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Abstract  20 

The most used methods to evaluate the vulnerability to contamination of aquifers are 21 

based on overlay index maps, such us DRASTIC, GOD and AVI. These methods 22 

assign weighting and rating values to hydrogeological characteristics, introducing 23 

subjectivity in the evaluation. In this research, a new methodology is proposed to 24 

eliminate some of that subjectivity. The methodology evaluates the vulnerability to 25 

contamination of a detrital aquifer using K-means cluster analysis with a new set of 26 

parameters. The set is composed of some parameters extracted from these methods, 27 

as well as other new ones that have a significant influence on the movement of 28 

contaminants. Application of the Principal Components Analysis (PCA) technique 29 

before using K-means cluster allowed the selection of the most relevant parameters. 30 

In order to validate the methodology, this was applied to a detrital aquifer located at 31 

central Spain (the so-called “Aluviales Jarama-Tajuña” aquifer) with a significant 32 

agricultural development. To compare the traditional methods of vulnerability 33 
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assessment with the K-means cluster, nitrate concentration was used as a pollution 34 

indicator. Thus, 23 groundwater quality samples were used to correlate (Spearman´s 35 

correlation coefficient) the vulnerability values with nitrate concentration to validate the 36 

most suitable method. The results showed that GOD and AVI were not  appropriate 37 

methods to evaluate the vulnerability of the aquifer, because they have negative  or 38 

very low correlation with nitrate concentration (-0.5 and 0.01 respectively). This is due 39 

to the use of very few variables that do not represent relevant features for the 40 

vulnerability assessment. Alternatively, DRASTIC and K-means cluster analysis 41 

obtained higher Spearman´s correlation coefficients (0.34 and 0.48 respectively). The 42 

relevant features selected by PCA analysis to use in the K-means low dimensional 43 

analysis were depth of groundwater (D), net recharge (R), and land use (L). The new 44 

proposed method grouped data in three clusters that represent low vulnerability (35.9 45 

% of the study area), moderate (41.4%) and high vulnerability (22.7%). K-means 46 

increases the Spearman´s correlation by 14 % with respect to the most approximate 47 

conventional method (DRASTIC). Therefore, the results obtained confirm the 48 

advantage of joint application of PCA and K-Means analysis, which represents a novel 49 

approach for the assessment of groundwater vulnerability in detrital aquifers.  50 

Key words: aquifer vulnerability assessment, groundwater quality, overlay index 51 

maps, K-means cluster. 52 

 53 

1. Introduction 54 

Aquifers represent the most important source of water in arid and semi-arid zones. 55 

Water in aquifers has a natural protection against evapotranspiration losses and inputs 56 

of anthropogenic agents from human land uses. However, the growing demand for 57 
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water due to increasing industrial and agricultural activities puts aquifers at high risk 58 

of contamination. Rational management and prevention are the most appropriate 59 

strategies for groundwater protection (Saatsaz et al. 2013; Kadkhodaie et al. 2019). 60 

Vulnerability assessment is one of the most widely used tools to prevent aquifer 61 

pollution, since it allows the identification of the areas most susceptible to 62 

contamination taking into account their own hydrogeological characteristics (Babiker 63 

et al. 2005). Thus, intrinsic groundwater vulnerability depends on the natural 64 

conditions of aquifer, i.e. those hydrological and geological characteristics that affect 65 

and control the movement of groundwater (Aller et al. 1987). 66 

There are different methods to assess the intrinsic vulnerability: simulation methods, 67 

statistical models and overlay index methods (Huan et al. 2012). The overlay index 68 

methods are widely used because of their simple approach. In this research, three 69 

well-known methods are considered:  the GOD index (Foster 1987), the AVI index  70 

(Stempvoort et al. 1993) and the DRASTIC index (Aller et al. 1987). The former is the 71 

most common and established method (Rupert 2001; Panagopoulos et al. 2006; Huan 72 

et al. 2012; Kazakis and Voudouris 2015; Jafari and Nikoo 2016; Yang et al. 2017; 73 

Barzegar et al. 2020). 74 

All of these overlay index methods are somewhat subjective, as they assign numerical 75 

weighting and rating values to the properties according to their importance and 76 

hydrogeological features of aquifer. However, they do not take into account  influence 77 

of regional and local conditions (e.g. land uses among others) that can affect weighting 78 

and rating  values which is a major disadvantage (Javadi et al. 2011; Hao et al. 2017). 79 

To improve the vulnerability assessment, researchers have modified the original 80 

methods by changing the weighting and rating values through statistical methods or 81 
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by adding/ removing variables (Rupert 2001; Panagopoulos et al. 2006; Javadi et al. 82 

2011; Mendoza 2012; Huan et al. 2012; Hao et al. 2017; Kadkhodaie et al. 2019).  83 

Data mining techniques are being used in groundwater studies  related to prediction 84 

of water quality, definition of hydrogeological models, aquifer assessment, and 85 

transport of contaminants (Pathak and Hiratsuka 2011; Conti and Gibert 2014; Yoo et 86 

al. 2016; Stumpp et al. 2016; Marín Celestino et al. 2018; Ouedraogo et al. 2019; 87 

Tahmasebi et al. 2020). The capability of data mining techniques to process hidden 88 

and big datasets allows to identify patterns that can be used to predict hydrogeological 89 

behavior of aquifers, which in turn improves the design of groundwater protection 90 

programs (Conti and Gibert 2014; Tahmasebi et al. 2020).  91 

A useful data mining technique is the K-means clustering, an unsupervised pattern 92 

recognition method (Javadi and Hashemy 2016; Javadi et al. 2017) that allows 93 

information to be classified  into different groups or clusters. It is an iterative algorithm  94 

that assigns individual points to a cluster such that the sum of the squared Euclidean 95 

distance between the data points and the centroid of the cluster is at the minimum 96 

(Dabbura 2020). One of the difficulties of the K-means method is to define the number 97 

of clusters, as it must be established at the beginning of the iterative process. Charrad 98 

et al., (2014) propose to estimate the optimal number of clusters through the calculation 99 

of various indices. Some of the variables or features help to identify clusters while 100 

others add noise, making clustering more difficult (Dash and Koot 2009). For this 101 

reason, is necessary to identify the relevant features in order to select the variables 102 

that have the greatest influence on the process (Song et al. 2010). The identification 103 

of critical variables generates a better understanding of the aquifer system and its 104 

interaction with causal indicators of potential impacts (Malmir et al. 2021).  105 
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Aquifers in areas where human activities are carried out that may generate pollution 106 

are, in principle, aquifers susceptible to contamination by the presence of potential 107 

pollutants. This is the case of aquifers located in areas of high urban, agricultural, 108 

livestock or industrial development, where there is a production of wastes or residues 109 

with pollutants that can be easily transported to the aquifer. In these areas, high 110 

concentrations of pollutants can be observed in chemical, physical or bacteriological 111 

analyses of groundwater, allowing the evolution of these concentrations to be 112 

monitored and, in some cases, the origin of the pollution to be identified. 113 

The detrital Jarama-Tajuña aquifer, located in central Spain, is an important source of 114 

water supply for the agricultural and industrial activities in the region of Madrid. This 115 

aquifer was selected for this work because the use of agricultural products and 116 

wastewater for irrigation has significantly increased the concentration of nitrate (NO3-117 

