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EDITOR'S NOTE:
This article is part of the special series “Diversity of Knowledge for a Sustainable Future in Latin America” and highlights

timely research presented at the virtual SETAC Latin America 14th Biennial Meeting (2021). These articles reflect the urgent
need to combine different knowledge sources and expertise to face current environmental challenges, decision‐making,
and problem solving. Risk, recovery, restoration, modeling, regulations, anthropic impact, and human health are some of
the global environmental issues covered in this special series.

Abstract
Gold mining (GM) is a major source of metals and metalloids in rivers, causing severe environmental pollution and

increasing the exposure risks to the residents of surrounding areas. Mining in Ecuadorian Amazonia has dramatically in-
creased in recent years, but its impacts on Indigenous local populations that make use of rivers are still unknown. The aim of
this study was to assess the risks to adults and children caused by the exposure to metals and metalloids in freshwater
ecosystems contaminated with tailings released by GM activities in 11 sites of the upper Napo River basin, Ecuador. We
selected a carcinogenic and a noncarcinogenic risk assessment method to estimate the hazard index (HI) and total cancer
risk (TCR). The concentration of Ag, Al, As, Cd, Cu, Fe, Mn, Pb, Zn, B, and V in water and sediment samples was considered to
assess the risks to human health. The calculated HI was 23–352 times greater than the acceptable limits in all sites for both
children and adults. Mn and Fe were the main contributors (75% in water and 99% in sediment) to the total calculated risk
based on the HI. The calculated TCR for children and adults exceeded approximately one to three times the permissible
threshold in all sites. As and Pb contributed up to 93% of the total calculated risk based on TCR for both children and adults.
This study demonstrates that the emission and mobilization of metals and metalloids caused by mining activities increase the
risk to human health, to which we recommend further monitoring of freshwater contamination in the area and the im-
plementation of preventive health management measures. Integr Environ Assess Manag 2023;19:706–716. © 2022 The
Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of
Environmental Toxicology & Chemistry (SETAC).

KEYWORDS: Carcinogenic and noncarcinogenic; freshwater ecosystems; human health risk assessment; metals and
metalloids; Napo province

INTRODUCTION
Gold mining (GM) has historically affected riverine areas

of the Amazon basin (Pan et al., 2018; Rehman et al., 2020;
Saha et al., 2017). Intensive gold exploitation results in land‐
use modifications (Guzmán‐Martínez et al., 2020), causes
freshwater contamination (Capparelli et al., 2020, 2021), and
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endangers human health (Teixeira et al., 2021). In the
eastern Andes of Ecuador, at the transitions with Amazonia
lowland, concessioned and illegal GM have caused severe
environmental pollution problems (Galarza et al., 2021) and
negative social impacts (Guayasamin et al., 2021). New GM
concessions were awarded in the Napo province during the
previous decade (Roy et al., 2018). Although artisanal small‐
scale GM (mining without heavy machinery and granted to
small companies or local communities) is the most common
authorized concession, industrial GM accounts for 98% of
the total territory for gold exploitation in the Napo province
(33 718 ha). Nevertheless, illegal GM in Amazonia has in-
creased sharply in recent years (Mestanza‐Ramón et al.,
2022a). Given the proliferation of mining concessions, and
the substantial increase in illegal mining activities (Mestanza‐
Ramón et al., 2022b), gathering information on the risks to
human health caused by this activity is crucial.
Metals and metalloids are commonly released as by‐

products of GM and are persistent compounds with a high
bioaccumulative capacity (Saha et al., 2017). They can cause
neurotoxic and carcinogenic effects in humans when in-
haled, ingested, or through dermal contact (Guzmán‐
Martínez et al., 2020; Ogola et al., 2002; Wang et al., 2014;
Zheng et al., 2020). The toxic effects of the exposure to
metals and metalloids have been widely reported using
human health risk assessment (HHRA) methods (Li et al.,
2013, 2018; Sun et al., 2018). Human health risk assess-
ments can be used to identify metals and metalloids
that pose major human health hazards as well as to de-
termine areas that require management and intervention
(Castresana et al., 2019; Huang et al., 2018; Singh et al.,
2019). In addition, HHRAs in mining areas may indicate
whether residents are at risk caused by exposure to PTEs
through multiple exposure routes and whether children
have greater or less vulnerability than adults based on dif-
ferent exposure routes and their common behavior
(Marrugo‐Negrete et al., 2020; Rashid et al., 2019).
Artisanal and small‐scale GM in the Ecuadorian Amazon is

