonomic richness. Nevertheless, while the correlations
were not significant, the msPAF approach (acute and
chronic) and the PERPEST model exhibited the strongest
predictive capacity among the methods tested on such
biodiversity indices (Figs. 2 and 3).

Uncertainties and recommendations to
improve the diagnostic framework

The evaluation studies (discussed above) and the findings of
the case study on German streams highlight significant data

gaps and inconsistencies in the implementation and corre-
lation between different diagnostic tools, as summarized in
Fig. 4. This section outlines key data gaps and methodo-
logical advancements necessary for achieving better align-
ment between the results of different diagnostic tools.

Toxic pressure tools vs biomonitoring

Discrepancies between toxic pressure assessments and
biomonitoring outcomes often arise from inadequate toxi-
city data to represent the species present in the ecosystem
under investigation. This limitation frequently stems from
the reliance on a small set of standard test species for TU
calculations or from the lack of toxicity data required to
construct SSDs. Promising advancements include the use of
machine learning algorithms that leverage chemical and
biological predictors (e.g., taxonomy, physiology, or traits)
to estimate the sensitivity of untested (non-standard test)
species (Zubrod et al., 2024) and to expand species cover-
age in SSDs (Liang et al., 2024), thereby improving the
robustness of toxic pressure assessments.

Another limitation of toxic pressure assessments is
their focus on the measurable fraction of the exposome,
excluding numerous unknown chemical compounds
(Boonstra et al., 2025). For instance, a nationwide study
in Germany assessed 464 pesticide compounds and found
that additive mixture effects increased aquatic risk indi-
cators (e.g., for invertebrates and algae) by 3.2 times
under realistic worst-case scenarios compared to single-
pesticide predictions (Weisner et al., 2021). These find-
ings emphasize the importance of incorporating as many
chemicals as possible in toxic pressure calculations and
potentially investigating the need for a Mixture Assess-
ment Factor (Backhaus, 2023), as done in prospective risk
assessment, when chemical data are limited or unrepre-
sentative of the full exposome. The Mixture Assessment
Factor was designed for managing risks from unknown
unintentional mixtures in prospective risk assessment, but
an adapted version of it could be used when only a limited
number of substances is measured in diagnostic risk
assessments.

Toxic pressure assessments typically rely on con-
centrations from single grab water samples, while biomo-
nitoring outcomes often reflect cumulative exposures over
extended periods and across multiple exposure matrices,
such as sediments and biota (Ijzerman et al., 2024). To
address this, toxic pressure calculations should incorporate
data from integrative multi-species, multi-compartment
approaches (Miller et al., 2021; Manjarrés-Lopez et al.,
2025) using passive sampling devices (Shaw and Mueller,
2009). This could provide a more realistic estimation of
long-term toxic pressure on aquatic populations and
communities.
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Fig. 4 Standing questions
pinpointing to the potential
misalignments between the
results obtained from various
diagnostic tools used in
chemical risk assessment

Toxic pressure/Biomonitoring

Enough/appropriate (lab) toxicity
data?

Matching of taxa between toxicity
data and field community?

Do other stressors co-exist?

Community tolerance?

Furthermore, toxic pressure assessments predominantly
focus on chemical stressors, yet aquatic communities are
simultaneously exposed to a range of non-chemical stres-
sors, including altered water flow, salinity, temperature
extremes, or biological invasions (Birk et al., 2020). While
the integration of non-chemical stressors into toxic pressure
assessments remains limited, progress has been made. For
example, metal toxicity data can be adjusted for salinity and
pH gradients to calculate TUs, and temperature-dependent
SSDs could be derived for some chemicals, either based on
experimental data (Wang et al.,, 2019) or extrapolated
toxicity data using temperature-dependent toxicokinetic-
toxicodynamic models (Mangold-Déring et al. 2022).
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Bioassays/Biomonitoring Toxic pressure/Bioassays

Have chemicals related to
receptor effects been monitored?

Does the bioassay receptor exist
in the community?

Enough/appropriate (lab) toxicity
data?