) in the groundwater (Arauzo et al. 2008; Mostaza-Colado et al. 2018; Mostaza 2019). 118 

Agricultural activities combined with the excessive application of fertilizers are a 119 

potential source of nitrate contamination of groundwater. Thus, nitrate is considered 120 

an indicator of groundwater quality (Kazakis and Voudouris 2015).  121 

The aim of this research is to develop a new methodology for the assessment of the 122 

pollution vulnerability of a detrital aquifer in a simple approach using few variables. 123 

This is intended to facilitate data collection which, in some cases, could make the use 124 

of classical methodologies unfeasible. The analysis of these variables will be 125 

performed using clustering algorithms to eliminate the subjectivity associated with 126 

assigning weighting and rating values, allowing groups to be defined based on 127 

similarities between the data. The variables are draw from classical methodologies 128 

(DRASTIC, GOD and AVI) and from modified methodologies that have worked well in 129 

the cases studied (Rupert 2001; Babiker et al. 2005; Panagopoulos et al. 2006; Denny 130 
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et al. 2006; Javadi et al. 2011; Mendoza 2012; Huan et al. 2012; Jafari and Nikoo 131 

2016; Hao et al. 2017; Jang et al. 2017; Barzegar et al. 2020; Aslam et al. 2020) . 132 

However, the subjective loading of the used methods means the results that are not 133 

adjusted to the local reality of an aquifer. Therefore, it is important to incorporate those 134 

variables that control the mobility of pollutants and that are not considered in the 135 

methodologies mentioned above. On the other hand, the variables incorporated may 136 

be excessive and redundant with respect each other, which generates a bias in the 137 

results. Thus, the selection of the set of variables initially considered can be refined 138 

by applying principal component analysis (PCA). This allows the number of variables 139 

to be reduced to a minimum number of new variables and the old variables to be used 140 

as representatively as possible to eliminate redundancy and retain relevant 141 

information (Song et al. 2010). The K-means clustering method is used to make a 142 

more adjusted analysis of the dataset and to demonstrate how this data mining 143 

technique can be a very useful tool for the evaluation of the most relevant variables 144 

that make the aquifer vulnerable to contamination and thus relate them to the current 145 

state of the groundwater quality.  The proposed methodology based on the joint 146 

application of PCA and K-means analysis provides a novel approach for the 147 

assessment of the vulnerability of aquifers to contamination. 148 

 149 

2. Study area  150 

The “Aluviales Jarama-Tajuña” aquifer is located in the southeast of Madrid (Spain) 151 

(Fig. 1). The area (133 km2) is situated approximately between 3º38 and 3º25 W and 152 

between 40º7 and 43º21 N. The Jarama River flows north to south along the aquifer 153 

area, being the river and the aquifer hydraulically connected (Mostaza-Colado et al. 154 

2018). The climate is Mediterranean temperate-continental, close to semi-arid 155 



7 
 

conditions during summer. The average annual rainfall is 350 mm, estimated by 156 

Thiessen polygons method from three weather stations (“Center: Finca Experimental”,  157 

“Arganda” and “San Martín de la Vega”, Fig. 1) for the 2008-2018 period (data from 158 

the Spanish Agroclimatic Information System for Irrigation,Sistema de Información 159 

Agroclimática y de Regadíos -SIAR-, 2019). 160 

The “Aluviales Jarama-Tajuña” is a shallow unconfined aquifer formed by Quaternary 161 

alluvial deposits of the Jarama River (Carreño Conde et al. 2014), consisting mainly 162 

of gravels and sands interbedded with layers of clay and silt layers (Bardají et al. 163 

1990). The basement of the aquifer and its sidewalls are formed by Tertiary 164 

sedimentary units, which consist mainly of gypsum with intercalated beds of carbonate 165 

rocks and mudstones (Fig. 2) (Calvo et al. 1989; Carreño Conde et al. 2014). The 166 

aquifer has an average thickness of 10.97m and is characterized by a storage 167 

coefficient and a transmissivity of 0.07 and 700 m2/d, respectively (Bardají et al. 1990). 168 

The water level in the aquifer varies from 2 m to 26 m depth. The highest values are 169 

found in the central-eastern part of the study area, mainly as a result of groundwater 170 

extraction in wells. 171 

The study area has an important agricultural development, with artificial irrigation 172 

being one of the main sources of water for crops. The continued use of agricultural 173 

products in the area (fertilizers, pesticides, etc.) is significantly increasing the risk of 174 

contamination. Periodic monitoring of groundwater quality is annually carried out by 175 

the Hydrographic Confederation of El Tajo (CHET), showing that the concentration of 176 

nitrate in some wells exceeds the acceptable level defined at 50 mg/L (Arauzo et al. 177 

2008; BOE 1996; Mostaza 2019). 178 
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 189 

Fig. 1 Location map of the “Alluviales Jarama-Tajuña” aquifer showing the locations of weather stations and water quality monitoring wells 190 

(coordinates in UTM Zone 30N). 191 
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 192 

                                                                                            193 

. 194 

(b) 

(a) 

Fig. 2 (a) Geological map of the study area. Redrawn and modified after Instituto Geológico y Minero 
de España -IGME- (1984) and Mostaza (2019). Locations of Vertical Electrical Sounding (VES) 
profiles are indicated. (b) Lithological sections from VES interpretation (Bardají et al. 1990) 
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3. Materials and methods 195 

3.1 Data set collection 196 

The data considered in this work is displayed in Table 1.The data were storage as a 197 

geographic database in ArcGIS v10.2.1. The whole study area (133 Km2) was divided 198 

in 5842 pixels with a cell size 150mx150m, in order to obtain a big data set to evaluate 199 

the different variables in each point. 200 

 201 

The assessment was performed in the following six stages: 202 

• Intrinsic vulnerability mapping using overlay index methods: DRASTIC, GOD 203 

and AVI  204 

• Intrinsic vulnerability analysis using cluster analysis (K-means algorithm) with a 205 

high dimensionally data set. 206 

• Selection of hydrogeological features  by Principal Analysis Component (PCA), 207 

to reduce the dimension of the cluster analysis. 208 

• Intrinsic vulnerability mapping using cluster analysis (K-means algorithm) with 209 

a low dimensionally data set. 210 

• Validation of the vulnerability map. Comparison of the effectiveness of each 211 

method by statistical correlation between a quality water indicator (nitrate 212 

concentration) and the vulnerability value. 213 

 214 

A max-min normalization method (Salazar and Del Castillo 2018) of the vulnerability 215 

index values obtained from each applied method was performed to standardize the 216 

ranges of values (0-1) (Equation 1). 217 

 218 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉 𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑖𝑖 = (𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)
(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)

                          Equation 1 219 

Where Vx is the vulnerability index value evaluated in the x point, and Vmin, Vmax are 220 

the obtained minimum and maximum vulnerability index values of the range, 221 

respectively. 222 

 223 

From the normalized vulnerability index values were defined four vulnerability classes: 224 

Low (Vulnerability index ≤ 0.25), Moderate (0.25 <Vulnerability index ≤ 0.50), high 225 

