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Abstract: Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assess-
ments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in
traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict
the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the
Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2‐methyl‐4‐
chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and
outputs of two pesticide models: a process‐based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects
model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case‐based reasoning with data from microcosm and
mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs,
zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community.
The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concen-
tration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the
group. Likewise, community‐level risk was calculated as the joint probability of any of the endpoint groups being affected.
This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for
the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to
invertebrates (36% risk). In contrast, herbicide‐related risk to the community (63%) resulted from risk to both plants (35%) and
invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This
novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different
components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182–196. © 2023 The Authors. Environmental Tox-
icology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Today's environmental risk assessment (ERA) of chemicals is

mainly based on deterministic approaches, which usually rely
on a single‐value risk characterization. The risk scores used for
lower tier assessments are, for example, risk quotients (RQs) or
environmental quality standards, which are often based on
protective exposure and effect characterizations such as a
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worst‐case estimation of exposure and the most sensitive effect
concentration (toxicity test). However, pesticide fate simulation
models (Pereira et al., 2017) already allow the calculation of
exposure distributions that encompass spatial and temporal
variability (Schmolke et al., 2010). Such process‐based pesti-
cide fate models can aid in obtaining realistic exposure char-
acterization when monitoring data are scarce. They can also
assist in the projection and analysis of future land‐use and cli-
mate change impacts on pesticide exposure concentrations by
integrating a wide diversity of scenario combinations such as
agricultural practices, soil properties, crop types, and mete-
orological conditions in the prospective exposure assessment.
Moreover, exposure models are relatively quick and cost‐
efficient tools for assessing the exposure of pesticides to the
environment, compared with extensive environmental mon-
itoring campaigns (Lammoglia et al., 2018).

In recent years, the influence of climate change on pesticide
fate and transport has been the subject of increased concern
(Bloomfield et al., 2006; Delpla et al., 2009; Lamon et al., 2009;
Noyes et al., 2009). Changes in climate conditions (temper-
ature and precipitation) and land‐use practices can lead to
shifts in ecosystem structure and function, as well as their hy-
drological processes. In turn, this may lead to changing re-
sponses of the affected species to contaminants (Landis
et al., 2013). A realistic assessment of risks posed by these
expected stressors is crucial for the future ecological sustain-
ability of the Albufera National Park in Valencia, Spain
(Figure 1), which is the site of the present case study.

Traditional effect assessment based on standard toxicity
tests, which are commonly used in lower tier regulatory risk
assessments, tend to ignore many aspects of ecological re-
alism: indirect effects, the complexity of the population and
population dynamics, and complex interactions occurring
between populations in a community structure. Instead, to
account for uncertainties related to effect assessment, assess-
ment factors are commonly applied to the most sensitive

species of toxicity tests or a given hazardous concentration
(typically the hazardous concentration to 5% of a species [HC5])
from a species sensitivity distribution (SSD; Schmolke
et al., 2010; Topping et al., 2020). This commonly used lower
tier effect assessment neglects species interaction and lacks
insights into the propagation of effects on single species to
different trophic levels of the ecosystem (Van den Brink
et al., 2006). Predicted no‐effect concentrations (PNECs) de-
rived from micro‐ and mesocosm experiments are generally
used in the prospective risk assessment of single compounds,
and barely perform spatially explicit or scenario‐based risk as-
sessments, although they can offer such opportunities. The
Predicts the Ecological Risk of Pesticides (PERPEST) model (Van
den Brink et al., 2002) was designed to perform more realistic
effect assessments by using case‐based reasoning to search for
analogous pesticide contamination cases based on type of
experimental ecosystem, the exposure pattern, and the mode
of action of the evaluated substance (Larras et al., 2022; Van
den Brink et al., 2002, 2006). The model predicts pesticide
effects on a series of biological structural and functional end-
points, which have been derived for species tested within
micro‐ and mesocosm setups (Davis et al., 2013). The PERPEST
model uses data created by micro‐ and mesocosm experiments
to conduct more sophisticated risk assessments, by trying to
predict specific population and community endpoints that may
be impacted by pesticide contamination (Larras et al., 2022;
Van den Brink et al., 2002, 2006).

In Europe, prospective ecological risk characterization is
often calculated by comparing predicted exposure concen-
tration (PEC) with PNEC following a so‐called deterministic
approach, that is, generating a single‐value risk score (Di
Guardo & Hermens, 2013; Schmolke et al., 2010). These de-
terministic approaches involve the use of uncertainty factors
(e.g., assessment factors), or the exceedance and frequency of
exceedance of safe thresholds to derive qualitative output that
lacks indications of the level of certainty related to the input

FIGURE 1: Location of Albufera Natural Park near Valencia (red) and location of rice field clusters (colored areas). Adapted from Instituto
Geográfico Nacional (2022).
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and output parameters (European Commission, 2006). In re-
ality, however, pesticide exposure and effects have spatial and
temporal variability. This is mainly influenced by environmental
and biological characteristics, and by pesticide application
patterns (European Commission, 2007). Improving prospective
ERAs and considering and integrating future scenarios into the
risk assessment of pesticides will aid in the prevention of further
and future damage (Topping et al., 2020). Probabilistic ap-
proaches have been proposed as more suitable methods to
account for variability and uncertainty of exposure, effect, and
risk (Carriger & Newman, 2012; European Commission, 2006;
Solomon et al., 2000; Verdonck, 2003). Previously proposed
probabilistic methods are the joint probability curves (Giddings
et al., 2000; Verdonck, 2003), the quantitative overlap (Hall
et al., 2000; Solomon et al., 2000), and the RQ distribution
approach (Campbell et al., 2000; Mentzel et al., 2021;
Verdonck, 2003). Limitations of the existing probabilistic tools
are that their outputs can be hard to interpret and/or that it can
be difficult to communicate the risk to decision‐makers (Dreier
et al., 2020; Giddings et al., 2000).