Are species containing such
receptor representative?

Can the receptor-based effects
be propagated to populations?

Is the receptor presentive of the
toxicity dataset?

Are there other receptors that are
potentially sensitive?

Do other stressors show

correlated responses?

Environmental toxicants, such as pesticides, impose
strong selective pressures on various species. While the
evolution of pesticide resistance in agricultural fields is
well-documented, evidence of adaptation in non-target
species exposed to these toxicants remains inconsistent
(Bundschuh et al., 2023). Some studies suggest that species
diversity plays a critical role in the development of toxicant
tolerance by modulating the balance between intra- and
interspecific competition (Becker and Liess, 2017). Multi-
species models offer a promising complementary approach
for quantifying the net effects of interspecific interactions
on ecosystem responses to chemical stress, but initial efforts
reveal their limited capacity to replicate community-level
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responses observed under (semi-)field conditions (Loerra-
cher et al., 2023). Future research should focus on enhan-
cing the ecological realism of model predictions by
incorporating factors such as microevolutionary adaptation,
internal and external population recovery pathways, and
species’ adaptive behaviors, which collectively enhance
community resilience to chemical pollution.

Bioassays vs biomonitoring

The limited alignment between bioassay results and ecolo-
gical monitoring outcomes can be attributed to several fac-
tors. A primary challenge lies in extrapolating in vitro effects
to in vivo outcomes, which stems from multiple issues. First,
chemical bioavailability and toxicokinetics in in vitro
bioassays often fail to account for delayed or cumulative
effects, limiting their ability to predict certain apical
responses (Yoon et al., 2012; Grech et al., 2019). Second,
there is a scarcity of in vitro bioassays that adequately
represent the diversity of aquatic organisms. Many currently
available assays were developed for human toxicology and
focus on conserved vertebrate receptors, such as those found
in fish, while largely neglecting other taxa like invertebrates
and primary producers. Third, the in vitro-to-in vivo extra-
polation models are primarily designed for human toxicol-
ogy, creating significant gaps when applied to aquatic
organisms (Villeneuve et al., 2019; Brinkmann et al., 2016;
Wang et al., 2022). To address these limitations, research
efforts should focus on expanding the in vitro toxicity testing
battery to include a broader range of receptors characteristic
of freshwater ecosystems (beyond vertebrate taxa). Addi-
tionally, improved methods for extrapolating in vitro
responses to in vivo apical effects are needed.

Moreover, our understanding of how in vitro results
translate to population and community-level outcomes
remains limited. The Adverse Outcome Pathway (AOP)
framework provides a valuable approach for describing how
chemical exposure and in vitro effects propagate across
different levels of biological organization (Ankley et al.,
2024). In the past decade, significant progress has been
made in describing molecular initiating events and key
events and linking them to ecologically relevant endpoints
such as survival, growth, and reproduction (e.g. Baldwin
et al., 2009). However, AOPs have predominantly focused
on model organisms, limiting their applicability across a
broader range of species. There is a pressing need to
develop knowledgebases and computational tools to
enhance inter-chemical and inter-taxa extrapolation and to
support quantitative predictions of adverse effects at higher
levels of biological organization (Kramer et al.,, 2011;
Ankley et al., 2024).

Another complicating factor is the potential for corre-
lated responses of in vitro results to other stressors present

in environmental samples. Field studies have revealed sig-
nificant natural variability in the enzymatic profiles of
aquatic organisms (e.g., acetylcholinesterase, catalase, glu-
tathione-S-transferase) driven by environmental factors
such as temperature, salinity, and other physicochemical
variables (Menezes et al., 2006; Pfeifer et al., 2005; Ippolito
et al., 2017). Understanding this variability is essential for
disentangling chemical-induced effects from those arising
due to (natural) environmental influences.