(0.50 <Vulnerability index ≤ 0.75) and very high (Vulnerability index > 0.75). 226 
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Table 1  Features and sources of the data considered in this research227 

Type Description Source Scale Time 
periods Number of data Application in the 

method 

Geological data 

Geological map (IGME 1984) 1:50.000 

- 

Sheets: 559, 560, 582, 583,  
605 Lithological sections 

 VES (Vertical 
Electrical 
Sounding) 

(Bardají et al. 1990)  22 Vertical Electric Soundings 

Hydrogeological 
data 

Water table (Mostaza 2019) 

- 

2012, 2013, 
2015, 2016 
and 2017 

58 monitoring wells 
Depth of water 

table, unsaturated 
thickness 

Pumping test (Bardají et al. 1990) 

- 

11 Pumping test 

Transmissivity and 
Hydraulic 

conductivity of the 
aquifer 

Empiric 
hydraulic 

conductivity  

Smith and Weathcraft 1993; 
Domenico and Schwartz 

1998; Sanders 1998; 
Coduto 1999; Fetter 2001 

 
Hydraulic 

conductivity of 
unsaturated zone 

Topography, land 
use, soil  data 

Digital model 
elevation (IGN 2019) 1:25.000 

- Sheets: 559, 560, 582, 583,  
605  

Topography, Slope 

Land use map (IGN 2018) 1:100.000 Land use 

Soil map (IGN 2008) 1.3.000.000 Soil type 

Climate data Rainfall and 
Temperature  (SIAR 2019) - 2008-2018 

Three weather station  
“Center: Finca experimental”, 
“Arganda” and “San Martín de 

la Vega” 

Natural Recharge 

Agricultural data 
Agricultural 

demand units 
(UDA) 

(CHT 2015a) 
- 

2015-2021  Artificial Recharge  

Water quality data (CHT 2019; 
Mostaza 2019) (CHT 2019; Mostaza 2019) 2015-2017 23 monitoring wells Nitrate 

concentration  
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3.2 Intrinsic vulnerability assessment by overlay index methods  228 

The DRASTIC, GOD and AVI methods were used to assess the vulnerability to aquifer 229 

contamination by overlay index maps. 230 

3.2.1 Vulnerability analysis by DRASTIC method 231 

The DRASTIC method assumes that contaminants are introduced from the surface 232 

and that they have the same mobility as water (Aller et al. 1987). 233 

The method uses seven parameters, called “factors”: Depth to the water table (D), net 234 

recharge (R), aquifer media (A), soil type (S), topography (T), impact of the vadose 235 

zone (I) and  hydraulic conductivity (C). Depending on the importance of each factor 236 

considered for assessment, this method assigns a weighting coefficient (W) from 1 to 237 

5.  In adittion, each factor is assigned a rating value (R) from 1 to 10 , depending on its 238 

expression. Thus, the vulnerability is calculated by the following equation (Aller et al. 239 

1987): 240 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑉𝑉𝑁𝑁𝑁𝑁𝑖𝑖 (𝐷𝐷𝐷𝐷) = 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 + 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 + 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 + 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 + 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 + 𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤 +241 

𝐷𝐷𝑅𝑅𝐷𝐷𝑤𝑤                                                                                                              Equation 2 242 

Where DR, RR, AR, SR, TR, IR, CR  are the rating values and Dw, Rw, Aw, Sw, Tw, Iw, Cw  243 

are the weighting coefficients (Table 2). Higher values of DRASTIC index (DI) 244 

represent higher vulnerability than lower values. In this work, the rating values were 245 

selected according to specific information of the study area (Table 2). 246 

Depth to water table (D) was determined by interpolating depth values from 58 wells 247 

recorded in five years (2012, 2013, 2015, 2016, 2017) (Mostaza 2019). The kriging 248 

method was used to interpolate the values with an exponential variogram.  249 
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Net recharge (R) was calculated as the sum of natural and artificial recharge (Fig. S1). 250 

Natural recharge was obtained from a water balance for the three Thiessen polygons 251 

defined in the study area (See supplemenrary information, Fig. S2) using the following 252 

equation (Custodio and Llamas 2002) (for a closed hydrogeological basin): 253 

R = P – ETR – ESC                                                                                     Equation 3 254 

Where R is natural recharge, P is monthly precipitation, ETR the real 255 

evapotranspiration and ESC is the surface runoff (See Supplementary information for 256 

details). 257 

Artificial recharge was calculated from irrigation return flows in the agricultural demand 258 

units (UDA) (See Supplementary information ,Table S2, Fig. S3). Information on land 259 

use (IGN 2018) and agricultural demand (CHT 2015b) was necessary to determine the 260 

irrigation zones in the study area. Artificial recharge was  estimated by intersecting 261 

irrigation zones and agricultural demand units.  262 

The lithology of the aquifer (A) as well as the impact of vadose zone (I)  were obtained 263 

by integrating the information from 22 vertical electrical soundings (VES) (Bardají et al. 264 

1990) (See Supplementary information, Fig. S4) and the geological map  of the area 265 

(IGME 1984) (Fig. 2a). Lithological information from three drill cores allowed to 266 

calibrate the lithology in the VES (See Supplementary information, Fig. S5), thus 267 

obtaining  22 lithological sections by correlation (Fig. 2b) shows three representative 268 

of them).  This information was used for a complete lithological interpretation of the 269 

aquifer and the vadose zone. Subsequently, numerical values were assigned to the 270 

lithological units according to their permeability properties. Different rating values were 271 

considered for each type of lithology as shown in Table 2. The aquifer media (A) and 272 
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impact of the vadose zone (I) maps were produced by kriging interpolation with an 273 

exponential variogram.  274 

The soil type (S) factor was obtained using the soil map and soil texture (Monturiol and 275 

Alcalá del Olmo 1990; IGN 2008; United States Department of Agriculture (USDA) 276 

2017). Soil type is a descriptive variable, and  numerical values were assigned 277 

according to the DRASTIC method (Table 2). 278 

The slope topography (T) was calculated from the digital elevation model (IGN 2019), 279 

by using the  slope tool in ArcGIS.  280 

The hydraulic conductivity (C) was determined by dividing the transmissivity values by 281 

the aquifer thickness values. The transmissivity values  were obtained from data from 282 

11 aquifer tests previously carried out by Bardají et al. (1990). The data were 283 

interpolated for the whole study area by the Inverse Distance Weighted  (IDW) method, 284 

with a distance of 500 m and a minimum number of points equal to one. The aquifer 285 

thickness data were obtained from the lithological sections (Fig. 2b) and depth data 286 

(CHT 2019; Mostaza 2019). The aquifer thickness represents the saturated material 287 

from the groundwater level to the basement of the aquifer (gypsum).The derivative 288 

map was made by interpolation of the data using the kriging method (exponential 289 

variogram).  290 

All the parameters  of the thematic maps were reclassified by defining classes and 291 

assigning rating values from 1 to 10, as shown in  Table 2. 292 

Equation 2 was used to obtain the DRASTIC vulnerability index (DI) for the study area. 293 

The vulnerability map was produced using the raster calculation tool in ArcGIS. Finally, 294 

a normalization of the DI values made it possible to define the vulnerability classes.  295 

