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The presence of perchlorate salts in aqueous solutions bears two opposite effects
on habitability. On the one hand, perchlorate salts trigger a decrease in the
freezing point of the aqueous solutions, resulting in stable aqueous solutions
at subzero temperatures, thereby widening the habitable conditions for potential
microbial life. On the other hand, the presence of perchlorates in solution imposes
a significant osmotic stress that compromises the integrity of microbial cell
membranes, thereby restricting the habitable conditions in the same aqueous
environment. Here we investigated the survivability and the changes in the
composition of membrane fatty acids (FAs) of the bacterium Rhodococcus sp.
JG-3 cells under warm (20°C), cold (4°C), and subzero temperatures (−10°C
and −16°C), and in the presence (8 wt% and 16 wt%) and absence of
magnesium perchlorate (Mg(ClO4)2). Bacterial cell survivability decreased with
decreasing temperature and presence of magnesium perchlorate. However,
Rhodococcus sp. JG-3 was able to tolerate up to 8 wt% Mg(ClO4)2 at −16°C.
The presence of magnesium perchlorate in the medium decreased the
concentration of total FAs, likely due to a destabilization of the molecules by
the chaotropic effect of the perchlorate anion. At the maximum stress (both
subzero temperatures and 16 wt% magnesium perchlorate), the composition of
FAs changed, i.e., Rhodococcus sp. JG-3 cells increased the relative abundance of
saturated FAs (SFAs) over the unsaturated (UFAs) or branched (BFAs). These
changes in the proportion of FAs types may be a physiological response during
cooling, aimed to improve lipid membrane stability. Interestingly, the composition
and relative abundance of fatty acid types (i.e., SFAs, UFAs and BFAs) of
Rhodococcus sp. JG-3 when simultaneously exposed to subzero temperatures
and 16 wt% magnesium perchlorate was similar to that following freezing stress
alone, suggesting that either both conditions triggered a similar response or that
one response dominated over the other. Our findings contribute to understand
the survivability and adaptation of extremophilic microorganisms under
polyextreme conditions, such as those existing in the Martian subsurface today
and/or in the past, which include the documented presence of magnesium
perchlorate salts in ancient sediments and global cold temperatures.
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Introduction

Studying the adaptability of microorganisms (as the simplest life
forms on Earth) to extreme environmental conditions is key for a
comprehensive understanding of the emergence of life, its limits and
evolution in our planet and beyond. A better knowledge of the
molecules involved in the processes of microbial adaptation and
survival to different environmental conditions would provide
valuable information for the search for traces of life on other
planetary bodies, with special implications for Mars.

The identification of highly saline intervals (deposits of different
salts from episodes of overflow and drying) in the Gale crater lakes
(Rapin et al., 2019; Thomas et al., 2019) supports the hypothesis of a
‘‘cold and wet’’ early Mars (Fairén, 2010; Fairén, 2020), in which the
stability of liquid water could be linked to a variable enrichment of
dissolved salts in cold brines. In these brines, the presence of
perchlorate salts is of particular relevance and has significant
astrobiological implications (Soudi et al., 2017; Garcia-Descalzo
et al., 2020). The main perchlorate parent salt on Mars is still to
be determined (Kounaves et al., 2014), but the perchlorate anion
(ClO4

−) has been found or inferred at >0.5 wt% in multiple
locations, including the Mars Phoenix lander site near the north
pole (Hecht et al., 2009), in soil samples at Gale Crater (Glavin et al.,
2013) and Jezero Crater (Scheller et al., 2022), and arguably at
recurring slope lineae locations (Ojha et al., 2015).

The eutectic point of the magnesium perchlorate in solution
occurs at −57°C (Stillman and Grimm, 2011), and its hexahydrate
solid-phase [Mg(ClO4)2:6H2O] deliquesces when exposed to
conditions above 40% relative humidity (aw = 0.4) (Besley and
Bottomley, 1969; Robertson and Bish, 2011). These properties
enable the formation of films of transient brines that can remain
stable at very low temperatures, even at current Mars surface
conditions (Chevrier et al., 2009; Fairén et al., 2009; Robertson
and Bish, 2011), which therefore could represent an opportunity for
microbial life. In this scenario, potential microbial life forms would
have needed to cope with both cold conditions and salinity at the
same time, in addition to the perchlorate chaotropicity. For instance,
previous laboratory experiments carried out with the bacterium
Rhodococcus sp. JG-3 and the yeast Debaryomyces hansenii showed
tolerance under low temperatures and perchlorate concentrations
similar or higher to those detected on Mars (Garcia-Descalzo et al.,
2020; Heinz et al., 2021).