Bayesian networks (BNs) can overcome some of these
limitations and better communicate the quantified un-
certainties to decision‐makers and other stakeholders
(Carriger et al., 2016; Carriger & Newman, 2012). Bayesian
networks can be defined as directed acyclic graphs or prob-
abilistic graphical models that contain nodes (variables)
linked through arcs representing conditional probability ta-
bles (Aguilera et al., 2011; Kaikkonen et al., 2021). The nodes
have assigned states (intervals or categories), which are
quantified by probability distributions. Based on new evi-
dence (e.g., scenarios), BNs use Bayes' rule to update the
probability distributions throughout the network (Carriger
et al., 2016; Kanes et al., 2017). While being used in situations
where data are limited, BNs are able to incorporate various
sources of information, for example, expert elicitation, other
model outputs, or other information literature (Carriger
et al., 2016; Carriger & Newman, 2012; Gibert et al., 2018;
Hamilton & Pollino, 2012). Moreover, BNs can act as a met-
amodel (see Martínez‐Megías et al., 2023; Mentzel
et al., 2022) allowing the incorporation of input and output
data and assumptions from different models, for example,
process and case‐based prediction models into a single

network model. This approach can allow the display of un-
certainty of all model compartments in a transparent way.
Despite their extended use in disciplines such as human
medicine or social sciences, their application for the eco-
logical risk assessment of chemicals remains limited, although
it is increasing (Kaikkonen et al., 2021).

Our overall purpose was to develop and evaluate a prob-
abilistic (Bayesian) network model for calculating the risk of
pesticides to aquatic communities, by combining information
from different scenarios, a pesticide exposure model and a
pesticide effect model. More specifically, the goals of the
model and case study we present were to explore the fol-
lowing issues: (1) How will the risk of pesticide to individual
biological endpoints vary across the environmental scenarios?
(2) How will the risk to biological endpoint groups vary across
the different pesticide types? and (3) How will the variation in
risk across scenarios and pesticide types manifest at the
community level?

DATA AND METHODS
Our general approach was to integrate predicted outputs

from exposure, quantified as probability distributions, and ef-
fect models quantified as probabilities, into a BN serving as a
metamodel (Figure 2). We developed a BN metamodel struc-
ture incorporating spatial variability in the risk estimation of
pesticides for various endpoints in the aquatic ecosystem, as
explained in the next sections.

The first subsection describes the study area including
the scenarios of climate and land‐use changes and some of the
related challenges. The following two subsections describe the
derivation of inputs for the BN model according to the con-
ceptual model (Figure 2): predicted exposure data for three
selected pesticides, and predicted concentration–effect rela-
tionships for biological endpoints. The last subsection gives
more information on the structure and parameterization of the
BN model, including the approach for integrating risks from the
individual endpoint level to endpoint groups and to the com-
munity level.

The model was run for six scenarios (Table 1) represen-
ting different management practices (“application”) and

FIGURE 2: Conceptual model for the effect estimation of a pesticide (acetamiprid) on an aquatic community. The pesticide exposure distribution
derives input from the RICEWQ model and is determined by the associated future climate and application scenarios. The PERPEST model input
derives the probability of effect on biological endpoints, which is aggregated to endpoint groups and in turn to the community.
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meteorological and hydrological conditions (“Year”), for each
of the selected pesticides.

The case study region
The case study region was located in the Albufera Natural

Park (a lake enclosed by rice fields) known for its diversity of bird
and fish species (Soria, 2006; Figure 1). The study area is a
coastal wetland approximately 5 km south of Valencia on the
Mediterranean Spanish coast, with an area of approximately
210 km2 (Figure 1). The Natural Park has ecological relevance
because it is a nesting and transfer point for approximately 250
species of migratory birds; it has been designated a special
protection area by the Birds Directive of the European Com-
mission (2010), and is listed as a core breeding and resting site
in Natura 2000 (European Commission, 2008) as well as the
Ramsar Convention of wetlands (Calvo et al., 2021; Generalitat
Valenciana, 2020; Vera‐Herrera et al., 2021). Within its boun-
daries, 34% of Spanish rice is produced (Canet et al., 2003);
73% of the wetland is dedicated to rice cultivation (Vera‐Herrera
et al., 2021), and the remaining area is almost all an oligohaline
lake (i.e., Albufera Lake). The rice paddies serve as a habitat for
several species of aquatic plants, invertebrates, and fish, and
provide food to the local and migratory birds. Rice production
relies on the use of herbicides, insecticides, and fungicides, all
of which pose potential hazards for the aquatic ecosystem, as
residues of the pesticides applied in the rice paddies are
transported downstream through the drainage channels and
have been detected in Albufera Lake (Calvo et al., 2021; Vera‐
Herrera et al., 2021). Rice production and other anthropogenic
stressors have been harming the lake's water quality and eco-
system over the last century (Calvo et al., 2021; Vera‐Herrera
et al., 2021). Moreover, future land use and climate change
are expected to alter the distribution and fate of pesticides

in aquatic environments (Bloomfield et al., 2006; Noyes
et al., 2009). In the Mediterranean, it is expected that droughts
will occur more frequently, and water will be less available,
thereby resulting in lower dilution of pesticides. On the other
hand, severe precipitation events are expected to occur more
often, which may result in higher pesticide runoff. For this
southern region, an expected temperature increase may facili-
tate microbial degradation of pesticides (Arenas‐Sánchez
et al., 2016; Balbus et al., 2013; García de Jalón et al., 2014;
Noyes et al., 2009). Nevertheless, in general, pesticide impacts
are expected to increase with higher temperatures (Op de
Beeck et al., 2017). These authors have formulated three rea-
sons for this increase: (1) increasing application rates at higher
dosages related to a higher pest abundance; (2) increasing
temperatures causing higher toxicity of the same concen-
trations; and (3) increasing pesticide runoff from fields related to
increased precipitation (Op de Beeck et al., 2017).