 296 
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Table 2. Weighting and rating values of the DRASTIC parameters in the study area 297 

(Adapted from Aller et al., 1987)  298 

Drastic 
Parameters Range Rating values Weighting Values 

(R) (w) 

Water level 
D (m) 

1.5- 4.6 9 5 
 
 
 

                                           

4.6 – 9.1 7 
9.1 -15.2 5 

15.2 – 22.9 3 
22.9 – 30.5 2 

Net  
Recharge 
R (mm) 

0 -50 1 

4 
50 - 103 3 
103 - 178 6 
178 - 254 8 

>254 9 

Aquifer 
media 

A Sa
nd

 a
nd

 
G

ra
ve

l  
4 

- 9
 

Colluvial, gypsum clay 5 

3 
Gravel, sand, sandy clay 6 

Gravel and silty or 
clayey sand 7 

Gravel, sand and silt 8 

Soil type 
S 

Loam 5 
5 

Silty loam 4 

Topography 
T (%) 

0 – 2 10 

3 
2 – 6 9 
6 – 12 5 
12 – 18 3 

>18 1 

Impact of 
vadose zone 

I 

Gavel, sand and silt 8 

4 

Gravel and silty or 
clayey sand 7 

Gravel, sand, sandy clay 6 
Gypsum clay, gypsum, 
gravel, sand and clay 5 

Hydraulic 
conductivity  

C (m/d) 

0.04 – 4.08 1 

2 

4.08 – 12.22 2 
12.22 – 28.55 4 
28.55 – 40.75 6 
40.75 – 81.49 8 

>81.49 10 
 299 

 300 

3.2.2 GOD method 301 

The GOD method is based on three parameters or “factors” to assess the vulnerability 302 

of aquifer: the groundwater occurrence (G), the overall lithology of aquifer (O) and the 303 

water table Depth (D) (Foster 1987).  304 
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The vulnerability index is calculated by the equation 4, where each factor has a rating 305 

value from 0 to 1 (Foster 1987) (Table 3): 306 

𝑉𝑉𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉 𝐷𝐷𝑉𝑉𝑁𝑁𝑁𝑁𝑖𝑖 = 𝐺𝐺 ∗ 𝑂𝑂 ∗ 𝐷𝐷                                                 Equation 4 307 

The vulnerability is considered zero when the GOD index is less than 0.1. An index of 308 

0.1 to 0.3 represents low vulnerability. An index of 0.3 to 0.5 represents a moderate 309 

vulnerability, and an index of 0.5 to 0.7 refers high vulnerability, and above 0.7 is 310 

related to very high vulnerability (Foster and Hirata 1991). 311 

The groundwater occurrence parameter (G) defines the type of aquifer. This parameter 312 

has been obtained from the lithological sections and the depth to groundwater data, as 313 

well as from other hydraulic data such as the storage coefficient (obtained from the 314 

pumping test carried out by Bardají et al. (1990)).  315 

The overall lithology of aquifer (O) factor is equivalent to the impact of vadose zone 316 

factor in DRASTIC, but the ratings assigned to each lithology type in GOD are different. 317 

Similarly, the water table depth (D) was obtained from the previous map in DRASTIC 318 

method, but new rating values were considered (Table 3). 319 

The vulnerability index (GOD) was calculated for the entire study area using raster 320 

calculator tools in ArcGIS. The vulnerability index values were normalized (equation 1) 321 

and then classified  to define the classes in the vulnerability map.  322 

 323 

 324 

 325 

 326 
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Table 3. GOD ranges and rating values for three parameters in the study area 327 

(Based on Foster, 1987) 328 

GOD Parameters Range Rating 
values 

Groundwater 
occurrence 

G 
Unconfined aquifer 1 

Overall lithology of 
aquifer 

O 

Alluvial silt, clay, marl, fine 
limestone 0.5 

Alluvial sand and gravels 0.6 
Wind sand, sandstone 0.7 

Colluvial gravel 0.8 

Depth of water 
D (m) 

20 - 50 0.6 
10 - 20 0.7 
5 - 10 0.8 
2 - 5 0.9 

 329 

 330 

3.2.3 Aquifer vulnerability index. AVI 331 

AVI is a simplified method to assess the aquifer vulnerability by considering a single 332 

parameter, the hydraulic resistance (C). This parameter is an estimate of the travel 333 

time of contaminants through the unsaturated zone (vertical direction from the ground 334 

surface  to the groundwater level), measured in years (Stempvoort et al. 1993). To 335 

apply the methodology, it is necessary to know the thickness of the unsaturated zone 336 

and its hydraulic conductivity. 337 

The hydraulic resistance is calculated using the following equation (Stempvoort et al. 338 

1993): 339 

𝐷𝐷 =  ∑ 𝑑𝑑𝑉𝑉
𝐾𝐾𝐾𝐾𝑉𝑉𝑉𝑉                                                                                    Equation 5 340 

Where i is the number of layers, di is the thickness of each unsaturated layer and Kvi 341 

is the vertical hydraulic conductivity of each unsaturated layer.  342 
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There is an inverse relationship between hydraulic resistance and pollution 343 

vulnerability class, as hydraulic resistance controls the travel time of contaminants  in 344 

the unsaturated zone.   345 

The unsaturated thickness  parameter (d) was obtained from the VES lithological 346 

sections  located at the study area (Bardají et al., 1990) (Fig. 2b). 347 

The vertical hydraulic conductivity (Kv) of the unsaturated zone was estimated from 348 

the geological map and the lithological sections (Fig. 2), assigning empirical values 349 

from several authors (Smith and Weathcraft 1993; Domenico and Schwartz 1998; 350 

Sanders 1998; Coduto 1999; Fetter 2001). The empirical values obtained correspond 351 

to horizontal values of hydraulic conductivity (Kh). For this reason, it was necessary to 352 

consider the effects of compaction and consolidation that reduce the soil void ratio in 353 

the unsaturated zone. For the vertical hydraulic conductivity (Kv), a ratio of Kh/Kv =10 354 

was assumed due to the lack of information on grain size, which is  commonly used 355 

for  alluvial aquifers (Neilson-Welch and Allen 2007).  356 

The hydraulic resistance map was obtained using equation 5. Normalization and 357 

classification were applied to the obtained vulnerability index values to define the 358 

vulnerability index classes. It is important to note that the classification of the AVI 359 

vulnerability index map is inverse to that in other methods. In this case, high normalized 360 

ranges represent low vulnerability and low normalized ranges correspond to high 361 

vulnerability. 362 

 363 

3.3 Intrinsic vulnerability assessment by K-means cluster analysis 364 

Clustering analysis allows grouping objects according to their similarities (Rahmani et 365 

al. 2019; Javadi et al. 2020). The similarity between two objects is the distance 366 

between them (Euclidean distance is commonly considered) (Rahmani et al. 2019; 367 
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Dabbura 2020). Unsupervised methods, as K-means clustering, do not use predefined 368 

classes to predict classification, which gives greater objectivity in the results. In 369 

addition, the independence of weighting and rating values in the evaluation of 370 

parameters is an advantage of using clustering. This assumes that the data of all 371 

parameters explain the vulnerability of the aquifer by themselves. This iterative process 372 

is achieved by the following procedure: 373 

• Creation of “n” x “d” matrix dataset, where n is the number of data points in a d- 374 

dimensional feature space (in this case, all parameters chosen to assess the 375 

vulnerability). 376 

• Selection of the number of clusters “K”. The optimal number of clusters was 377 

determined using the R package NbClust, which provided 26 indices (Table S3). 378 