The stressful conditions of combined cold temperatures and
salinity challenge the fluidity of the cell membrane by affecting the
conformation and arrangement of membrane phospholipids
(Turk et al., 2004; Cray et al., 2015; Bajerski et al., 2017). The
microbial membrane is a permeable natural barrier of the cell that
controls and regulates the transport of nutrients and other
substances and solutes between the cell and the environment.
Its main structure consists of a bilayer of phospholipids with polar
head-groups facing the outer sides, and fatty acid (FA) acyl-chains
in the interior. Keeping its integrity and functionality is crucial to
maintain microbial survival. At cold temperatures, the
conformation of the lipid membrane changes from the
crystalline liquid phase into the rigid gel phase (crossing the
transition midpoint—Tm), affecting its fluidity (Siliakus et al.,
2017). When this phase transition occurs, membrane lipids turn
into a more rigid conformation in which hydrocarbon chains form

an ordered package perpendicular to the plane of the bilayer (Eze,
1991).

Apart from cold temperatures, the fluidity of the membrane also
changes with high concentration of salts (Imhoff and Thiemann,
1991; Turk et al., 2004) and chaotropic agents (Cray et al., 2015).
Perchlorate salts are especially detrimental for cell survival since
they challenge the osmotic balance of cells and causes destabilization
of biomacromolecules due to the chaotropic effect of the perchlorate
anion (Heinz et al., 2021). As a result, perchlorate salts affect
metabolic pathways crucial for the survival of microorganisms.
Often, microorganisms employ the same adaptive mechanisms to
adjust to conditions of cold and salt stress, like an increase in the
synthesis of osmotically compatible solutes, such as trehalose (De
Maayer et al., 2014; Cray et al., 2015), or changes in membrane lipids
(Taha et al., 2013) by variations in the conformation of the fatty acyl
chains (Russell, 1984).

Bacteria that grow below their optimal temperature perform
several cellular modifications to decrease the Tm of the lipid
membrane and therefore keep its fluidity by arranging a more
disordered gel phase or preventing the gel phase formation
(Siliakus et al., 2017). The rearrangement and composition of the
bacterial membrane due to changes in environmental conditions is
known as homeoviscous or homeophasic adaptation (Sinensky,
1974). Overall, this rearrangement entails variations in the
composition and level of saturation/unsaturation of membrane
FAs, the length of acyl-chains, their branching, or the iso and
ante-iso ratio (Taha et al., 2013; Yoon et al., 2015; Siliakus et al.,
2017; Willdigg and Helmann, 2021). These variations could differ
from one bacterium to another depending, for instance, on the Gram
type (Kaneda, 1991; Weber and Marahiel, 2002; Yoon et al., 2015).
Studying the responses of microorganisms facing simultaneous
stress conditions (e.g., low temperatures and salinity), is key to
better understand the potential habitability of cold and salty
environments on Earth and other planetary bodies, like Mars or
the icy moons of the outer Solar System.

Here, we analyzed the physiological responses of the halotolerant and
eurypsychrophile Rhodococcus sp. JG-3 (Goordial et al., 2015a; Goordial
et al., 2015b) under polyextreme environmental conditions: cold and
subzero temperatures, and high salinity and chaotropicity using different
magnesium perchlorate concentrations. Specifically, we studied the limits
of survival of the bacterium Rhodococcus sp. JG-3, and characterized the
modifications in its FA composition and relative abundance under
different low temperatures and magnesium perchlorate concentrations.

Materials and methods

Strain and culture conditions

The bacterium Rhodococcus sp. JG-3, originally isolated from
permafrost in the Antarctic Dry Valleys, is a Gram-positive
eurypsycrophile and halotolerant bacterium (Goordial et al.,
2015a; Goordial et al., 2015b). In order to investigate the
survivability and variations in FAs composition of this bacterium,
triplicate cultures (12 mL) were incubated in 25 mL flasks during
10 days under different temperature and medium conditions
(Table 1): i) 0.5x LB (Lysogeny Broth) medium incubated at 20°C
(optimum), 4°C, −10°C and −16°C; ii) 0.5x LB with 8 wt%Mg(ClO4)2
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incubated at the same four temperatures; and iii) 0.5x LB with 16 wt
% Mg(ClO4)2 incubated at the same four temperatures. We used
0.5x LB medium to reduce the concentration of medium salts to
better understand the effect of the magnesium perchlorate on the
bacterium cells, while providing sufficient nutrients for growth. The
magnesium perchlorate concentrations used here were 1.5 and
2.5 times lower than those used in García-Descalzo et al., 2020,
since in that study we reported a low relative cell survival rate (%) in
LB medium with 20 wt% magnesium perchlorate. Antifreezes were
not used here because we were precisely testing the antifreeze
capacity of the magnesium perchlorate. All bacterial cultures
started from a pellet corresponding to 4 mL of a preinoculum at
the late exponential phase (optical density (OD) of ~0.5 measured at
600 nm) in LB at 20°C (optimal temperature of Rhodococcus
sp. JG-3).