Exposure prediction with RICEWQ—Prediction
and settings

We have focused on pesticide applied to rice fields, and
therefore the RICE Water Quality model (RICEWQ) was used to
simulate pesticide exposure in the water of rice paddies
(Karpouzas & Capri, 2006; Miao et al., 2004). The exposure
data was obtained from Martínez‐Megías et al. (2023), where
more details about the exposure prediction can be found.
The RICEWQ model is a process‐based model that, at the field
level, simulates pesticide runoff specific for use in rice paddies
(Martínez‐Megías et al., 2023; Williams et al., 1999). Thus far, it
is considered to be the most suitable and reliable model for
higher tier pesticide fate and exposure prediction (Daam et al.,
2013; European Commission, 2003; Karpouzas & Capri, 2006;
Pereira et al., 2017). In addition, it has been widely applied

TABLE 1: Overview of the exposure peak concentration means and standard deviations used as input on the Bayesian networka

Scenario Pesticide type Pesticide

RICEWQ scenario

Mean (mg/L) SD (mg/L)Year Application

1 Insecticide Acetamiprid 2008 Baseline 0.088 0.037
2 Baseline+50% 0.118 0.050
3 2050 Baseline 0.249 0.093
4 Baseline+50% 0.332 0.125
5 2100 Baseline 0.103 0.031
6 Baseline+50% 0.137 0.041
1 Fungicide Azoxystrobin 2008 Baseline 78.224 9.931
2 Baseline+50% 117.310 14.906
3 2050 Baseline 70.023 9.494
4 Baseline+50% 104.972 14.194
5 2100 Baseline 67.943 8.635
6 Baseline+50% 101.841 12.860
1 Herbicide MCPA 2008 Baseline 35.312 5.275
2 Baseline+50% 52.970 7.909
3 2050 Baseline 28.340 3.966
4 Baseline+50% 42.531 5.923
5 2100 Baseline 21.991 2.556
6 Baseline+50% 32.973 3.839

aAlso given, for each mean and SD, the selected pesticides and pesticide type, as well as details of the RICEWQ input scenarios by year (determining the climate
conditions) and the application scenario (three significant digits were chosen).
MCPA= 2‐methyl‐4‐chlorophenoxyacetic acid; RICEWQ= RICE Water Quality model.
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(Karpouzas & Capri, 2006; Miao et al., 2004) to track the fate of
both parent compounds and their metabolites (Christen
et al., 2006). Various pesticide fate processes are included in
RICEWQ modeling, such as biological, hydrological, and
physicochemical processes (Wang et al., 2019). The model
requires the following inputs: daily weather information, paddy
soil properties, pesticide chemical properties, pesticide man-
agement information, and water management practices (Wang
et al., 2019). The reader is referred to Williams et al. (1999) for
more detailed information on the model function, assumptions,
and description. Validation of the RICEWQ model for this
specific study area has not yet been completed (Martínez‐
Megías et al., 2023), but the model has been validated in
similar rice production scenarios and has provided satisfactory
results (Karpouzas and Capri, 2006; Pereira et al., 2017). In the
present study, we used predictions obtained from the latest
version, RICEWQ 1.92 (Waterborne Environmental, 2022).

We selected three active substances (Table 2) that are reg-
ularly applied by farmers in the rice paddies of the Albufera
Natural Park. The insecticide acetamiprid, the fungicide azox-
ystrobin, and the herbicide MCPA were selected to show the
applicability and integration of different pesticides types into
the approach developed previously by Calvo et al. (2021) and
Rodrigo et al. (2022). Acetamiprid and azoxystrobin are usually
applied at the beginning of July, whereas azoxystrobin is ap-
plied at the end of July and the beginning of August (Martínez‐
Megías et al., 2023).

The derived pesticide application scenarios are based on
the dosages recommended by the manufacturers, from which
we derived two scenarios: one maximum recommended
dosage (referred to as “baseline” application throughout
the study) and one that is 150% of that baseline dosage
(“baseline+50%”). The baseline application is related to current
practice according to the product description of the plant pro-
tection product applied. The baseline+50% can be considered a
worst‐case scenario for increased dosage, as indicated by
farmers due to increasing pest resistance and occurrence.

Initially, we had aimed to have climate projections for at
least three different emission scenarios, to include more vari-
ability and to use them as input for the RICEWQ model runs
based on what had been previously used in a study by Pool
et al. (2021). However, climate projection data for the nearby
meteorological station (8416) was limited to one emission
scenario: representative concentration pathway 8.5. Therefore,
only one climate projection data set was collected from the

Spanish State Meterological Agency (2021) at “Climate pro-
jections for the XXI Century—Daily data,” derived with the
model GCM MPI‐ESM‐LR. Based on this data set, three “cli-
mate conditions” scenarios for 2008, 2050, and 2100 were
used to run the exposure prediction model (Table 1).

The exposure prediction model was run for 552 spatial units
of rice crop clusters (Martínez‐Megías et al., 2023), which
constituted the spatial variation underlying the exposure dis-
tribution in the present study. A detailed description of the
assumptions made to derive these clusters, and the automa-
tization of the RICEWQ with a handy interface, are available in
Martínez‐Megías et al. (2023). The autoRICEWQ (open source
under GPL‐3.0 License, programmed in Python 3) was run for
the different pesticides, crop clusters, and scenario combina-
tions and can be accessed from Fuentes‐Edfuf and Martínez‐
Megías (2022). The peak exposure concentration from each
cluster was assumed to follow a normal distribution, which was
fitted to quantify the spatial variability of exposure within each
scenario by mean and standard deviation (Table 1).