The best number of clusters was obtained using the majority rule.  379 

• Each point was randomly assigned to the closest cluster The Euclidean distance 380 

is used to find the distance of each point to a temporaral cluster. 381 

Recalculation of the temporal clusters with new centroids based to the nearest 382 

points located in them. This is achieved by minimizing the sum of squared 383 

errors of the distance “A” between each point to the centroid of each cluster, 384 

using the following equation (Dabbura 2020): 385 

𝐷𝐷 =  𝑁𝑁𝑁𝑁𝑉𝑉∑ ∑ ‖𝑖𝑖𝑘𝑘 −𝑁𝑁𝑁𝑁‖2𝑉𝑉∈𝑘𝑘𝑉𝑉
𝑘𝑘
𝑉𝑉=1                                                     Equation 6 386 

 387 

Where xk = (x1, x2, x3,……..xn) are the data belonging to the ki cluster;  and mi 388 

is the centroid of the cluster ki : 389 

𝑁𝑁𝑉𝑉 =  ∑ 𝑉𝑉𝑘𝑘𝑁𝑁𝑁𝑁
𝑘𝑘=1
𝑁𝑁𝑁𝑁

∗ 𝑖𝑖𝑘𝑘 ∈ 𝑘𝑘𝑉𝑉                                                          Equation 7 390 

Where Ni is the number of data objects in the cluster i.   391 
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The procedure ends when no points are reallocated from one cluster to another or when 392 

a predefined number of iterations is reached (Dabbura 2020). 393 

The selection of the parameters to be used in K-means cluster analysis on a high 394 

dimensional dataset was carefully studied to consider non-redundant variables in order 395 

to avoid noise to create clusters. In addition, it was important to take into account 396 

parameters that influenced in facilitating the transport of pollutants (Rahmani et al. 397 

2019)  and selection of parameters associated with water resources systems should 398 

be based on indicators and their causal relationships (Malmir et al. 2021). 399 

The parameters considered were extracted from different methods as DRASTIC (Aller 400 

et al. 1987), AVI (Stempvoort et al. 1993), GOD (Foster 1987) and others parameters 401 

by modified methods. The six parameters considered are described below.  402 

Depth of water table (D), which considered the unsaturated thickness and the hydraulic 403 

head of the aquifer (Aller et al. 1987; Debernardi et al. 2008). Aquifer recharge (net 404 

recharge, R), which considered soil conditions, cover vegetation and land slope (See 405 

Supplementary information), (Aller et al. 1987; Kazakis and Voudouris 2015). Land use 406 

(L), which considered different activities developed in the area that have influence on 407 

the vulnerability to pollution,  as well as, the irrigation network (Jarama irrigation water 408 

channel) (Arezooman et al. 2015; Kazakis and Voudouris 2015; Asadi et al. 2017; Hao 409 

et al. 2017). Land use is a qualitative parameter, for this reason, it was assigned 410 

numerical values from 1 to 5, according to tendency to contamination, i.e. the highest 411 

probability of contamination has a value of 5 and the lowest  probability of 412 

contamination has a value of 1. (Table 4). Aquifer hydraulic conductivity (C), which 413 

considers aquifer media and permeability (Aller et al. 1987; Hao et al. 2017). Hydraulic 414 

conductivity of the unsaturated zone (Kv), which considered the vertical permeability 415 

and the impact of vadose zone  (Aller et al. 1987; Foster 1987; Stempvoort et al. 1993). 416 
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Aquifer thickness (Th), which considered the dilution phenomena of the contaminant 417 

within the aquifer (Debernardi et al. 2008; Hao et al. 2017). 418 

The data processing was carried out using RStudio v.4.0.5 software. Each parameter 419 

was normalized with the max-min scaling method, in order to reduce the bias caused 420 

by the predominance of very high ranges over lower ranges. The extract point value 421 

tool in ArcGIS v.10.2.1 was used to obtain the data of each variable for all the 5842 422 

points. 423 

Table 4 Quantitative land use values in the study area. Higher values represent a 424 

higher tendency to contamination and vice versa 425 

Land use Value 

Urban areas 5 

Industrial-commercial areas 5 

Landfill 5 

Irrigation crops 5 

Non-irrigated arable land 3 

Water courses 3 

Non-vegetation 2 

Forest and green areas 1 

 426 

3.3.1 Feature selection by Principal Analysis Component (PCA) 427 

Principal Component Analysis (PCA) was used to identify the relevant features from 428 

the original dataset, following the procedure proposed by Song et al., (2010).  429 

The contribution of each eigenvector was calculated as the sum of whole absolute 430 

eigenvalues within the eigenvector. They were arranged in descending order, 431 

representing the hierarchy of the importance of each variable. The PCA reduces the 432 

dimension of dataset, explaining as much variance as possible. Thus, the dimension 433 

of the dataset could be reduced and the new low-dimensional data set was considered 434 



23 
 

to select the relevant variables in the principal components. The application of PCA 435 

allowed a large number of correlated variables to be replaced by a smaller number of 436 

uncorrelated variables (eliminating redundancy), while retaining the most information 437 

from the original model (guaranteed with a high cumulative variance). 438 

 439 

3.3.2 K-means cluster by low dimensional data set 440 

K-means clustering analysis was applied to the new low-dimensional data set obtained 441 

from the PCA. Following the procedure described in the section 3.3, a new smaller 442 

data set was created with an “n “x “d” matrix, where n is the number of data points 443 

(5842) in a d low dimensional feature space.  444 

 445 

3.4 Vulnerability map validation by using the nitrate concentration as an 446 

indicator of contamination. 447 

The main pollutant in the “Aluviales Jarama-Tajuña” aquifer is nitrate, because of the 448 

intense agricultural activity (Arauzo et al. 2008; Mostaza-Colado et al. 2018). For this 449 

reason, nitrate concentration has been considered in this work as a reference indicator 450 

to validate the obtained vulnerability maps. Concentration data from 23 monitoring 451 

wells were classified into four categories as pollution indicator (low <12mg/L, moderate 452 

12-25mg/L, high 25-50mg/L and very high>50mg/L). Values above 50mg/l were 453 

considered as very high nitrate concentration because they exceed the limit 454 

recommended by the Spanish Government (BOE 1996).  455 

The ArcGis extraction tool allowed to obtain the corresponding the vulnerability index 456 

value for each nitrate concentration monitoring well. 457 

Finally, a statistical analysis using Spearman’s correlation coefficient was carried out 458 

to verify the degree of association between the vulnerability index and nitrate 459 
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concentration. This analysis was performed to validate the vulnerability results of the 460 

different methods (Panagopoulos et al. 2006; Javadi et al. 2011; Yang et al. 2017; 461 