Survivability tests

To test the survivability of bacterial cells, OD measured at
600 nm was recorded at the beginning (day 0), middle (day 5)
and at the end (day 10) of the incubation period. In addition, colony
counts, expressed as colony-forming units per millilitre (CFU/mL),
were performed adding an aliquot of previous experiments on LB
plates incubated at 20°C to test the viability of the cells at the
beginning and at the end of the treatments. A negative control with
LB medium and without bacteria was included in both liquid and
solid media experiments at 20°C.

Extraction, fractionation and analysis of fatty
acids

To compare the FA composition among the samples exposed to
the different treatments, we selected the bacterial cultures treated
with the highest concentration of perchlorates (16 wt%), as well as
those with the lowest temperatures (−10 and −16°C), as these were
the most extreme conditions to compare with the control (LB
without perchlorates incubated at 20°C). We wanted to test
whether the bacterium could have modified its FA composition
and concentration during cooling and the presence of 16 wt%
magnesium perchlorate during incubation.

FAs extractions were performed in triplicate (i.e., each bacterial
replicate of each treatment). The sample incubated in LB without
perchlorate at 20°C (LB_(20)) was used as a control. At the end of the
incubation time (10 days), the whole volume of each culture was
collected, centrifuged at 13,200 rpm for 10 min, and supernatants

were discarded. Then, the pellets were washed once in PBS and
centrifuged again in the same conditions to remove any trace of LB
medium. Finally, the pellets were lyophilized overnight prior to FA
extraction.

FAs from the lyophilized bacterial samples (ca. 0.1–0.2 g, which
may also include traces of the PBS used in the washing step) were
extracted with a mixture of dichloromethane and methanol (DCM:
MeOH, 3:1, v/v) by ultrasound sonication (3 × 10 min cycles,
37 kHz) (Elma, Elmasonic P, Germany). The concentrated total
lipid extracts were digested overnight at room temperature in a
mixture of methanolic potassium (6% KOH w/w), and then
separated into neutral and acidic fractions with n-hexane
following a protocol previously described (Grimalt et al., 1992;
Carrizo et al., 2019). Afterward, the acidic fraction was analyzed
by gas chromatography-mass spectrometry (GC-MS) after
derivatization with BF3 in MeOH to form fatty acid methyl esters
(FAMEs). The GC-MS analysis was performed using a 6850 GC
system coupled to a 5975 VL MSD with a triple-axis detector
(Agilent Technologies, United States), operating with electron
ionization at 70 eV and scanning from m/z 50 to 650. Analytical
details are described in Carrizo et al. (2019). Compounds were
identified based on the comparison of mass spectra with reference
materials, while their quantifications were obtained using an
external calibration curve of FAMEs (from C8 to C24). All
chemicals and standards were supplied by Sigma Aldrich (San
Luis, Missouri, United States). Quantification of FAMEs was
normalized by dry weight (mg · g−1 dw), and classified in
saturated (SFA), unsaturated (UFA) and branched (BFA) fatty
acids. In addition, the relative abundance (%) of each fatty acid
type per sample was calculated.

Statistical analysis

The one-way non-parametric Kruskal-Wallis test was used to
determine whether there were statistically significant differences
between samples based on the concentration (mg · g−1 dw) and
relative abundance (%) of FAs types (SFA, UFA, and BFA) using
temperature and culture media as independent variables. In our
experiments, temperature is a factor with three levels (20°C, −10°C
and −16°C) and culture media is a factor with two levels (with and
without 16 wt% magnesium perchlorate). These analyses were
performed with the Kruskal test function in R 4.1.2 (R Core
Team, 2022). ANOVA tests were not performed due to the lack
of normality (Shapiro Wilks tests) in the distribution of the data.
Moreover, a Principal Coordinate Analysis (PCoA) based on the
Bray-Curtis dissimilarity matrix was performed using the software

TABLE 1 Treatments (in bold) and sample names applied to Rhodococcus sp. JG-3 cultures.

Growth medium Temperature

20°C 4°C −10°C −16°C

0.5x LB LB_(20) LB_(4) LB_(−10) LB_(−16)

0.5x LB + 8% Mg(ClO4)2 LB8_(20) LB8_(4) LB8_(−10) LB8_(−16)

0.5x LB + 16% Mg(ClO4)2 LB16_(20) LB16_(4) LB16_(−10) LB16_(−16)
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CANOCO5 v.5.12 (Microcomputer Power, Ithaca, NY) to evaluate
the similarities between the samples (i.e., LB_(20), LB_(−10), LB_
(−16), LB16_(20), LB16_(−10) and LB16_(−16)) based on the
relative abundance (%) of the three FA types (SFA, UFA, and BFA).