Effect prediction with PERPEST: Model
assumptions and processing of predictions

The PERPEST model was developed to predict pesticide
effects on various biological endpoints from aquatic com-
munity studies, such as phytoplankton, microcrustacean, or fish
(Van den Brink et al., 2002). It can be used for risk assessment
of the single or mixtures of pesticides (Rämö et al., 2018), but
was only used for single pesticides separately in our study. It is
considered more comprehensive than the traditional ERA that
uses point estimate approaches such as risk or hazard quotient
(Polidoro & Morra, 2016; Rämö et al., 2018). As mentioned, this
effect prediction model applies a case‐based reasoning ap-
proach based on empirical ecotoxicological data from micro‐
and mesocosm experiments (Davis et al., 2013; Rämö
et al., 2018). It can represent indirect effects of contaminants,
for example, via the food chain, while incorporating hydro-
logical properties and acute and chronic exposure in the pre-
diction (Van den Brink et al., 2002). The PERPEST model
compares environmental exposure concentrations with pre-
vious observations in mesocosm and microcosm toxicity ex-
periments to estimate the probability of the pesticide having a
toxic effect on various pesticide‐type–dependent biological
endpoints and endpoint groups. The PERPEST model was last

TABLE 2: Chemical, biological, and physical properties of the selected pesticides included in the PERPEST model

CAS no. Chemical name
Type of

substance Mode of action Molecule group
DT50
(days)

Henry's law
(Pa m³mol−1)

HC50
(µg/L)

Koc
(L/kg)

135410‐20‐7 Acetamiprid Insecticide Other
insecticide

Neonicotinoid 2950a 5.3E–08 93 199.5

131860‐33‐8 Azoxystrobin Fungicide Other fungicide Strobilurin‐quinone
outside inhibitor

6.1 7.4E–09 503 3320

94‐74‐6 MCPA Herbicide Other herbicide Aryloxyalkanoic acid 19.5 0.000055 5300 56

aAbove max range—the value was higher than the maximum amount of days that could be entered, in which case the max of 1000 days was used.
DT50= degradation half‐life; HC50= hazard concentration for 50% of the species; Koc= soil adsorption coefficient; MCPA= 2‐methyl‐4‐chlorophenoxyacetic acid.
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updated in 2009 and has a limited number of studies in the
database on which the predictions are based. The mode of
action is a pesticide property that can be considered for some
pesticides, but the selected pesticides used in our study do not
have modes of action currently available for the model pre-
dictions. Therefore, the PERPEST model applies assumptions
across the same pesticide class for the prediction of the effect
on the different biological endpoints.

For each pesticide and biological endpoint, PERPEST pre-
dicts the probability of three effect classes along a pesticide
concentration gradient. The selection of biological endpoints
depends on the modeled pesticide type. Following Van den
Brink et al. (2002), these three classes are defined as (1) No
effect: no consistent adverse effects are observed as a result of
the treatment; observed differences between treated test sys-
tems and controls do not show a clear causality; (2) Slight effect:
confined responses of sensitive endpoints (e.g., partial reduction
in abundance) are observed on individual sampling dates only
and/or are of a concise duration directly after treatment; and (3)
Clear effect: severe reductions of sensitive taxa over a sequence
of sampling dates are demonstrated (Davis et al., 2013).

The reader is referred to Van den Brink et al. (2002) for more
detailed information on the model function, assumptions, and
description. We used the PERPEST model to predict the effect
of a fungicide, herbicide, and insecticide on the biological
endpoints associated with being affected by the different types
of pesticides (Table 2). The pesticides we selected were not
currently available in the PERPEST database. Therefore their
physicochemical properties were collected from the literature
and databases such as the Pesticide Properties Database
(PPDB; Lewis et al., 2016), PubChem (Kim et al., 2020), and
CompTox (Williams et al., 2017). The HC50 was calculated from
an SSD for each of the pesticides using MOSAIC (Charles
et al., 2017) with the effect concentration for 50% of the species
(EC50) toxicity data collected from the ECOTOXicology
Knowledgebase (Olker et al., 2022). The input information used
in the toxicity data set by the PERPEST model is shown in
Table 2. The PERPEST model uses a single HC50 derived from
an SSD for the pesticide to estimate the effect on the different
taxa. Because the model uses mesocosm studies to estimate
the effects, no taxa‐specific HC values were used. The HC50 is
used by the model as an overall measure of toxic pressure for
all species in the ecosystem. It is used to calculate hazard units
for the different concentrations, and with those, make a search
in the mesocosm database. For this reason, it is not taxon
specific, because it is not used to make a quantitative risk as-
sessment for the taxonomic group of concern, but rather to
calculate overall toxic pressure and search for similar cases in
the database.

The latest version of the PERPEST software (Van den Brink
et al., 2002; Ver. 4.0.0; www.perpest.wur.nl) was used to pre-
dict the probability of effects for the three selected pesticides.
In general, the model was used with default settings, additional
weight was put on “toxic unit” and “degradation half‐life,” and
exposure was set to “not used.”

The output from PERPEST is a set of tables with probability
distributions across the three effect classes along a gradient of

pesticide concentration values, for each endpoint. These table
were used to parameterize the conditional probability tables
from the effect concentration node to each of the endpoint
nodes, which are represented by arrows in the conceptual
model (Figure 2). The intervals of this concentration gradient
have exponentially increasing (doubling) width in PERPEST. All
of the PERPEST output tables used to quantify the probabilistic
links to the biological endpoint nodes can be found in the
Supporting Information, Data III. An example of the PERPEST
gradient output is illustrated in the Supporting Information,
Figure S.1.

BN conceptual model and assumptions
The developed BN metamodel is composed of three

modules (example of concept for the herbicide MCPA in
Figure 2): the scenarios and exposure (blue), the effect on the
biological endpoint (green), and the predicted effect on the
aquatic communities (gray). The first module, “scenario and
exposure,” is composed of the scenario combination (red
node) that defines the exposure concentration distributions
(blue node), which were obtained by fitting them to the
RICEWQ model outputs (see Supporting Information, Data II).
The second module is derived from the PERPEST model out-
puts that provide the effect concentration states and the as-
sociated probabilities of: no, slight, and clear effects of the
biological endpoint nodes (green nodes; see Supporting In-
formation, Data III). In the third module, “predicted effect on
communities,” each of the biological endpoint nodes are
converted to Boolean nodes (true/false; dark gray) before
being aggregated to their respective endpoint group nodes
(Figure 2, light gray): plants, invertebrates, vertebrates, and
ecosystem processes (Table 3).