Barzegar et al. 2019). 462 

 463 

4. Results and discussion 464 

4.1 DRASTIC vulnerability analysis  465 

The spatial distribution of the classes defined for each DRASTIC parameter is shown 466 

in Fig. 3.The maximum depth of groundwater (D) (29.7m), is found in the central zone 467 

of the study area  and minimum values (around 6.3m) are located in the north and 468 

south sectors (Fig. 3a). Almost 70% of the study area has a water table depth of less 469 

than 9m, which determines that the most of the area is vulnerable to contamination 470 

due to the small thickness of the unsaturated zone. 471 

The net recharge (R) varies from 0 to 984 mm per year. The maximum values 472 

correspond to irrigated zones (mostly located in the south), covering an area of 20%. 473 

In the central and northern zones, the recharge is a combination of rainfall and irrigation 474 

(more than 60% of the study area) (Fig. 3b). Despite the area with highest recharge is 475 

small, the recharge is higher than 254mm (maximum limit established by DRASTIC 476 

methodology) what favors contaminant infiltration from the surface.  The natural 477 

recharge of the aquifer (from rainfall) is very low (See Supplementary material, Tables 478 

S1a, S1b and S1c), compared to the recharge by infiltration from irrigation returns (See 479 

Supplementary material, Table S2), which is in agreement with  the results of previous 480 

works (Mostaza-Colado et al. 2018).  481 

The aquifer media  factor (A) of the study area is defined by the dominant presence of 482 

sands and gravels (rating values 4-9). The highest permeability of the aquifer occurs 483 
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in the central zone (35% of total area), which is considered the most vulnerable to 484 

contamination (Fig. 3c). Although the permeability of the aquifer is high, it shows little 485 

variation. Therefore, this parameter does not affect the distribution or variability of the 486 

DRASTIC vulnerability index. 487 

The soil media factor (S) is defined  by the occurrence of loamy and silty loamy 488 

textures, the latter being found in most of the study area (approximately 70%) (Fig. 3d). 489 

This type of soil texture helps to protect the vadose zone from the entry of 490 

contaminants.  491 

More than 70% of the study area has a very low slope (T) (between 0-2%), only 492 

increases at the boundaries of the area and along the river  banks (Fig. 3e). The gentle 493 

topography results in low surface runoff, which favors vulnerability to irrigation-related 494 

infiltration of pollutants. 495 

The vadose zone (I) is defined by the occurrence of gravels, sands, clays, and silts 496 

(more than 80% of the study area). The most permeable materials are located  in the 497 

central zone (Fig. 3f). Permeability contributes to the movement of pollutant movement 498 

from the surface to aquifer increasing the vulnerability there.  499 

The aquifer hydraulic conductivity factor (C) ranges from 0 to 476 m/d. The hydraulic 500 

conductivity in more than 50% of the study area was higher than 81.49 m/d (which is 501 

the highest limit established by the DRASTIC methodology). The highest values are 502 

located in the south and in some areas in the north (Fig. 3g). These areas are 503 

susceptible to have high vulnerability, due to their high transmissivity and low 504 

unsaturated thickness. The lowest values of hydraulic conductivity are located in the 505 

central zone. Therefore, this area is less vulnerable to contamination due to its low 506 

hydraulic conductivity. 507 



26 
 

The DRASTIC Vulnerability Index (DI) ranged from 94 to 207. The distribution of the 508 

four defined vulnerability classes (low, moderate, high and very high vulnerability) is 509 

shown in the DRASTIC vulnerability map (Fig. 4). Almost 20% of the study area (mostly 510 

in the southern part) shows a very high vulnerability, influenced by the recharge related 511 

with high crop irrigation. A large part of the aquifer shows high vulnerability (53% of the 512 

study area). This is located along study area (north, central-west and edges at south 513 

zones), related to the high permeability of materials in these zones. Moderate and low 514 

vulnerability  values are identified in the central-eastern part of the study area, where 515 

the water level is deeper and the hydraulic conductivity is lower. The DRASTIC 516 

vulnerability map shows that almost 70% of the study area has high and very high 517 

vulnerability. This result reveals that the “Aluviales Jarama-Tajuña” aquifer is highly 518 

vulnerable to contamination. 519 

 520 
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(a) (b) (c) (d) 

(e) 
(g) 

(f) 

Fig. 3 DRASTIC method maps. (a) Depth to water table, (b) Net recharge , (c) Aquifer 
media , (d) Soil type , (e) Topography , (f) Impact of vadose zone , (g) Hydraulic 

conductivity  
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 568 

 569 

 570 

 571 

 572 

 573 

Fig. 4 Vulnerability index map of DRASTIC, showing nitrate concentration ranges at wells location 574 

 575 

4.2 GOD vulnerability analysis 576 

The spatial distribution of the classes defined for each GOD parameter is shown in Fig. 577 

5a and Fig. 5b. The “Aluviales Jarama-Tajuña” aquifer is unconfined, according to 578 

lithological sections (Fig. 2b) and pumping test (Carreño Conde et al. 2014). Therefore, 579 

100% of study area is unconfined aquifer and the map of groundwater occurrence (G) 580 

is defined by a single value equal to one (1) according to GOD method. The lithology 581 

of aquifer factor (O), equivalent to vadose zone factor in DRASTIC, varies from 0.5 to 582 
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0.7, as gravels, sands, clays and silts constitute 100% of study area. There is little 583 

variation of the permeability regarding the thickness of unsaturated material, which 584 

makes the area very vulnerable (Fig. 5a). As in the DRASTIC method, depth of 585 

groundwater factor (D) is low (depth is less than 10m in more than 70% of area), which 586 

is contributing to the high vulnerability (Fig. 5b). 587 

The GOD vulnerability index ranged from 0.32 to 0.70. The map in Fig. 5c, shows the 588 

distribution of the normalized and classified GOD vulnerability index.  Almost 60% of 589 

the study area has very high and high vulnerability (40% and 20%, respectively). This 590 

occurs in three well-defined zones located in the south, central and north parts of the 591 

study area. The very high to high vulnerability is due to the join effect of the high 592 

permeability of the materials and the low thickness of the unsaturated zone. 36% of 593 

the study area shows moderate vulnerability, mainly in the central zone where the 594 

relatively high depth of groundwater decreases the possibility that the pollutant 595 

reaching the aquifer. Only 4.6% of area displays low vulnerability, which  occurs at the 596 

lateral edge of the aquifer at east of the central zone and in the southwestern part of 597 

study area. There, the materials consist mainly of clays and gypsum that reduce the 598 

infiltration.   599 

 600 

 601 

 602 
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 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

Fig. 5 GOD method maps. (a) Depth of water table (D), (b) lithology (O), (c) Vulnerability index map of GOD, showing nitrate concentration ranges at wells 618 
location 619 

(b) 
(c) 

(a) 
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4.3 AVI vulnerability analysis 620 

The hydraulic resistance values varied between 0 to 767 years (Fig. 6a). 68.2% of the 621 

study area shows  very high vulnerability from north to south (only moderate to low 622 

vulnerability predominates in the southernmost part, Fig. 6b). The low values are 623 

related to the high hydraulic conductivity of the unsaturated zone, together with a low 624 

thickness (6m on average) of this layer.  625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

Fig. 6 AVI method maps. (a) Hydraulic resistance, (b) Vulnerability index map of AVI, showing nitrate 641 

concentration ranges at well location 642 

 643 

 644 

 645 

(a) (b) 
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4.4 K-means Cluster analysis 646 