Results

Survivability of Rhodococcus sp. JG-3 under
different temperature and magnesium
perchlorate concentrations

The experiments performed with the different treatments varied
from liquid, to semi-solid (like a slush, with more or less liquid) or to
a solid state (at −16°C) after the 10 days of incubation. As expected,

bacterial growth (measured as an increase in O.D.600 nm) was only
observed at 20°C and 4°C in LB medium without the perchlorate salt
(Figure 1). For the rest of the experiments (i.e., LB medium without
magnesium perchlorate at −10°C and −16°C, or in the presence of
8 wt% or 16 wt% magnesium perchlorate at all temperatures),
Rhodococcus sp. JG-3 did not show growth.

To evaluate the viability of the bacterium after the incubation
under each condition, CFU/mL were measured at the beginning
(day 0) and the end of the incubation time (day 10) (Figure 2). The
ability of the bacterial cells to recover (i.e., divide and form colonies
on solid medium) after the incubation period, was observed for all
bacterial cultures either above or below 0°C in LB medium without
the magnesium perchlorate or with the perchlorate salt up to 8 wt%.
Therefore, our most interesting result is that Rhodococcus sp. JG-3
was able to tolerate incubation in LB medium with 8 wt%

FIGURE 1
Rhodococcus sp. JG-3 growth curves measured by optical density (600 nm) in (A) 0.5x LB medium, (B) 0.5x LB + 8% Mg(ClO4)2, and (C) 0.5x LB +
16%Mg(ClO4)2, at 20°C, 4°C, −10°C and −16°C. Points aremeans and error bars indicate standard error of triplicates. Please, note the different scales in the
Y-axis.

FIGURE 2
Viable Rhodococcus sp. JG-3 cells expressed as colony forming units (CFU)/mL that grew on LB medium plates at the beginning (day 0) and at the
end (day 10) of the treatments: 0.5x LB (sample labels preceded by LB), 0.5x LB + 8% Mg(ClO4)2 (sample labels preceded by LB8), and 0.5x LB + 16%
Mg(ClO4)2 (sample labels preceded by LB16), incubated at 20°C, 4°C, −10°C and −16°C. Bars indicate means and error bars indicate standard errors of
triplicates.
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magnesium perchlorate down to −16°C for 10 days (CFU/mL at the
end of the experiments were similar to those at the beginning). In
contrast, bacterial cultures incubated with 16 wt% Mg(ClO4)2
showed a lack of colony formation after the incubation period at
any temperature, indicating that the presence of 16 wt% magnesium
perchlorate in the medium caused an irreparable cell death.

Fatty acids profile of Rhodococcus sp.
JG-3 at different temperatures and in the
presence/absence of magnesium
perchlorate

The composition of fatty acids analysed as methyl esters
(FAMEs) of Rhodococcus sp. JG-3 cells incubated at 20°C, −10°C
and −16°C, with (16 wt%) and without magnesium perchlorate, were
measured by GC-MS and are listed in Table 2. We used the 16 wt%
Mg(ClO4)2 to induce the maximum possible stress to the bacterium
and therefore obtain clearer results when comparing with the
control, despite the previously described lack of colony formation
after the incubation period at 16 wt% magnesium perchlorate.

The concentration of total FAs (mg · g−1 dw) in Rhodococcus
sp. JG-3 cells were higher when the strain was incubated in LB
medium without magnesium perchlorate than in the presence of
16 wt% of the perchlorate salt, regardless of the temperature
(Figure 3A). The FA type present in the highest concentration in
all treatments was the SFA (up to 28 mg · g−1 dw), except in the LB
medium at 20°C, whose highest concentration was the UFA (up to
8 mg · g−1 dw). The next highest concentration of FAs in all
treatments was the UFA (up to 11 mg · g−1 dw) and, finally, the
BFA (up to 2 mg · g−1 dw) (Figure 3B). The concentration of SFAs,
UFAs and BFAs in Rhodococcus sp. JG-3 cells incubated in the

presence of 16 wt% of magnesium perchlorate were lower compared
to those incubated in the absence of the perchlorate salt at any
temperature, except for the SFAs at 20°C (LB16_(20)). The influence
of magnesium perchlorate on the concentration of the three FA
types was statistically supported by Kruskal-Wallis tests (SFAs
p-value = 0.00016, UFAs p-value = 0.00698 and BFAs p-value =
0.03853). In contrast, the influence of temperature on the
concentration of the three FAs types, either in the presence or
absence of the perchlorate salt, was not statistically supported
(p-values > 0.05).