carried out on river margins and in small streams because
gold deposits are often concentrated in the alluvial terraces.
As a consequence of GM, concentrations of metals and
metalloids greater than established environmental thresh-
olds have been detected in rivers of the southern provinces
of Sucumbios and Orellana (Carrillo et al., 2021; Escobar‐
Segovia et al., 2021; Rivera‐Parra et al., 2021). In the Napo
province, studies carried out in areas affected by GM have
also detected metals and metalloids in environmental con-
centrations exceeding quality standards for both water and
sediment (Capparelli et al., 2020, 2021; Galarza et al., 2021).
Based on the dataset of Capparelli et al. (2020), the HHRA
made by Jiménez‐Oyola et al. (2021) suggests that local
populations in the Napo province are at risk through contact
with multiple exposure routes (i.e., mining, urban pollution,
fish farming, and lixiviate from dumping areas). However, no
study has been dedicated to applying HHRAs exclusively to
mining activities in this area. Given that GM has intensified,
an HHRA using solely data from mining areas would help to

understand the risks caused by metals and metalloids to
local Indigenous populations inhabiting areas near GM ex-
ploitation. Thus, our study aims to assess the carcinogenic
and noncarcinogenic risks posed by the exposure to metals
and metalloids through water and sediment in GM areas of
the Napo province of Ecuador.

METHODOLOGY

Study area

This study was carried out in the tributaries of the Anzu,
Jatunyacu, and Napo rivers in the Napo province in northern
Ecuadorian Amazonia. This area is a geodiversity hot spot
because of the diverse content of high‐value minerals in
alluvial deposits. Important local urban centers are Puerto
Napo, Misahualli, Ahuano, and Carlos Julio Arosemena Tola
(Figure 1). More than half of the 18 200 inhabitants are self‐
identified as Indigenous people, distributed in either urban
or rural areas (INEC, 2010). The region is characterized by
annual precipitation greater than 4000mm and by the
presence of an extensive hydrographic network.

Sampling collection and analyses

Data on metal and metalloids concentration in surface
water and sediments were obtained from Capparelli et al.
(2021). The water samples were collected at the center of
the stream at mid‐depth (according to the possibilities of
each stream), and superficial sediment samples were col-
lected at the riverbank at a depth of 15 cm. Samples were
taken from 11 sites downstream from GM areas located
within or right at the limits of the federal mining con-
cessions. From the 44 compounds analyzed in Capparelli
et al. (2021), we selected 12 (Ag, Al, As, B, Ba, Cd, Cu, Fe,
Mn, Pb, V, and Zn) because of their potential toxicity to
human health. Nine of these compounds (Ag, Al, As, Cd, Cu,
Fe, Mn, Pb, and Zn) exceeded national or international reg-
ulatory standards for water and two (B and V) for sediments
(Tables 1 and 2).

Human health risk assessment

The exposure pathways included in the HHRA were water
ingestion, dermal contact via water, and dermal contact via
sediment, based on the sum of the risk across all metals
and metalloids in each site following the methodology
described by Lee et al. (2005). For the HHRA calculations,
we estimated the chronic daily intake (CDI) according to
the proposed USEPA (2004) equations. The parameter
values used in the exposure assessment are presented in
Table 3.

Carcinogenic and noncarcinogenic risks

Clinical and epidemiological studies have related
metals and metalloids with increased cancer risk and/or
mortality caused by poisoning in human populations ex-
posed to those substances (Cao et al., 2010; Dooyema
et al., 2012). Noncarcinogenic risks were calculated using
hazard quotients (HQs) measured for each metal and
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metalloid (Table 4, Equations 5 and 6). The human health
HQs for noncarcinogenic risk were characterized by a
threshold dose of toxicity, which is expressed by the ref-
erence dose (RfD). The RfD values are different for each
metal and metalloid, and they were obtained from the Risk
Assessment Information System (RAIS) website (https://
rais.ornl.gov; Supporting Information: Table S1). Then, the
cumulative hazard index (HI) was calculated by the sum of
all calculated HQs (Table 4, Equation 7). Hazard index
values lower than 1 indicated the absence of risk, and HI
values greater than 1 indicated risk (USEPA, 2001).
As there is no toxicological threshold for carcinogenic