The parameters considered in the K-means cluster analysis are shown in Fig. 7. 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 
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 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

  675 Fig. 7 K-means parameters maps. (a) Depth to water table, (b) Net recharge , (c) 
Hydraulic conductivity, (d) Vertical hydraulic conductivity on unsaturated zone, (e) Aquifer 

thickness, (f) Land use  

 

(a) (b) (c) 

(d) (e) (f) 
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The “n x d” data matrix was made of 5842 data points and six feature space (“D”, “R”, 676 

“C”, “Kv”, “Th” and “L”). After max-min normalization of database, the method resulted 677 

in an optimal number of three (3) clusters, proposed by 12 of 26 index. 678 

The results of high dimensional K-means cluster analysis are summarized in Table 5. 679 

 680 

Table 5 Variation of feature data in the three identified clusters (High dimensional 681 
dataset) 682 

      D (m) R 
(mm/year) 

C 
(m/d) Kv(m/d) Th(m) L 

Vulnerability 
Cluster points % Mean Mean Mean Mean Mean Mean 

1 2461 42.1 8.8 16.3 82.0 9.0 10.9 2.6 Low 
2 2147 36.8 8.7 35.3 80.1 8.5 11.4 5.0 Moderate 
3 1234 21.1 5.3 967.9 132.6 6.9 10.9 4.3 High 

 683 

Cluster 3 includes the lowest values of depth of groundwater (D) and the highest 684 

values of recharge and hydraulic conductivity (R,C). In addition, land use (L), has a 685 

high value. All these conditions contribute to define high vulnerability. On the other 686 

hand, Cluster 1 represents the opposite scenario of low vulnerability with the lowest 687 

values of recharge (R) and land use (L).  Cluster 2 shows moderate vulnerability with 688 

higher recharge (R) than cluster 1, but lower than cluster 3. Although land use (L) in 689 

cluster 2 has the highest value, it was very similar to cluster 3, Thus recharge (R) and 690 

land use (L) together  contribute to define moderate vulnerability in cluster 2. Note that 691 

vertical permeability on unsaturated zone (Kv) and aquifer thickness (Th) did not 692 

influence vulnerability ranking, as they were very similar in all clusters.  693 

 694 

4.4.1 K-means cluster by low dimensional analysis 695 

To perform the K-means clustering in a low dimensional dataset, three of the six 696 

features were selected using PCA analysis (Table 6).  According to the procedure 697 

described in the Materials and Methods section, the selected features explain more 698 
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than 86% of the variance. The relevant features were net recharge (R), Depth of water 699 

table (D) and land use (L), in this order of importance calculated by their contribution. 700 

These three features, selected by PCA for 5842 points across the study area, 701 

produced the low dimensional data set. 702 

 703 

Table 6 Eigen vectors and Eigen values, varimax component matrix and 704 

eigenvectors contribution obtained from the PCA. Bold numbers in eigenvectors 705 

represent the maximum eigen values associated to each parameter. 706 

Parameters PC1 PC2 PC3 
D 0.1766423 -0.113552 0.9424516 
R -0.906886 0.334078 0.2368487 
C -0.124457 0.072504 -0.197747 
Kv 0.0499861 0.0002084 0.0742895 
Th 0.0089448 -0.083407 0.0905335 
L -0.358171 -0.929131 -0.05356 

Standard deviation    0.413 0.3031 0.2198 

Proportion of Variance  0.4746 0.2555 0.1344 
Cumulative Proportion 0.4746 0.7301 0.8645 

Contribution  1.63 1.53 1.6 
 707 

The K-means cluster analysis on the low dimensional data set resulted in three 708 

clusters as the optimal number of clusters, as was the case for the high-dimensional 709 

dataset. The results of the low dimensional K-means cluster analysis are summarized 710 

in Table 7. 711 

 712 

Table 7 Variation of features data in the three identified clusters (Low dimensional 713 
dataset) 714 

  points % D (m) R 
(mm/year) L 

Vulnerability 
Cluster 5842 100 Mean Mean Mean 

1 2461 42.1 8.8 16.3 2.6 Low 
2 2147 36.8 8.7 35.3 5.0 Moderate 
3 1234 21.1 5.3 967.9 4.3 High 

 715 
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The results of K-means cluster analysis on the low dimensional data set show the 716 

same behavior as the high dimensional data set. The clusters consist of the same 717 

number of points and represent the same vulnerability classes of vulnerability. Fig. 8, 718 

shows the clustering vulnerability map, where 35.9 % of the study area corresponds 719 

to low vulnerability, 41.4 % to moderate vulnerability and 22.7 % to  high vulnerability. 720 

 721 

                                722 

Fig. 8 Vulnerability map by K-means cluster analysis. Information on nitrate concentration 723 
(range and location) is included. 724 

 725 

 726 
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 727 

4.5 Vulnerability method validation  728 

The nitrate observation points were classified by their concentration in four categories 729 

(Table 8). The classified points have been projected onto the vulnerability maps (Fig. 730 

4, Fig. 5c, Fig. 6b and Fig. 8).  731 

 732 

Table 8 Nitrate pollution indicator (four classes) based on nitrate concentration in 733 

water quality monitoring wells.  734 

 Nitrate Concentration (mg/L) 
 <12 12 - 25 25 - 50 >50 

Samples 5 10 3 5 
Percentage 

(%) 21.7 43.5 13.0 21.7 

Nitrate 
pollution 
indicator  

low moderate High very high 

 735 

The graphical coincidences for high and low vulnerability and high and low nitrate 736 

pollution are noticeable in DRASTIC and K-means maps (Fig. 4 and Fig. 9). In 737 

contrast, GOD and AVI methods show less graphical agreement (Fig. 5c and Fig. 6b).  738 

Table 9 shows the Spearman´s correlation coefficient between nitrate concentration 739 

samples and each method used to assess the vulnerability to contamination.  740 

Table 9 Spearman correlation coefficient between nitrate concentration and 741 

vulnerability p-value of the studied methods. 742 

Method Spearman rank 
correlation (rho) p-value 

DRASTIC 0.34 0.049* 
GOD -0.50 0.007** 
AVI 0.01 0.48 

K-means (Low 
dimensional data set 0.48 0.019* 

*Spearman test p-value<0.05 743 
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The vulnerability indices GOD and AVI vulnerability did not yield a valid correlation 744 

with nitrate concentration values.  Better correlations were obtained by the DRASTIC 745 

and the K-means methods. However, the cluster analysis showed a better correlation 746 

with nitrate concentration,  with higher correlation coefficients compared to those for 747 

DRASTIC method. K-means cluster analysis resulted in 48% of Spearman´s 748 

correlation coefficients. The p-values confirms that the best methods (DRASTIC, K-749 

means) were statistically significant. 750 

Fig. 9, shows the percentage of area with very high, high, moderate and low 751 

vulnerability, depending on the applied assessment method, as well as the nitrate 752 

contamination range classes. The results obtained from the AVI method were 753 

completely different from the rest of the methods, as the AVI method assigned very 754 

high vulnerability to a large portion of the aquifer (more than 60% of the study area). 755 