To analyse the variation in the proportion of FA types among
samples, the concentration of SFAs, UFAs and BFAs was relativized
per sample (%) (Figure 3C). Rhodococcus sp. JG-3 cells incubated at 20°C
in LB medium without magnesium perchlorate (LB_(20), used as a
control sample) showed higher proportion of UFAs (47% ± 11%) than
SFAs (39% ± 15%) or BFAs (14% ± 4%). In contrast, the rest of the
samples (i.e., treated at subzero temperatures and/or in the presence of
16 wt% magnesium perchlorate) showed higher proportion of SFAs
(71%–86%), followed by UFAs (12%–25%) and BFAs (2%–4%). The
Kruskal-Wallis test did not show a statistically significant difference
between % FA types as a function of temperature or medium (SFA,
UFA and BFA p-values < 0.05). Therefore, neither temperature nor
presence/absence of 16%wtMg(ClO4)2 in themediumhad a significative
impact on the proportion of FA types inRhodococcus sp. JG-3 cells. Still, a
trend in increasing the relative abundance of SFAs with decreasing
temperature or in the presence of magnesium perchlorate in the
medium was observed. In addition, an increase in the relative
abundance of BFAs and UFAs in Rhodococcus sp. JG-3 cells
incubated at subzero temperatures with 16 wt% magnesium
perchlorate as compared to that at 20°C was also observed. To
confirm these trends, however, a larger number of replicates would be
necessary to reduce the uncertainties in FAs concentrations.

The lipid compounds of SFAs, UFAs and BFAs in Rhodococcus
sp. JG-3 cells at each treatment are shown in Figure 4. The main
compounds of SFAs in Rhodococcus sp. JG-3 cells in all sample
treatments were C16:0 (24%–43%) and C18:0 (10%–45%), those of
UFAs were C18:1(ω9) (8%–29%) and C16:1(ω11) (2%–13%), and that of
BFAs was 10Me-C18:0 (2%–13%) (Figure 4). However, this
composition of FA types varied between samples. For instance,
the compound present in the highest proportion at subzero
temperatures and/or in the presence of magnesium perchlorate
was C18:0, especially when compared with the control (LB_(20)).
In contrast, C16:1(ω11), C18:1(ω9) and 10Me-C18:0 decreased in relative
abundance at subzero temperatures or in the presence of magnesium
perchlorate compared to the LB_(20) control. As a minor change,
these three compounds increased in relative abundance in the
presence of magnesium perchlorate at subzero temperatures
compared to the sample at 20°C (LB16_(20)). Overall, the
samples at subzero temperatures, with or without magnesium
perchlorate, were more similar to each other than with the
sample in LB medium at 20°C (LB_(20)). These similarities in
the composition of FAs of Rhodococcus sp. JG-3 cells at subzero
temperatures were also reflected in the PCoA analysis (Figure 5). In
the PCoA, samples at subzero temperatures were clustered together
in the ordination plot, whereas samples at 20°C (i.e., LB_(20) and
LB16_(20)) were located far away in the graph. In addition, LB_(20)
and LB16_(20) were separated from each other, due to their
differences in the relative abundances of FA types.

TABLE 2 Fatty acids (FAs) identified in Rhodococcus sp. JG-3 cultures incubated
in 0.5x LB, and in 0.5x LB + 16 wt% Mg(ClO4)2, at 20°C, −10°C and −16°C.

Type/Abbreviation Compound name

Saturated fatty acids (SFA)

C14:0 Tetradecanoic acid

C15:0 Pentadecanoic acid

C16:0 Hexadecanoic acid

C17:0 Heptadecanoic acid

C18:0 Octadecanoic acid

Unsaturated fatty acids (UFA)

C14:1(ω5) 9-Tetradecenoic acid

C15:1 Unidentified C15 monounsaturated acid

C16:1 (ω7) 7-Hexadecenoic acid (Z)-

C16:1 (ω9) 9-Hexadecenoic acid (Z)-

C16:1 (ω11) 11-Hexadecenoic acid (11Z)-

C17:1 (ω10) cis-10-Heptadecenoic acid

C18:1 (ω9) 9-Octadecenoic acid

C18:1 (ω11) 11-Octadecenoic acid

C19:1 (ω10) cis-10-Nonadecenoic acid

C18:2 (ω9,12) 9,12-Octadecadienoic acid (Z,Z)-

Branched fatty acids (BFA)

10Me-C17:0 Heptadecanoic acid, 10-methyl-

10Me-C18:0 Octadecanoic acid, 10-methyl-
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Discussion

The lowest limit of temperature for life remains unsettled, as
new records of new species are described as research advances. It is
known that most microorganisms could remain alive for a long
time at −80°C (cryopreservation), although inactive in preservative
conditions. Then, they are able to recover afterwards when optimal
conditions are restored (Feller, 2017). Rhodococcus sp. JG-3 is able
to grow in a temperature range from 30°C to −5°C (optimal at
~20°C), keeping a minimum metabolism used for maintenance of
cells down to −15°C (Goordial et al., 2015a, Goordial et al., 2015b).
According to our results, and in agreement with its original
description, the bacterium Rhodococcus sp. JG-3 grew well in a
general culture medium like LB at cold temperatures (4°C).
However, the bacterium showed a lack of growth when
incubated at subzero temperatures, i.e., at −10°C and −16°C for

10 days (Figure 1), although it was still viable at such temperatures
(Figure 2), possibly because freezing left the cells to a dormant
state.