substances, the total carcinogenic risk (TCR) for each site
was calculated as the sum of the carcinogenic risk (CR)
values for water ingestion multiplied by the cancer slope
factor (CSF) of all metals and metalloids found in the
same site (Table 4, Equations 7 and 8). CSF values were
available only for the PTEs As, B, Cd, and Pb in the RAIS
(Supporting Information: Table S1). Then, TRC values were
compared with the permissible reference values (USEPA,
2001). We decided to use a single model for each ele-
ment, avoiding the use of metal‐specific models in order
to obtain results comparable with previously published

studies (Covre et al., 2021; E. S. de Souza et al., 2017).
Calculated TCR values greater than 1 × 10−4 were con-
sidered to pose unacceptable risks (with high certainty),
whereas values lower than 1× 10−6 were considered to pose
insignificant risks (with high certainty), and values ranging
between 1× 10−4 and 1× 10−6 were considered to pose
potential risks (Fryer et al., 2006; Hu et al., 2012).

RESULTS

Human health risk assessment

Overall, the HHRA indicated toxicological risks to human
health in all sites. The HI exceeded the permissible thresh-
olds for children and adults to be considered non-
carcinogenic risk in all sites by at least one‐ to threefold. The
HI values for children and adults were ranked as: P6> P9>
P10> P2> P11> P5> P4> P3> P1> P7> P8. The P6 site
had the highest value exceeding the permissible limit for
both children and adults, 352 and 154, respectively
(Supporting Information: Table S6), and they would experi-
ence the highest noncarcinogenic effects caused by ex-
posure to metals and metalloids at this site. The P8 site had
the lowest value for both children and adults, whereas the

Integr Environ Assess Manag 2023:706–716 © 2022 The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 1 (A) Study area in the Amazon basin. (B) Napo province of Ecuador, and (C) location of the sampling sites along rivers (yellow diamonds). The 11 sites
are located along rivers directly affected by medium‐ to industrial‐scale gold mining
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risk to children was double that for adults (55 and 24, re-
spectively). Higher HI values were obtained for children than
for adults in all sites, meaning that children are more sus-
ceptible to toxicological risks due to water ingestion and
water and sediment dermal contact (Figure 2A).
The TCR values for children and adults were ranked as:

P3> P10> P11> P6> P2> P7> P1> P8> P9> P5> P4. Sites
P3, P10, and P11 had the highest values for both children and
adults, exceeding by almost three times the limit to be con-
sidered a risk, 1× 10−6, whereas P4 had the lowest risk
value (Supporting Information: Table S6). However, none of
the TCR values exceeded the threshold value of 1× 10−4,
above which unacceptable risks are expected with high cer-
tainty. According to our calculations, children were more
susceptible to cancer risks than adults at all sites (Figure 2B).
The spatial distribution of HI and TCR across the study area is
shown in Figure 3. Overall, the sites located in the western

part of the study area had higher HI and TCR values than the
eastern parts.
The presence of Mn and Fe in water and sediments

contributed more than 75% and 99%, respectively, to the HI
(Figure 4A,B). In almost all sites, the contribution of Mn to
the HI in water was greater than 60% for children and adults;
whereas in sites P7 and P8 the contributions of Mn and Fe
were very similar, approximately 40% each. As for sedi-
ments, Fe contributed up to 71% to the HI for children and
adults. The HI results suggested that, for both adults and
children, the HI risk for Mn and Fe from sediment dermal
contact was the primary exposure pathway (Figure 4A,B;
Supporting Information: Tables S2, S3, S7). Regarding the
TCR, in both adults and children, the exposure to As and Pb
contributed up to 93%. Total cancer risk indicated that the
primary pathway of exposure was derived from water in-
gestion (Figure 4C,D; Supporting Information: Tables S4).