For a simplified risk characterization at the community level,
the probability of slight and clear effect was merged into the
Boolean variable “effect” (true/false). The probability of effect
on individual biological endpoints was first aggregated to
endpoint groups, and further to the community level (Figure 2).
The risk to an endpoint group was defined as the joint prob-
ability (P) of effect to any of the biological endpoints (n) in this
group:

( ) = − ( − ( )) × ( − ( ))

× [ ] × ( − ( ))

P Effect P Effect P Effect

P Effect

1 1 1

… 1

n

n

1,2, … 1 2

(1)

This equation represents an “OR” expression and calculates
the cumulative probability that any of the endpoints will be
affected. For example, the node “effect on insect” is meant to
quantify the probability of a pesticide effect to insects (true/
false); the node “effect on invertebrates” will quantify the cu-
mulative probability of effects to any of the invertebrate end-
points (i.e., macrocrustacea and insects, zooplankton, and
molluscs); and the node “effect on communities” will quantify
the cumulative probability of effects to any of the endpoint
groups. (This expression is equivalent to the equation used for
the response multiplication for mixture toxicity of substances
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with an independent mode of action (see Boedeker
et al., 1993); this is also sometimes referred to as “response
addition” (see Gregorio et al., 2013).

In the following, an example for acetamiprid shows the
aggregation from the PERPEST‐defined categorized states to
Boolean nodes of the biological endpoint. This example is
based on the biological endpoint of insects, macrocrustacea,
macroinvertebrate, microcrustacean, and rotifers (Figure 3A).
The Boolean biological endpoint is summarized, and the
probability of an effect on these endpoints (Figure 3B).

An assumption can be made for the effect on biological
endpoints and the endpoint groups (Figure 3 and Supporting
Information, Figure S.3). When some of the biological
endpoints for the insecticide acetamiprid (with a scenario 4)
are compared, it can be observed that nonarthropod
macroinvertebrate (labeled “other macroinvertebrates” in
PERPEST) was predicted to be affected by acetamiprid with a

probability of 0%. Unlike the insects, macro‐ and micro-
crustaceans had a higher probability (25%–30%) of being
affected.

Furthermore, the effect on the endpoint group can also be
aggregated with the developed BN. The joint probability of the
Boolean nodes derived the endpoint group for example in-
vertebrates (Figure 3C). In this example, for a scenario 4, it can
be concluded that the predicted probability of an effect on any
of these biological endpoints of the invertebrate's endpoint
group was false, with a probability of 55.1% (Figure 3C and
Supporting Information, Figure S.4).

In our study, the BN was constructed with Netica software
(Norsys Software). For each of the selected pesticides, the
parameterized model was run by selecting a set of scenarios,
for example, climate conditions at a specific time and appli-
cation scenario, as evidence. The BN then calculated the
predicted exposure concentration and subsequently the

TABLE 3: Overview of biological endpoints and endpoint groupsa

Endpoint groups

Pesticide type Invertebrates Vertebrates Plants Ecosystem processes

Fungicide Microcrustacea, macrocrustacea, insecta, other
zooplankton taxa, other macro‐invertebrate taxa

Fish, tadpoles Periphytic algae,
phytoplankton, macrophytes

DO‐pH metabolism,
decomposition

Insecticide Insects, macrocrustacea, microcrustacea, other
macro‐invertebrates, rotifers

Fish Algae, macrophytes Community metabolism

Herbicide Zooplankton, macrocrustaceans, insects, molluscs Fish, tadpoles Macrophytes, periphyton,
phytoplankton

Community metabolism

aThe biological endpoints were determined by the Predicts the Ecological Risks of Pesticides (PERPEST) model depending on the pesticide type. To enable comparison
of predicted effect on the endpoint groups and community between the different selected pesticides, the biological endpoints were grouped into endpoint groups as
shown in this table.

FIGURE 3: Example of aggregation of risk from individual biological endpoints to endpoint groups, for the insecticide acetamiprid, for climate
condition in 2050 and a baseline+50% application. (A) Predicted probability of the three effect classes to five invertebrate endpoints (insects,
macrocrustacean, macroinvertebrate, microcrustacean, and rotifers). (B) Effect classes aggregated into Boolean states (true/false). (C) Aggregation
of individual endpoints into the endpoint group Invertebrates, by the joint probability of effect on any of the endpoints (Equation 1).

188 Environmental Toxicology and Chemistry, 2024;43:182–196—Mentzel et al.
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probability of effect on the various biological endpoints and
endpoint groups and the communities. The probability dis-
tributions were updated throughout the BN to predict the
probability of effect classes on the output nodes. Model as-
sumptions and a more detailed node description are provided
in Table 4.

RESULTS
Interpretation of BN predictions

A parameterized example of the BN for the insecticide
acetamiprid is shown in Figure 4. It displays the outcome
of two scenarios with climate conditions for the year 2050:
the baseline application (scenario 3, Figure 4A) and the
baseline+50% application (scenario 4, Figure 4B). Consid-
ering scenario 4, the resulting exposure concentration shows
the highest probability (17.4%) of values in the range 0.317 to
0.375 mg/L. In the effect concentration node, where the in-
terval boundaries are given by the PERPEST model, the ex-
posure concentration range is covered by the interval 0.29 to
0.58 mg/L (63.7% probability). The highest probability of
clear effect, referred to as “clear risk,” was predicted for the
biological endpoint of macrocrustacea (12.3%). This is fol-
lowed by microcrustacea with 9.19% clear risk and 9.96%
slight risk. For this scenario, there is no risk to fish or to other
(nonarthropod) macroinvertebrates. Furthermore, consid-
ering the endpoint groups, invertebrates show the highest
risk (44.9% probability of effect). This represents the cumu-
lative probability that any of the five invertebrate endpoints
have shown a slight or clear effect. Finally, the aggregation
node, summarizing the effects on the community, predicts a
probability of 49.3% of the pesticide affecting at least one of
the biological endpoint groups. Other examples of the par-
ameterized BN models for the fungicide and insecticide
can be found in the Supporting Information, Data I and
Figures S.2, S.5, and S.8.

In the following (Figures 5 and 6), the risks predicted by the
BN are summarized in a bar chart to facilitate comparison be-
tween the different scenarios, biological endpoints, and pesti-
cide types.