Rhodococcus sp. JG-3 is also described as a halotolerant
microorganism able to tolerate 7 wt% NaCl (Goordial et al.,
2015a, Goordial et al., 2015b). Our results showed that this
bacterium could also tolerate temporarily a medium
containing 8 wt% of the chaotropic magnesium perchlorate
salt at warm (20°C), cold (4°C) and subzero (−10 and −16°C)
temperatures (Figure 2). Incubation times longer than 10 days
would be necessary to test if bacterial survival can be maintained
for a longer period of time. Other halotolerant microorganisms
exhibited tolerance to perchlorate and non-perchlorate salty
solutions at different concentrations. Several bacteria isolated
from Big Soda Lake showed resistance to solutions up to 20 wt%
NaCl, and up to 2 wt% Mg(ClO4)2 at 37°C (Matsubara et al.,

FIGURE 3
Fatty acids (FAs) concentration of Rhodococcus sp. JG-3 cells incubated in 0.5x LB (sample labels preceded by LB), and in 0.5x LB + 16 wt%
Mg(ClO4)2 (sample labels preceded by LB16) at 20°C, −10°C and −16°C. In (A) total FAs concentration (mg · g−1 dw), in (B) FAs concentration (mg · g−1 dw)
per type (saturated or SFA, unsaturated or UFA, and branched or BFA), and in (C) relative abundance (%) of FAs types (SFA, UFA and BFA). Bars indicate
means and error bars indicate standard deviation of triplicates.
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2017). The bacterium Planococcus halocryophilus showed
tolerance up to 12 wt% NaClO4 at 25°C, and up to 7 wt% at
4°C (Heinz et al., 2019). The bacterium Halomonas venusta
(HL12) has been reported to resist 10 wt% Mg(ClO4)2 at room
temperature (Soudi et al., 2017) and the archaea Halorubrum
lacusprofundi showed growth up to 18.5 wt% Mg(ClO4)2 at 37°C
(Laye and DasSarma, 2018). Moreover, the yeast Debaryomyces
hansenii exhibited resistance up to 23 wt% NaClO4 at 25°C
(Heinz et al., 2020). Therefore, the viability of Rhodococcus
sp. JG-3 in medium with 8 wt% Mg(ClO4)2 at subzero
temperatures (−10 and −16°C) in this study represents a
milestone in the tolerance of a bacterium in the presence of a
relatively high concentration of magnesium perchlorate below
zero. In contrast, an increase of magnesium perchlorate to 16 wt
% resulted in an absence of bacterium growth on LB plates, likely

due to the osmotic, and mainly chaotropic stress caused by
perchlorates.

In this study, we found that Rhodococcus sp. JG-3 cells did not
survive when 16 wt%magnesium perchlorate was present. However,
this bacterium showed, at least temporarily, high tolerance after
exposure to a highly stressful environment, i.e., subzero
temperatures and 8 wt% Mg(ClO4)2. The capability of
Rhodococcus sp. JG-3 cells to recover an active metabolism after
its exposure to cold-brine conditions down to −16°C supports the
temperature tolerance range of this bacterium described so far
by −15°C (Goordial et al., 2015b). Similarly, Pseudomonas putida
GR12 was also able to recover after incubations at −20°C and −50°C
for 24 h when optimal conditions were restored (Sun et al., 1995).
Therefore, the resistance of the bacterium Rhodococcus sp. JG-3
against a combination of freezing and salinity conditions supports

FIGURE 4
Relative abundance (%) of saturated (SFAs), unsaturated (UFAs), and branched (BFAs) compounds ofRhodococcus sp. JG-3 cells incubated in 0.5x LB
(sample labels preceded by LB), and in 0.5x LB + 16 wt% Mg(ClO4)2 (sample labels preceded by LB16), at 20°C, −10°C and −16°C.

FIGURE 5
Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity matrix using the relative abundances of the saturated (SFAs), unsaturated
(UFAs) and branched (BFAs) fatty acids from Rhodococcus sp. JG-3 cells incubated in 0.5x LB (black dots, sample labels preceded by LB), and in 0.5x LB +
16 wt% Mg(ClO4)2 (grey dots, sampled preceded by LB16) at 20°C, −10°C and −16°C.
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the possibility of a microbial life in cold-brine environments on
Mars (either extinct or extant), especially if temperature oscillations
could provide time intervals for microorganisms to recover their
metabolism (Nelson and Parkinson, 1978).

