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A B S T R A C T   

There is an urgent need to conserve and improve the quality of agricultural soils in the coming decades. Decision 
tools capable of providing reliable information about soil quality are needed, and soil quality index (SQI) is one 
of the most used. Principal component analysis (PCA) is the common methodology to calculate it, however in 
some cases fails to differentiate soil quality properly. Therefore, the aim of this work is to assess a SQI through a 
different methodology as network analysis (NTA) and compare it with PCA, assuming that soil uses affect soil 
qualities differently. From soils with different uses (rainfed, olive grove and forest) network analysis and prin
cipal component analysis have been used to select a minimum dataset (MDS) to generate SQI from 36 physical, 
chemical and biological soil variables. Using NTA, geometric mean of the enzyme activities (GMEAN), bulk 
density (BD) and phosphatase activity (phos) where selected as indicators, while PCA selected total organic 
carbon (TOC), free Fe oxides (FeF), crystalline Mn oxides (MnX), pH, electrical conductivity (EC) and percentage 
of coarse sand (CS). Four SQI were calculated from each MDS through linear and non-linear scoring equations 
and by additive integration and weights. The SQI generated by NTA were more useful than those generated by 
PCA, as in addition to having fewer indicators they were able to better differentiate the uses in the study. This 
greater resolution capacity of the NTA would be the consequence of a better selection of indicators using this 
method than using PCA.   

1. Introduction 

The increased demand for food caused by the rise in the world 
population, estimated to be 25–31 % by 2050 (United Nations, 2019), is 
a major challenge for humankind. This greater demand poses a risk to 
soil quality, defined by Karlen et al. (1997) as “the capacity of a specific 
kind of soil to function, within natural or managed ecosystem bound
aries, to sustain plant and animal productivity, maintain or enhance 

water and air quality, and support human health and habitation”. Un
derstanding the parameters that determine the quality of agricultural 
soils can improve their management (Herrick, 2000). In this context, the 
Soil Health and Food Mission Board has recently proposed a mission to 
the European Commission entitled “Caring for Soil is Caring for Life”, 
driven by the pressing need to reduce soil degradation in the European 
Union and improve the programmes for monitoring soil quality in all the 
member states, taking into account the variability in soil type, land use 
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and climate. 
Different types of uses and agricultural management systems may 

cause alterations in the physical, chemical and biological properties of 
the soils (Sánchez-Navarro et al., 2015) and negatively affect their 
quality (Rezapour, 2014). Rainfed agricultural soils are poorer than 
irrigated soils (Hamidi Nehrani et al., 2020), and ploughed soils have a 
lower quality than soils with limited ploughing or which are undisturbed 
(Wander and Bollero, 1999). Marzaioli et al. (2010) observed poorer soil 
quality in croplands when the spaces between the cultivation rows are 
left uncovered, and an improvement in quality in croplands with herb 
cover, while mixed forest soils had the highest quality. A more sus
tainable agricultural use can therefore be achieved by comparing the 
quality of agricultural soils in different zones and subject to different 
management regimes (Karlen et al., 1997), or in the same location but 
over a period of time (Nortcliff, 2002). 

Due to economic and time constraints, it is unfeasible to conduct a 
systematic study with all the physical, chemical and biological param
eters that influence soil quality; in addition, the information provided 
may be very copious and complex to interpret. It is therefore more 
practical to select a minimum set of representative quality indicators for 
the soils to be studied (Bünemann et al., 2018). Ideally, these indicators 
should (Bünemann et al., 2018; Doran and Zeiss, 2000; Nortcliff, 2002): 
i) be related with a threat, function or a soil ecosystem service, ii) be 
simple and cheap to determine, iii) provide reliable measurements with 
standardised procedures, iv) be sensitive to changes in agricultural 
management, and v) have limited patterns of spatial–temporal 
variation. 

Soil quality indices (SQI) are used to select and integrate soil quality 
indicators in a single index, and serve as a management tool to provide 
land managers with all the most important information to facilitate 
decision-making in matters of agroecosystem management (Andrews 
and Carroll, 2001). SQI are calculated from a minimum data set (MDS) 
formed by indicators selected by means of statistical techniques from an 
initial set of physical, chemical and biological soil properties. 

Principal component analysis (PCA) is the most widely used statis
tical technique for selecting the indicators in a MDS (Bünemann et al., 
2018). However, it has been observed in some cases that this technique 
is unable to select indicators that reflect the differences in the quality of 
soils under different management systems (Askari and Holden, 2014; 
Hamidi Nehrani et al., 2020). 

Another statistical technique with the capacity to distinguish the 

importance of each variable within a group is network analysis (NTA). 
This type of analysis emerged in the 1930s as a tool in the field of social 
studies and consists of graphically representing the relations between 
the people belonging to a group. It is currently used in various areas 
related with soil and the environment to examine the relations between 
the study variables and determine their role in the system’s functioning 
(Barberán et al., 2012; Liu et al., 2015; Wang et al., 2019). 

We start with the hypothesis that network analysis allows the se
lection of indicators that represent soil quality and provide information 
on soil processes, and that the MDS selected with NTA will calculate a 
SQI with a similar or even greater capacity to differentiate between uses 
than the MDS obtained with PCA. Assuming that soil use modifies its 
quality differently, the main aim of this work is to assess a soil quality 
index (SQI) through network analysis (NTA), and compare it with a 
widely used method like principal component analysis (PCA). Emphasis 
is placed on determining the methodology that best classifies and 
characterises soil quality under three different soil uses: cereal under 
rainfed management (hereinafter rainfed), olive grove and forest. 