Risk to biological endpoints: Comparison across
scenarios

Focusing on the individual biological endpoints, the BN
predicted the effect of the insecticide acetamiprid for eight
biological endpoints (Supporting Information, Figure S.3.). In-
sects and macro‐, and microcrustaceans had up to 20% risk
(probability of slight or clear effect). Community metabolism,
algae, and rotifers were mostly unaffected, with less than a 7%
risk. Fish and nonarthropod macroinvertebrates were most
likely not to be affected by the insecticide (Supporting In-
formation, Figure S.3.). For the insecticide, the risk was
similar for the scenarios representing years 2008 and 2100
(Supporting Information, Figures S1, S2, S5, and S6). For the
year 2050 (scenarios 3 and 4), the risk was similar (13%–24%) for
the biological endpoints of community metabolism, insects,
macrocrustacea, microcrustacea, and rotifers. Scenario 4
(baseline+50% in 2050) caused the highest risk, of up to 16% to
21% for macrocrustaceans and insects, compared with the
other scenarios.

For the fungicide azoxystrobin, 11 biological endpoints
were considered by the PERPEST model (Supporting In-
formation, Figure S.6). Nonarthropod macroinvertebrates and
microcrustacea were predicted to have a risk of more than 50%,
followed by other zooplankton taxa, phytoplankton, com-
munity metabolism, macrocrustacea, and insects. Fish and
macrophytes were similarly affected, with a risk of 15% to 20%.
Decomposition and periphytic algae were predicted to not be
affected (4%–10% risk). The risk in general decreased slightly
across the different climatic periods, being lowest in 2100, and
increased with the application scenario baseline+50% (sce-
narios 2, 4, and 6) compared with the baseline scenarios (sce-
narios 1, 3, and 5).

The PERPEST model considered eight biological endpoints
for the herbicide MCPA (Supporting Information, Figure S.9).
Zooplankton had a probability of more than 50% to be in the
clear effect state (i.e., clear risk) for a baseline+50 scenario
(Supporting Information, Figures S.2 and S.4), and of approx-
imately 30% for scenario 1 (baseline in 2008). Phytoplankton
and the periphyton had a probability of 25%. Macrophytes and
community metabolism were mostly unaffected, and fish and

TABLE 4: Bayesian network node description containing the node name, type, number of states, and information source

Module Node name Node type
No. of
states Node input source

Scenario and exposure Climate time Categories 3 Scenarios (2008, 2050, 2100)
Application scenario Categories 2 Scenarios (baseline, baseline+50%)
Scenario combination Categories 6 Combination of the scenarios

Exposure
concentration

Intervals 8 Scenario‐dependent distribution: nrmal distribution (mean, SD)

Effects on biological
endpoints

Effect concentration Intervals 6–10 = exposure concentration with discretization adapted to
intervals used by PERPEST

Biological
endpoint node

Ranked
categories

3 Pesticide effect (no, slight, clear) on biological endpoints as
predicted by PERPEST

Cumulative risk to
community

Effect on endpoints Boolean 2 FALSE= no effect TRUE= slight effect+ clear effect
Effect on endpoint

group
Boolean 2 Effect on endpoint groups= 1− (1− nodea) ×… (1− noden)

Effect on community Boolean 2 Effect on community= 1− (1− nodea) ×… (1− noden)
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molluscs were predicted to have no risk. The predicted clear
risk for any endpoint was highest for climate conditions in 2008,
with slightly decreasing probabilities toward climate conditions
in 2100. One exception was phytoplankton, for which scenarios
2 and 4 (baseline+50% in 2008 and 2050) gave a similar risk.

There were few biological endpoints that all pesticides had
in common; one of them was macrocrustacea (see the Sup-
porting Information, Figures S.3, S.6, and S.9). For this end-
point, it was thus possible to compare the risks of the different
pesticides (Figure 5). The fungicide was predicted to have the
highest risk (22%–28%; Figure 5A), in accordance with general
information about azoxystrobin having moderate toxicity to
invertebrates (as well as other endpoints in general; Table 5).
The herbicide MPCA was predicted to have a higher risk for
macrocrustacea (16%–33%; Figure 5B) than the insecticide
acetamiprid (9%–16%; Figure 5C). This outcome contrasts with
the general information on MCPA having low toxicity and
acetamiprid having moderate toxicity to invertebrates

(Table 5). This apparent inconsistency suggests that indirect
mechanisms have been at play in the mesocosm studies un-
derlying the PERPEST model, resulting in a negative relation-
ship between the herbicide exposure and macrocrustacean
endpoint values. This phenomenon will be explored further in
the next section at the level of endpoint groups, which allows
the inclusion of all endpoints in the comparison across pesti-
cides (Figure 6), as well as across scenarios (Supporting In-
formation, Figures S.4, S.7, and S.10).

Risk to endpoint groups: Comparison across
pesticide types

The combined risk or probability of effect to an endpoint
group represents the joint probability of any biological end-
point in the group being affected (Figure 3). When the three
pesticide types in the baseline scenario were compared

FIGURE 4: Example of the parameterized Bayesian network for the insecticide acetamiprid. It displays the predicted effect on the biological
endpoints and endpoint groups for climate conditions of 2050 and a baseline (A) or baseline+50% (B) application scenario.
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(Figure 6, upper panel), the insecticide acetamiprid was found
to have the lowest risk; the probability of effect ranged from
36% (invertebrates) to 0% to 6% (plants, vertebrates, and
community processes). This insecticide has low‐moderate tox-
icity to plants, and moderate toxicity to invertebrates (Table 5);

the predicted risk to invertebrates can therefore in principle be
explained by direct toxicity effects.

The herbicide MCPA posed risks to endpoint groups in the
same range as the insecticide: 35% for plants, 38% for in-
vertebrates, and below 10% for vertebrates and ecosystem

FIGURE 5: Bar chart showing the predicted probability of pesticide effect on the biological endpoint macrocrustacea under different conditions: for
(A) acetamiprid, (B) azoxystrobin, and (C) 2‐methyl‐4‐chlorophenoxyacetic acid (MCPA) and for the climate conditions 2008, 2050, and 2100, and
baseline+50% application.