As a consequence of the stress to temperature and salinity
conditions in Rhodococcus sp. JG-3, we observed a variation in
the composition of different types of fatty acids (i.e., saturated,
unsaturated and branched fatty acids). Rhodococcus sp. JG-3 cells
showed significant differences in the concentration (mg · g−1 dw) of
total FAs between the set of cultures incubated with and without
magnesium perchlorate in the medium (Figure 3A). The low
concentration of FAs in samples with the perchlorate salt may be
related to the strong chaotropic effect of the perchlorate anion, and
even the magnesium cation (Hallsworth et al., 2007; dC Rubin et al.,
2017), which could have destabilized FAs during the incubation
time. This chaotropicity drives to a structural disorder of
macromolecules, further affecting the membranes (Cray et al.,
2015) by abnormally increasing their permeability. Modifications
of FAs are important for regulating membrane fluidity in a process
known as homeoviscous adaptation (Willdigg and Helmann, 2021).
For this reason, an increase in saturated fatty acids (i.e., SFAs) and
decrease in unsaturated and branched chains (i.e., BFAs), would
allow to restore certain rigidity and minimize osmotic stress, as we
observed with Rhodococcus sp. JG-3 cells at subzero temperatures
and in the presence of magnesium perchlorate (Figures 3B, C).

To the best of our knowledge, no consensus exists on the
impact of both low temperature and presence of magnesium
perchlorate on the modifications of the FA content/composition
in bacteria, and it has been shown to depend on the specific
microorganism studied and the precise culture conditions used,
for instance, the Gram type (Kaneda, 1991; Weber and Marahiel,
2002; Yoon et al., 2015), species (Siliakus et al., 2017) or
temperature (Hassan et al., 2020). Despite this, studies have
shown that FA adaptations to low temperatures and osmotic
stress generally increase the content of BFAs and UFAs to avoid
membrane damage and rigidity (Taha et al., 2013; Yoon et al.,
2015; Hassan et al., 2020). Microorganisms living in cold
environments usually keep high levels of UFAs to maintain
membrane fluidity by avoiding an excessive packing, so the
SFA/UFA ratio is low. For instance, psychrotrophic or
psychrophilic bacteria, such as those inhabiting most Antarctic
environments, possess an elevated content of UFAs (Gounot,
1986; Garba et al., 2016; Hassan et al., 2020). These modifications
allow for a less compact and rigid conformation of the
membrane, and thus preserve the transmembrane transport
function (Yoon et al., 2015). In contrast to this trend,
Mykytczuk et al. (2013) found that cytoplasmatic membranes
from Planococcus halocryophilus Or1 were remodelled favouring
higher ratio of saturated over branched FAs when incubated
at −15°C. In our study, we observed that the SFA/UFA ratio of
Rhodococcus sp. JG-3 cells was higher when the bacterium was
incubated at subzero temperatures than at 20°C in media without
magnesium perchlorate (Figure 3C). Therefore, our results
supported those found by Mykytczuk et al. (2013). Moreover,
in the presence of magnesium perchlorate, both BFAs and UFAs
from Rhodococcus sp. JG-3 cells slightly increased in proportion,
although SFA/UFA or SFA/BFA ratios were still higher than that
of the control sample (LB (20)). We propose that the

chaotropicity of the perchlorate anion (Heinz et al., 2021),
and even the magnesium cation (Hallsworth et al., 2007; dC
Rubin et al., 2017), may have contributed to partially explain the
differences between SFA, UFA and BFA in the samples with
magnesium perchlorate relative to the control (LB_(20)).