Toxic pressure vs bioassays

Discrepancies between toxic pressure assessments and
bioassay results may stem from the presence of undetected
toxic chemicals in environmental samples, which are
excluded from toxic pressure calculations due to analytical
limitations. In such cases, employing EDA techniques to
reduce sample complexity through fractionation can aid in
identifying toxicologically relevant compounds (Escher
et al., 2020). Furthermore, combining suspect screening and
non-target screening approaches allows for the identifica-
tion of compounds without the need for reference standards,
thereby broadening the scope of chemical analysis (Hol-
lender et al., 2023).

Another critical factor is the appropriate selection of
species and toxicological endpoints for toxic pressure cal-
culations. Bioassays produce results that are specific to
certain species or taxonomic groups; therefore, toxic pres-
sure assessments must align with these parameters to enable
accurate comparisons. For instance, bioassay results derived
from fish or mammalian cell lines may not correlate well
with toxic units TUs or msPAF calculated from datasets that
include aquatic invertebrates or plants. This misalignment
likely contributed to the weak correlation observed in the
German streams case study.

Even when taxonomic alignment is achieved, false
negatives may still occur if the receptor specificity of the
bioassay does not encompass the broader range of receptors
present in the model species. As discussed earlier, addres-
sing these gaps requires the integration of additional
receptors through alternative bioassays, enhancing the
robustness and reliability of toxic pressure evaluations.

Towards an integrative framework

Each group of diagnostic tools described above may be
represented by different (groups of) indices, constituting
multiple criteria to assess chemical impacts on ecosystems.
The integration of these results to provide robust risk
conclusions and to define management decisions has been
debated under the multiple Lines of Evidence (LOEs)
approach (US EPA, 1998; EFSA, 2021). This approach
assumes that combining multiple independent lines reduces
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uncertainty and increases confidence in risk estimates, so
that combinations of such lines of evidence are required to
achieve a robust conclusion. The Weight-of-Evidence
(WoE) approach has been dedicated to the integration of
multiple LOEs based on qualitative methods, grounded on
comparative tables and triangulation methods, or quanti-
tative methods, using matrix-based approaches and Baye-
sian networks (Weed 2005; Linkov et al., 2009; Becker
et al., 2022). Their final integration usually depends on
multicriteria decisional analysis methods that require expert
judgment for weighing the final diagnostic outcomes (e.g.,
Semenzin et al., 2008). Providing a unique method that
accommodates all new diagnostic tools available for dif-
ferent sources of chemical ecosystem impairment and
freshwater ecosystems is beyond the scope of this paper,
but it seems that the individual uncertainties of some of the
new diagnostic tools and indicators available would need to
be reevaluated in this context. Figure 4 addresses this by
proposing a qualitative framework to assess such uncer-
tainties. Additionally, integrating emerging tools like
AOPs, mixture toxicity models, and machine learning
algorithms could refine uncertainty quantification and
improve data synthesis for environmental decision-making
(Kienzler et al., 2022; Bell et al., 2023).

Conclusions

Multiple diagnostic tools have been developed during the
last decades to provide diverse lines of evidence for
assessing ecological risks under field conditions. These
tools are designed to address the intricate interactions and
impacts of chemical stressors, offering a more nuanced
perspective on ecosystem health. As highlighted in this
paper, each method evaluates distinct aspects of ecosys-
tems and can be seen as highly complementary, con-
tributing to a comprehensive understanding of the (net)
effects of chemical pollution on aquatic ecosystems.
However, the limited number of studies that have attempted
to compare the outcomes of these methods (including this
one) reveal inconsistencies. These may arise from factors
such as variations in the availability and quality of toxicity
data used in toxic pressure assessments, unknown (or not
assessed) biotic and abiotic stressors in the respective
samples, disciplinary biases driven by differing study
needs, or challenges in extrapolating findings across dif-
ferent levels of biological organization, among others.
Understanding these limitations is critical for interpreting
chemical risk assessment results and may facilitate the
hierarchical and complementary application of these tools.
The integration of these diagnostic tools with AOPs, effect
models, and machine learning algorithms, that help reduce
the uncertainties in extrapolations across ecosystem
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receptors, levels of biological organization and ecological
scenarios is expected to enhance the reliability of ecolo-
gical risk assessments in the future.
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