This contrasting result is due to the fact that this assessment method only considers 756 

the travel time of the contaminant through the unsaturated zone.  The low correlation 757 

of the AVI method with nitrate pollution (Table 9) shows that more characteristics need 758 

to be considered  to obtain better or more adjusted vulnerability assessment. Thus, 759 

the AVI method  is not suitable to be applied to an aquifer whose vulnerability is 760 

dominated by hydrological and hydrogeological features as net recharge, depth of 761 

water table and land use. The GOD method showed a negative correlation, meaning 762 

that the high values of nitrate concentration correspond with low vulnerability values 763 

and vice versa. This method does not take the aquifer recharge into account like the 764 

AVI method, which confirmed that recharge is a feature of paramount importance in 765 

the vulnerability assessment of the study area. In addition, the vulnerability assessed 766 

in the study area by the GOD method is strongly influenced by depth of water table 767 

over  the other parameters considered in the methodology. The low correlation of GOD 768 
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and nitrate concentration (Table 9) is due to the fact that the depth of groundwater in 769 

this case, is not sufficient to define vulnerability zones, suggesting that in detrital 770 

aquifers is necessary to consider others parameters. DRASTIC resulted in a lower 771 

proportion of very high vulnerability, similar to the percentage of samples with very 772 

high nitrate contamination (around 19%). On the other hand, DRASTIC showed 773 

different proportions of high, moderate and low vulnerability compared to the 774 

percentage of samples of nitrate concentration classes (Fig. 9). Despite this, the 775 

Spearman`s correlation coefficient between the vulnerability index of DRASTIC and 776 

the nitrate concentration was higher than GOD and AVI methods (34%, Table 8), 777 

indicating that some of the parameters considered on DRASTIC method had a major 778 

influence on improving the vulnerability assessment in the aquifer. The K-means 779 

method showed the highest Spearman´s correlation coefficient between vulnerability 780 

classes and nitrate concentration (48%). This  showed that it is important to select 781 

non-redundant parameters and, in this case, the most influencing parameters were 782 

net recharge, depth of groundwater and land use, as obtained by PCA analysis. 783 

Considering nitrate as an indicator contamination (Table 8, Fig. 9), almost 22% of the 784 

samples corresponded to the very high pollution class, with the nitrate concentration 785 

exceeding the recommended limit (50mg/L). These samples are located on high 786 

vulnerability values areas in the cluster map. The high nitrate concentrations located 787 

in the areas with agricultural uses show that land use (L) is a very important variable 788 

in determining vulnerability. In addition, the low recharge by rainfall (fresh water) and 789 

the high recharge with water from irrigation returns (which are loaded with nitrogen 790 

fertilizers) have an significant influence on the high vulnerability of the aquifer, 791 

confirming the findings of Mostaza-Colado et al. (2018). Many water quality samples 792 

(43%) are indicative of moderate pollution (12-25 mg/L), the most numerous being 793 
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located in the central zone of the aquifer coinciding with the moderate vulnerability 794 

zones in the K-means cluster map (where the water depth is higher and net recharge 795 

is lower). According to Mostaza-Colado et al. (2018); and Mostaza (2019), good 796 

agricultural practices influence the reduction of nitrate concentration in the central 797 

zone of the aquifer. However, this zone has a moderate vulnerability with moderate 798 

values of nitrate concentration (12-25 mg/L), which are mainly due to the aquifer 799 

conditions and land use and not to irrigation techniques. Therefore, good agricultural 800 

practices are not a significant factor for the vulnerability assessment of the studied 801 

aquifer and the low nitrate concentrations in this zone would be caused by the low 802 

recharge and the high depth of the water table, which makes it difficult for the nitrate 803 

to reach the aquifer.  804 

K-means cluster analysis based on relevant features emerges as the best method to 805 

assess the vulnerability to pollution of a detrital aquifer, being more objective that the 806 

overlay index methods. The advantages of this refined K-means methodology are in 807 

line with Foster et al. (2013), who indicate that the best application of the pollution 808 

vulnerability assessment methodologies will be achieved when these methods 809 

incorporate (as simply and sensitively as possible) the main parameters controlling 810 

hydraulic accessibility and natural protection of the aquifer.  811 

 812 

 813 

 814 

 815 
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 816 

Fig. 9 Percentage of area with low, moderate, high and very high vulnerability related to each applied 817 

assessment method and percentage of samples in  nitrate contamination range classes 818 

 819 

5. Conclusions 820 

Although vulnerability assessment maps have proven to be a useful tool to prevent 821 

and control the process of groundwater contamination, the selection of the most 822 

appropriate method is paramount. In this work, vulnerability of the “Aluviales Jarama-823 

Tajuña” aquifer in Spain has been assessed by overlay index maps methods 824 

(DRASTIC, GOD, AVI) and K-means clustering analysis. The vulnerability maps 825 

obtained by each method were compared with the concentration of nitrate in 826 

groundwater samples as an indicator of contamination, in order to validate the most 827 

appropiate method to use.  The results showed that is important to take into account 828 

the relevant features in a specific area, as the lack of appropriate parameters could 829 

lead to inappropriate results. Furthermore, methods with a short number of parameters 830 

should be used with caution in studies of detrital aquifers, as the few parameters 831 

considered may not be relevant or sufficient to obtain a good vulnerability assessment. 832 

This is the case for GOD and AVI methods, which did not take into account relevant 833 

features such as net recharge and land use in the aquifer under study. DRASTIC gave 834 
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better results, as it considers some of these features as well as other parameters that 835 

control the vulnerability of the aquifer. The DRASTIC results improved significantly the 836 

correlation with nitrate concentration (34%). However, not all parameters used in 837 

DRASTIC were relevant for the assessment. This was demonstrated by the K-means 838 

analysis, which considered a new set of parameters extracted from index methods. 839 

Six parameters were identified (Depth of groundwater (D), recharge of the aquifer (R), 840 

land use (L), hydraulic conductivity of the aquifer (C), hydraulic conductivity of 841 

unsaturated zone (Kv), aquifer thickness (Th)). The PCA analysis was applied to that 842 

set, obtaining the key hydrogeological parameters that affect the vulnerability of the 843 

detrital aquifer. The parameters identified as relevant after PCA analysis were depth 844 

of water table (D), net recharge (R), and land use (L). The new proposed method 845 

grouped data in three clusters that represent low vulnerability (42.1% of the study 846 

area), moderate (36.8%) and high vulnerability (21.1%). Nitrate concentration has 847 

been used as indicator of contamination to validate the results obtained by the 848 

methods used in the study.  The application of K-means cluster yielded the best 849 

correlation (48%) between vulnerability values and nitrate concentration, increasing 850 

significantly that obtained from the other methods. The study shows that cluster 851 

analysis methods can be applied to significantly eliminate the subjectivity of the 852 

traditional vulnerability assessment methods, as they do not associate rating or 853 

weighting coefficients. Also, the few variables selected facilitate data collection and 854 

guarantee optimal results, as they represent key factors for the aquifer studied. Thus, 855 

the use K-means cluster analysis confirmed the advantage of applying data mining 856 

techniques in the assessment of groundwater vulnerability in detrital aquifers.  857 

 858 

 859 
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