The similarities in the relative abundance of FAs types in the
presence or absence of magnesium perchlorate at subzero
temperatures could have different explanations. On the one hand,
it may be explained by a buffering effect of osmotically compatible
solutes that could be influencing the composition of FAs. This could
be the case of trehalose, which has a kosmotropic role (Cray et al.,
2015), but also confers adaptive responses to microorganisms
against temperature stress (hot and cold), and other stressing
conditions like high osmolarity or oxidation (Kandror et al.,
2002; Reina-Bueno et al., 2012). On the other hand, the
simultaneous low temperature and high salinity conditions
studied here may have triggered several concerted stress
responses (Willdigg and Helmann, 2021), whereby
microorganisms in these concomitant conditions combine
strategies (Mudge et al., 2021), sometimes with one effect/
response dominating over the other (de Lima Alves et al., 2015).
In particular, the relative abundance of UFAs decreased with
temperature in the absence of magnesium perchlorate, but
slightly increased when magnesium perchlorate was present in
the medium. The response of Rhodococcus sp. JG-3 cells against
the two simultaneous stressful conditions (cold and high salt
content), may result into a counteracting effect in the response of
Rhodococcus sp. JG-3 cells against low temperature and magnesium
perchlorate that led to a similar proportion of SFAs, UFAs and BFAs
among samples at subzero temperatures with or without the
perchlorate salt. It should be also note that, although halophiles
and psychrophiles often share molecular strategies to cope with cold
and salinity, they sometimes do not. For instance, while some
psychrophiles increase BFAs, halophiles tend to either increase or
decrease UFAs (Turk et al., 2004; Mudge et al., 2021). In addition,
FA composition may be also affected by media, growth phase,
temperature and oxygen concentration/availability (Beranová
et al., 2008; Cray et al., 2015). The potential presence of
osmotically compatible solutes, like trehalose, could also overlap
with the stress response of cells against cold and/or salinity. Overall,
these factors could have also affected Rhodococcus sp. JG-3 cells in
our experiments and contribute to explain FAs changes in
composition and concentration among samples.

The SFAs C16:0 and C18:0, the UFAs C16:1(ω11) and C18:1(ω9), and
the BFA 10Me-C18:0 were the major contributors for the overall
variations in the concentration of FAs in Rhodococcus sp. JG-3
cells under different temperatures and concentrations of
magnesium perchlorate (Figure 4). This is in accordance with
previous studies indicating the SFAs C18:0 and C16:0, and the
UFAs C16:1 and C18:1, as the most abundant FAs in bacteria
(Taha et al., 2013; Yoshida et al., 2016), especially in
psychrophiles (Moyer and Morita, 2007). The detection of
these FAs (i.e., carboxylic chains of FAs with 16 or
18 carbons, either with a saturated, unsaturated or branched
conformation) under the harsh cold and salinity conditions
tested in this study suggests them as good molecular biomarkers
for the search for potential Earth-like microbial life for
planetary exploration (Eigenbrode, 2008; Carrizo et al., 2020).
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Our results support the need of studying polyextreme
environments (i.e., those that harbor two or more harsh conditions
for life, e.g., Horne et al., 2022) and polyextremophilic microorganisms
to understand life’s adaptation to extreme environments. This is key in
the research of habitability, understand limits of life and search for
biosignatures on Mars and icy moons of the outer Solar System, where
high content of salts and cold temperatures are present simultaneously.
The presence of salts in aqueous solutions, allowing liquid water to exist
at lower temperatures (inferred both for Mars and icy moons, e.g.,
Fairén et al., 2009; Vance et al., 2018) and therefore expanding the
potential habitability conditions in different bodies of the Solar System
and beyond, bears the negative effect of an increased osmotic stress,
compromising the integrity of microbial cell membranes and therefore
limiting the habitability conditions in those same places. Understanding
the limits, balances and countereffects of both processes acting
simultaneously on living beings is necessary to adequately define the
limits of habitability in our cosmic neighborhood.

Conclusion

The adaptation of microbes to low temperatures allows them to
succeed in diverse cold environments owing to molecular strategies.
Many of these natural cold environments also include additional
stressing conditions, like high concentrations of salts, which force
cells to develop strategies to cope with cold and salinity at the same
time. This makes polyextremophiles, like the bacterium Rhodococcus
sp. JG-3, prime candidates to study the limits of microbial life and
the molecular traces they could have left behind when they respond
simultaneously to cold and salinity, conditions that are of high
astrobiological interest, particularly for early Mars and icy moons.

Among the strategies used by microorganisms to adapt to
polyextreme environments, it is crucial the modulation of the cell
membrane permeability, for instance, by changing the composition
of fatty acids (FAs). In this study we have reported two main results.
First, we have documented the survival of Rhodococcus sp. JG-3 in
LB medium with up to 8 wt% magnesium perchlorate and down
to −16°C. And second, we have characterized the variations in FAs
types composition (saturated, unsaturated and branched) under
warm (20°C) and subzero (−10°C and −16°C) temperatures in the
presence (16 wt%) and absence of magnesium perchlorate in the
medium. The 16 wt%magnesium perchlorate in the medium caused
a decrease in the concentration of total FAs. Moreover, saturated
FAs (SFAs) tend to increase over unsaturated FAs (UFAs) and
branched FAs (BFAs) with decreasing temperature, either in the
absence or presence of 16 wt% perchlorates. In addition, the
proportion of SFAs, UFAs and BFAs were similar at subzero
temperatures both with and without magnesium perchlorate in
the medium, suggesting a counteracting effect of low temperature
andmagnesium perchlorate on the bacterium response. Future work
will require exploring differences in FAs composition and
concentration with bacterium cells at different growth stages and
larger incubation times.
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