FIGURE 6: Bar chart showing the predicted probability of pesticide effect on plants, invertebrates, vertebrates, and ecosystem processes, as well as
the community level for the selected pesticides, for a baseline and baseline+50% application under climate conditions in 2050. MCPA, 2‐methyl‐4‐
chlorophenoxyacetic acid.
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processes. Because MCPA in general has low toxicity to in-
vertebrates (Table 5), the predicted high risk to invertebrates in
this case might be interpreted as indirect effects occurring in
the mesocosm studies on which the PERPEST model is based.
A likely explanation could be that the herbicide has reduced
the amount of plant food available to herbivore invertebrates,
and thereby their growth, survival, and/or reproduction. Con-
sidering the individual endpoints in this case, for example, the
22% risk to phytoplankton is likely to affect the food source of
the zooplankton and contribute to the predicted 25% risk to
zooplankton.

The fungicide azoxystrobin posed the highest risk across all
endpoint groups, and consequently also to the community
level. The risk of the fungicide ranged from 18% (vertebrates)
to 98% (invertebrates), with a combined 99% to 100% risk at
the community level. Azoxystrobin has moderate toxicity to
plants and aquatic invertebrates, and moderate‐high toxicity to
fish (Table 5). The predicted risks to the different groups can
therefore be interpreted as a direct toxicity effect, although
there could also be contributions from indirect food‐web
effects.

Comparison of risk to the different endpoint groups be-
tween the two pesticide application scenarios (Figure 6, upper
vs. lower panel) can highlight the role of the different pesticide
types, and potentially the importance of the indirect versus
direct effects on the different components of the community.

In the baseline scenario (year 2050), the insecticide and the
herbicide posed a similar level of risk to the invertebrate end-
point group (36% and 37% probability of effect, respectively).
Under the baseline+50% scenario, the invertebrate risk due to
the insecticide was only slightly increased by 9% points to 45%.
For the herbicide, in contrast, the risk to invertebrates in-
creased by 25% points to 63%. Considering the individual
endpoints (Supporting Information, Figures S.3 and S.9), the
baseline+50% application of the herbicide caused a strong
increase in risk to two endpoints: zooplankton (+21% points)
and macrocrustacea (+14% points). In comparison, the baseline
+50% application of the insecticide only resulted in a small
increase in risk (<5% points) for each of four endpoints (mac-
rocrustacea, microcrustacea, rotifers, and insects). Hence, for
invertebrates under these circumstances, the toxicity‐related
risk from insecticides would be outweighed by the more in-
direct food chain‐related risk from herbicides.

Risk to the aquatic community
The community‐level risk, whereby the risk to all endpoint

groups is accumulated, reflects the combination of both direct
and indirect pesticide risk from the different trophic levels

(Figure 6; see also Supporting Information, Figures S.4, S.7,
and S.10). This is most evident in the worst‐case scenario
(baseline+50%; Figure 6, lower panel). For the insecticide, the
community‐level risk (49%) was only slightly higher than the risk
to invertebrates (45%). For the herbicide, in contrast, the
community‐level risk (86%) was considerably higher than the
risk to either plants or invertebrates (57%–63%). In the case of
the fungicide, for which the risk to the invertebrates group
alone was 97%, the additional risk to other endpoint groups
could not contribute much further to the overall community‐
level risk (99%).

DISCUSSION
We conducted a risk characterization for three selected

pesticides using a novel probabilistic approach that links the
inputs and outputs of exposure and effects models into a BN.
The BN model developed for this purpose can predict the
pesticide risk as the probability of effect on multiple biological
endpoints and can aggregate the outcome as cumulative risk
to endpoint groups and community. Furthermore, the BN
predictions enabled comparison across different pesticide
types, levels of biological organization, and scenarios of pes-
ticide application and climate conditions. This modeling ex-
ercise has given us new insights into the dynamics of pesticide
risk to aquatic communities through both direct and indirect
(trophic) mechanisms, and also how these can unfold under
different environmental scenarios. Such insights could only be
obtained through the combination of process‐based exposure
modeling, case‐based effect modeling, and probabilistic net-
work modeling for integrating all of the information.

Our study has built on the work of Martínez‐Megías et al.
(2023), who used the RICEWQ model for pesticide exposure
prediction in the same case study, but who used a probabilistic
RQ approach for the risk characterization. The RQ is commonly
used to measure the degree to which a PEC exceeds a regu-
latory threshold such as a PNEC, at least for the purpose of
initial screening or prioritization of risk. In comparison with
Martínez‐Megías et al. (2023), and other studies applying a
probabilistic RQ under various scenarios (see Mentzel
et al., 2022), our research has further advanced the risk char-
acterization by replacing the RQ with empirical cause–effect
relationships between chemical exposure and biological effects
for a range of endpoints.

Although probabilistic approaches for risk assessment such
as BN have gained popularity and proved useful (Kaikkonen
et al., 2021), there are still methodological challenges and
shortcomings associated with these approaches, some of which
we will address.

TABLE 5: Overview of expected effects of the pesticides on the different endpoint groups according to Lewis et al. (2016)

Pesticide Plants Invertebrates Vertebrates Ecosystem processes

Acetamiprid (insecticide) Low–moderate Moderate Low NA
Azoxystrobin (fungicide) Moderate Moderate Moderate–high NA
MCPA (herbicide) Low–moderate Low Mow NA

MCPA= 2‐methyl‐4‐chlorophenoxyacetic acid; NA= not available.
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Some precision of the exposure prediction model outputs is
typically lost due to the discretization of variables for the BN
model (Marcot, 2017; Nojavan et al., 2017). In our case, how-
ever, the resolution of the pesticide concentration is de-
termined by the PERPEST model, and therefore a higher
resolution of exposure concentrations nodes would not have
made much difference (Figure 3).