Integr Environ Assess Manag 2023:706–716 © 2022 The AuthorsDOI: 10.1002/ieam.4698

TABLE 1 PTE concentrations in water and sediments used for the calculation of the HHRA

Source Metals P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Water Ag* 0.19 0.04 0.34 0.04 0.10 0.04 0.1 0.84 0.04 0.07 0.07

Al* 158 133 288 93 231 378 147 253 249 350 406

As* 2.2 1.7 6.7 1.4 2.3 1.8 3.4 2.8 2.7 5.7 3.7

B 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 9.7 4.0

Ba 345 32 113 60 154 817 46 61 223 938 339

Cd* 0.49 0.73 0.18 0.19 0.17 0.43 0.18 0.78 0.35 0.46 0.27

Cu* 24 6.0 12 6.4 8.0 11 5.6 11 11 9.4 8.4

Fe* 373 229 558 227 326 237 513 548 536 371 309

Mn* 456 14 153 105 275 486 49 74 513 598 259

Pb* 6.1 10 5.7 0.7 2.4 14 1.7 1.7 2.4 4.4 5.5

V 8.4 6.5 21 6.7 11 12 9.7 9.7 13 16 24

Zn* 88 30 43 9.3 23 144 19 51 50 31 23

Sediment Ag 0.01 0.03 0.03 0.02 0.02 1.2 0.02 0.01 0.03 0.02 0.03

As 0.71 2.0 1.0 1.7 1.8 3.6 1.3 0.8 1.6 2.0 1.7

B* 2.1 0.0 1.1 0.5 0.5 1.8 2.6 1.3 0.5 2.0 0.6

Ba 33 37 56 76 74 137 66 18 135 113 90

Cd 0.01 0.01 0.01 0.02 0.02 0.04 0.02 0.02 0.03 0.03 0.02

Cu 3.4 4.4 4.1 7.1 6.9 10.6 3.7 1.3 5.4 5.2 4.0

Fe 3447 11 155 5898 6071 7470 17 035 5654 2123 11 910 9956 7921

Mn 126 368 140 225 318 632 179 68 459 438 370

Pb 0.38 1.2 0.86 1.0 1.2 2.2 1.0 0.34 1.1 1.2 1.0

V* 16 66 22 31 42 107 19 8.1 81 31 23

Zn 6.1 11 6.8 11 12 21 9.5 3.5 15 10 8.2

Notes: Data were retrieved from Capparelli et al. (2021). Elements that exceed regulatory standards determined by the Ecuadorian (TULSMA) or the Canadian
Environmental legislation (CCME) are indicated with an asterisk.
Abbreviation: HHRA, human health risk assessment.

HUMAN HEALTH RISK ASSESSMENT IN MINING AREAS—Integr Environ Assess Manag 19, 2023 709

 15513793, 2023, 3, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4698 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [16/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DISCUSSION

Potential impacts of PTEs on human health

This study was motivated by the high levels of metals and
metalloids reported in the Napo province by Capparelli et al.
(2021) and the concern these authors raised for the health of
local freshwater ecosystems and Indigenous populations. The
study suggests chronic toxicological risks in all sites evaluated
and potential carcinogenic risks in most of the sites. Similar
findings were reported by Castilhos et al. (2015) and E. S. de
Souza et al. (2017) in GM areas of the Brazilian Amazonia. In
our study, the maximum HI was up to 352 times greater than
the established threshold for children and 153 times greater
for adults. The TCR for adults and children was approximately
three times greater than the established threshold for risk. The

calculated TCR's highest values were for water ingestion for
daily activities such as drinking, cooking, and human hygiene,
corroborating the results of Jiménez‐Oyola et al. (2021).

The elevated TRC was caused by the high concentration
of As and Pb in the water. Our results are in line with those
of Carvalho l Ferreira et al. (2016), who also reported ele-
vated HI and TCR values in areas that had been affected by
mining tailings in Portugal. In both cases, As exposure was
related to incidental ingestion of water. Chronic and acute
As toxicities have been associated with negative health ef-
fects (Chen et al., 2019), and high concentrations of As in
areas close to mining sites may expose human populations
to an endemic contamination risk (Souza Neto et al., 2020).
Exposure to Pb is of great concern because between 8%
and 57% of total Pb exposure is associated with drinking
water. The risk of the exposure to Pb has been reported
before (Jennings & Duncan, 2017). Regarding Cd, the high
concentration of this metal has been linked to diarrhea,
dermatitis, allergy, asthma, cancers, and other dysfunctions
(Fallahzadeh et al., 2018; Satarug & Moore, 2004).