The credibility of the developed BN is influenced by the
assumptions and the data derived from predictions by the
process‐based exposure model and case‐based effect model.
The RICEWQ model used to predict the exposure concen-
trations in the rice paddy is readily available for simulation and
can be used for higher tier exposure assessment (European
Commission, 2003). A detailed description of uncertainties re-
lated to this model can be found in Miao et al. (2004). We
chose this model because it enabled the simulation of agri-
cultural conditions for rice production, such as the controlled
release of water, overflow, and flooding, unlike other pesticide
fate and transport models. Hence, it was considered a good
tool for exposure prediction for rice cultures (European Com-
mission, 2003). However, our modeling efforts were con-
strained by several conditions, especially relating to the
available climate model projections, which were based on a
single climate model. Using multiple climate models with dif-
ferent greenhouse gas emission scenarios allows the in-
tegration of more variability (Fernández et al., 2017). The
climate change component of the model could have been
improved by using more recent and alternative climate models,
as recommended by, for example, Steffens et al. (2014) and
Moe et al. (2022). These authors mentioned that using an en-
semble of various global and regional climate models and
various greenhouse gas emission scenarios would potentially
enable more robust predictions of environmental impacts such
as chemical exposure in the future.

Future development of the exposure concentration pre-
diction could also include more realistic application scenarios
to run the autoRICEWQ model. Such future research could also
be extended to the discharge channel to Albufera Lake by
using pesticide exposure prediction models that take more
hydrological processes into account, for example, the RIVWQ
model, which would better allow the consideration and in-
tegration of dilution, because the RICEWQ model only predicts
the exposure in the water of the rice fields.

There is also uncertainty associated with the PERPEST
model that is connected to the underlying microcosm and
mesocosm effects database. The database on which the case‐
based effect model bases its predictions has limited data
availability, in particular for fish and tadpoles. Furthermore, its
incorporated data is primarily based on data sets from the
temperate climate such as Europe and North America (Davis
et al., 2013; Van den Brink et al., 2002), and therefore is limited
in its representativity for the Mediterranean climate zone.
Henceforth, this limitation could be overcome by updating the
database with more regionally relevant bioassays. Some other
uncertainties of the PERPEST model can be associated with the
input information, such as pesticide properties for the model
run. Consequently, we tried to minimize this factor by using the

same information source for the selected pesticides whenever
possible. For example, we collected toxicity data from the
ECOTOXicology Knowledgebase (Olker et al., 2022) and,
subsequently, used the same method to prepare the data used
on MOSAIC (Charles et al., 2017) to predict the HC50. In es-
sence, the effect prediction model has simple data require-
ments, making it easy to use (Davis et al., 2013). Some
uncertainty is also linked to the way the PERPEST model output
is integrated into the BN, because it is a gradient, and its
concentration range thus far cannot be adjusted to fit better
with the exposure distribution (Figure 3). Some other restraints
are pointed out by Davis et al. (2013): the PERPEST output
might be challenging to use and understand for stakeholders
when used for risk management due to the lack of an “estab-
lished threshold risk value.” To overcome this limitation of the
PERPEST model, Davis et al. (2013) suggested setting accept-
able probabilities. In our study, we tried a different approach to
enable easy communication of BN outputs integrated with a
summarizing node for effect on endpoint group and com-
munity. These nodes show the probability of any of the af-
fected biological endpoints to be true (=effect) or false (=no
effect).

In the model we have presented, any effects of the scenarios
on the biological endpoints are derived through the exposure,
with no direct link from the scenarios to the effect module of
the network. A more direct relationship between the scenarios
and the biological effects was beyond the scope of our study,
but could be explored in future studies, because the combined
effects of climate conditions and chemical exposure are ex-
pected to affect biological endpoints through both altered
toxicity and vulnerability. A more direct link between the sce-
narios and the effect components could thus increase the
realism of the model.

Additional model development may result in better in-
tegration and use of the effect model outputs. An updated and
extended PERPEST model database would greatly decrease
uncertainties. Considering further development of the effect
side, the characterization of risk to a group by the joint prob-
ability of effect to any of its component can be considered
rather strict. In the future, other assumptions to aggregate the
endpoint groups and effect on the community level could be
explored using less stringent alternatives such as proportional
influence. In addition, future modeling efforts could also retain
all three effect levels (no, slight, and clear effect) also at the
endpoint group and community levels. However, such im-
provements would require some changes to the model struc-
ture and were beyond the scope of this first effort to link effect
assessment with PERPEST to environmental scenarios.

CONCLUSIONS AND FUTURE OUTLOOK
Our study has shown how a BN model can be developed

and used to integrate the outcomes of two different predictive
models—the pesticide exposure model RICEWQ and the bio-
logical effect model PERPEST—for risk characterization in the
aquatic ecosystem of a rice paddy. This approach builds on
previous probabilistic models for risk assessment of the

Probabilistic risk of pesticides to aquatic communities—Environmental Toxicology and Chemistry, 2024;43:182–196 193

wileyonlinelibrary.com/ETC © 2023 The Authors

 15528618, 2024, 1, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5755 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



traditionally used RQ calculation, displaying uncertainty trans-
parently of all its model components. The present study has
further developed this approach by including the risk calcu-
lation for individual biological endpoints and the cumulative
risk for the endpoint groups and the community. With the
model and scenarios we present, we could explore patterns in
the risk of the different pesticide types (herbicide, insecticide,
and fungicide) to the various individual biological endpoints.
Using joint probability calculation for cumulative risk to end-
point groups, we could identify the presumably indirect risk of
pesticides caused by trophic interactions, such as the high
probability of effects of the herbicide to invertebrates. Finally,
we could evaluate the combined risk from the different end-
point groups at the community level; for example, a high
overall risk of the herbicide, possibly caused by both direct
effects on plants and indirect effects on invertebrates.

Future research efforts could incorporate more scenarios,
such as additional crop types, application patterns, and an
ensemble of climate models, to generate more realistic pic-
tures of pesticide risks to the aquatic ecosystem. The BN
model is currently limited to single‐compound assessment,
and does not yet consider pesticide mixtures. Nevertheless, in
its current form, this model enables accounting for uncertainty
of all compartments, which allows for transparency when
communicating the effect of pesticides to various biological
endpoints, endpoint groups, and the community in the
aquatic environment.
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