Human populations that are in constant contact with the
above‐mentioned metals are at elevated risk of developing
acute and chronic diseases caused by long‐term exposure.
Additionally, given the high contribution of As, Cd, Pb, and
Cr to the HI and TCR, local people should be informed and
protected from exposure to contaminated water and sedi-
ments. Therefore, we advocate the provision of alternative
water sources, the incentivizing of information campaigns,
the facilitation of medical care, and the monitoring of the
food chain supply, because metals can be easily transferred
to edible plant parts (Gerson et al., 2021; Romero‐Estévez
et al., 2019), to invertebrates (Capparelli et al., 2021), and to

Integr Environ Assess Manag 2023:706–716 © 2022 The Authorswileyonlinelibrary.com/journal/ieam

TABLE 3 Parameters used for the health risk estimations via consumption of water and dermal contact of water and sediments for children
and adults, given by the USEPA (2011)

Parameters Units Children (C) Adults (A)

PTE concentration in water (w)
or sediment (s), C

μ /g L Table 1 Table 1

Permeability constant, Kp cm/h Supporting Information: Table S1 Supporting Information: Table S1

Exposure frequency, EF Day/year 350 350

Exposure duration, ED Year 6 24

Exposure time, ET h/event 0.58 0.58

Skin surface area (swimming), SA cm² 2800 5700

Body weight, BW kg 15 70

Ingestion rate of water, IR w L/event 2 2

Averaging time noncarcinogen, AT nc Day 2190 8760

Averaging time carcinogen, AT c Day 25 550 25 550

Adherence factor, AF mg/cm² 0.2 0.07

Dermal absorption factor, ABS Unit‐less 0.03 0.03

Conversion factor, CF Dimensionless 1 × 10−6 1 × 10−6

TABLE 2 Exposure assessment equations by exposure pathways

Exposure
pathways Equations

Water ingestion = ×
× × × ×

×
CDI CFIng w

C EF ET IR ED
AT BW

W W (1)

Dermal contact
water

= ×
× × × × ×

×
CDI CFderm w

C EF ET ED SA K

AT BW
W p (2)

Dermal contact
sediment

= ×
× × × × ×

×
CDI CFderm s

C EF ET SA AF ABS
AT BW

S (3)

Note: The exposure factors considered in the CDI are described in Table 3
(USEPA, 2011).
Abbreviations: ABS, dermal absorption factor; AF, adherence factor; AT,
averaging time; BW, body weight; CDI, chronic daily intake; CF, conversion
factor; ED, exposure duration; EF, exposure frequency; ET, exposure time;
Kp, permeability constant; SA, skin surface area.

710 Integr Environ Assess Manag 19, 2023—GALARZA ET AL.
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fish (Benefice et al., 2010; Lima et al., 2022) along the food
chain.
Sampling sites located at the outlets of the downstream

basin (sites P6, P9, P10, and P11; Figure 3) had HIs and TCRs
limits greater than the threshold for both adults and children.
Human settlements are frequently located a short distance
from river meanders, floodplains, and basin outlets, where
washed mining sediments and mining tailings are immedi-
ately transported and deposited. For instance, sites P6 and
P11 are located less than 1 km away from approximately 50
Indigenous communities that depend on rivers to obtain
water for daily use. Moreover, the intensive flood regimes in
the upper Napo basin rivers can lead to the storage of con-
taminated sediments along riverbanks near human settle-
ments (Appleton et al., 2001; Lucas‐Solis et al., 2021).

The

Integr Environ Assess Manag 2023:706–716 © 2022 The AuthorsDOI: 10.1002/ieam.4698

FIGURE 2 Results of the human health risk assessment (HHRA) for children and adults in each site. (A) Cumulative hazard index (HI); the horizontal line indicates
the threshold value of 1, above which risks are expected. (B) Total cancer risk (TCR); the horizontal line indicates the limit established of 1× 10−6, above which
carcinogenic risks may be expected (USEPA, 2001)

TABLE 4 Equations to determine the HQ for each metal and
metalloid, the cumulative HI, and the potential CR

Equations

HQ for ingestion =HQing
CDI

RfD
ing w

oral

(4)

HQ for dermal contact =HQderm
CDI
RfD

derm

derm

(5)

HI = = +HI HQ HQ HQing derm∑ (6)

CR = ×CR CDI CSFing ing oral (7)

TCR TCR= CRing∑ (8)

Abbreviations: CDI, chronic daily intake; CR, carcinogenic risk; HI,
hazard index; HQ, hazard quotient; RfD, reference of dose; TCR, total
cancer risk.

HUMAN HEALTH RISK ASSESSMENT IN MINING AREAS—Integr Environ Assess Manag 19, 2023 711
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degree of contamination of both water and sediments
(Capparelli et al. 2021) and the HI and TCR calculated for
these sites suggest that it might be possible that local com-
munities have been consuming water with metal and metal-
loid levels greater than the recommended for a relatively
long time. Thus, further examination of the temporal and
spatial extensions of contamination and their impacts on the
health of local Indigenous communities is recommended.

Perspectives on an Ecuadorian Amazonian scenario

Human health risk assessments are crucial to the design of
further monitoring campaigns and to the establishment of
corrective actions to areas affected by mining (De Miguel
et al., 2014). Here, we based our HHRA estimates on the
framework established by the USEPA, which includes a set of
predefined exposure equations and parameter values. The
calculation of risks to children and adults via water and sedi-
ment exposure was based on an exposure frequency of 350 (a
value often used in other studies for Amazonian regions;
Covre et al., 2021; J. J. de Souza et al., 2018) days per year,
older than 6 years (for children) or 24 years (for adults;
Table 3). However, contact with the aquatic ecosystem of In-
digenous communities is expected to be greater than this,
which could increase the risk of developing diseases related
to metal and metalloid skin contact. Further research should
be dedicated to refining the risk calculations by collecting a
larger number of environmental samples for the critical ele-
ments defined in this study, adjusting water and sediment
exposure calculations based on data that represent the habits
of the Indigenous population of the Ecuadorian Amazonia.

The interaction of Amazonian communities with the rivers
is the basis of their livelihood and cultural activities. If unable
to use the river, these communities are forced to rely solely
on accumulated rainwater for their daily needs. However,
this is not enough for all the necessities, so the communities
will still have to use river water for crop irrigation and
watering cattle.

Because of the risk of cancer caused by the exposure to
metals and metalloids, long‐term strategic policies for re-
ducing the exposure of local inhabitants are needed, as
metal contamination can persist for decades in the eco-
system. The current policies of the Ecuadorian govern-
ment aim to facilitate the legal mechanisms that allow
mining concessions and other economic activities near or
inside protected areas and Indigenous lands (Guayasamin
et al., 2021). These policies are responsible for the highest
rate of deforestation in the past 10 years, weakening the
environmental protection legislation and human rights of
traditional and Indigenous populations (Roy et al., 2018).
With proper regulation, GM might represent economic
gains to the country. However, it may harm the health of
the communities and generate environmental problems
(Mainville et al., 2006). In the past two years and during the
COVID‐19 pandemic, both legal and illegal mining activity
has increased in Ecuador after the rise in the international
price of gold (Mestanza‐Ramón et al., 2022b). The data
presented here were obtained in 2021, before the last
expansion phase of GM activities in the upper Napo River
basin. This study suggests that the human health risks
were unacceptable before the mining increase in the

Integr Environ Assess Manag 2023:706–716 © 2022 The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 3 Spatial distribution of the hazard index (HI) values for (A) children and (B) adults and of the total carcinogenic risk (TCR) for (C) children and (D) adults.
Symbol size represents the relative magnitude of either HI or TCR in sites where these indexes exceed permissible limits
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region and calls for continued monitoring of metal and
metalloid exposure and risk in the study region.

CONCLUSIONS
This study demonstrates that water and sediment exposure

to metals and metalloids in the northeast Andean foothills of

the Ecuadorian Amazon is greater than the established
thresholds for producing carcinogenic and noncarcinogenic
risks to the local population despite using exposure parame-
ters that may slightly underestimate risk. Spatial analysis re-
veals that the rivers located at the end of the river basins (P2,
P3, P6, P9, P10) are the most contaminated and, therefore,

Integr Environ Assess Manag 2023:706–716 © 2022 The AuthorsDOI: 10.1002/ieam.4698

FIGURE 4 Contribution of each metal to the calculated hazard index (HI) in (A) water and (B) sediment. (C) Contribution of each metal to the total cancer risk
(TCR) in water
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pose the greatest risk to the health of local communities. Al-
though total concentrations of metals and metalloids can be
used to quantify health risks, it is also advisable to assess
bioavailable concentrations to obtain more reliable results.
Policies to reduce exposure are necessary to avoid harmful
effects on the health of local populations and should be ac-
companied by epidemiological studies to identify the occur-
rence of diseases associated with heavy metals(loids) through
different exposure routes, that is, the consumption of
contaminated water and food.
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