2. Material and methods 

2.1. Description of the study zone and sampling 

The study zone was located to the southeast of the city of Madrid 
(Spain). The geology of the area is determined by four main geological 
materials: i) a calcareous formation known as “Calizas del Páramo” of 
Tertiary-era greyish-white lacustrine limestone alternating with marly 
limestone, compact marls and sandy reddish marls with boulders that 
cover most of the study area; ii) gypsum outcrops in the river valley 
areas; iii) a detrital series consisting mainly of conglomerate, sandstone, 
sands, clay, marl and levels of flint; and iv) the terraces and river de
posits (Fig. 1). 

The study area is located at an altitude of 715 m and has a climate 
between Csa (Mediterranean) and Bsk (semi-arid cold), according to the 
Köppen-Geiger classification (Climate-data, 2020). Average annual 
temperature is 13.8 ◦C (25.7 ◦C in the warmest month of the year, July, 
and 4.6 ◦C in the coldest month, January) and total annual rainfall is 
440 mm year-1 (8 mm in the driest month, July, and 65 mm in the 
month of highest rainfall, October) (data for Arganda del Rey, Madrid, 
located in the centre of the study area) (Climate-data, 2020). The pre
dominant soils in the area have been characterised as Calcic Luvisols 

Fig. 1. Location map and distribution of sampling sites.  
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(LVk), Haplic Calcisols (Clh) and Calcaric Regosols (RGc) (Comunidad 
de Madrid, CSIC, 1990), according to the current FAO nomenclature 
system (IUSS Working Group WRB, 2015). The main soil use is for 
agriculture, especially wheat, barley and olive, and the predominant 
natural plant species are Stipa tenacissima, Quercus ilex, Quercus coc
cifera and Thymus vulgaris. 

The sampling points were selected based on: i) their carbonate 
origin, as this is the predominant material in the area; ii) their agricul
tural use – cereal and olive grove – since they are the major crops; iii) the 
existence of nearby forest soils to serve as a control; and iv) that the 
three uses (cereal, olive grove and forest) were adjacent to reduce the 
variability in the soil-forming parameters unrelated to anthro
pogenization. Based on these criteria, 20 sampling locations were 
selected. Soil samples were collected in each location in March 2017, in 
each location three samples were taken, one for each of the three uses, 
rainfed, olive grove and forest, thus generating a final number of 60 
samples (20 samples for each use studied) (Martín-Sanz et al., 2018). 

Composite samples were collected at each point, generated from five 
subsamples according to a crosswise diagram aligned with the points of 
the compass, taking one subsample at the central point and four at the 
ends at a distance of 5 m from the centre. The sampling depth was from 
0 to 30 cm, as this is the typical ploughing depth. The subsamples were 
mixed in situ; one fraction of the compound sample was refrigerated for 
subsequent biological analysis, and another unrefrigerated fraction was 
air-dried for all the other analyses. 

2.2. Soil parameters analysed 

To ensure the construction of representative soil quality indices with 
the highest possible capacity to discriminate between uses, the soils 
were characterized as described below by means of 36 physical, chem
ical and biological parameters related with soil functionality. 

Water holding capacity (WHC) and bulk density (BD) were deter
mined using the Soil Survey Staff procedure (2014) on the unaltered 
sample taken at each sampling point. Soil particle size was determined 
using sieved air-dried samples, and total sand (S), coarse sand (CS), fine 
sand (FS), silt and clay were differentiated according to the ISSS with 
Robinson’s pipette method, after oxidation of the organic matter with 
H2O2 (ISRIC, 2002). 

Chemical properties were analysed in <2 mm sieved air-dried sam
ples. pH and electrical conductivity (EC) were determined in soil:water 
suspensions of 1:2.5 and 1:5 (w:v) respectively (ISRIC, 2002). Total 
organic carbon content (TOC) was determined by the wet-oxidation 
method of Walkley and Black (1934), assessing the excess of dichro
mate with an automatic Metrohm 888 TRITANDO and Metrohm 665 
DOSIMAT valuator. Total nitrogen (TN) was determined by combustion 
with a LECO CHNS-932 analyser. The TOC/TN ratio was calculated. 
Cold water soluble carbon (Ccw) and hot water soluble carbon (Chw), 

and cold water soluble nitrogen (Ncw) and hot water soluble nitrogen 
(Nhw) were extracted according to the method of Ghani et al. (2003) 
and quantified with a TC/TN ANALYTIKJENA MICRO N/C analyser. 
Soluble inorganic N (Ninor) content was calculated as the sum of soluble 
NO3

–, NO2
– and NH4

+ content; anionic forms were extracted from a 1:5 
soil:water ratio (w:v) and determined with a Metrohm 761 COMPACT IC 
ion chromatograph with an automatic Metrohm 838 ADVANCED 
SAMPLE PROCESSOR carousel; and soluble NH4

+ content was extracted 
according to Keeney and Nelson (1982) and quantified by means of 
UV–visible spectrophotometry with a TECAN NANOQUANT INFINITE 
M200 PRO multiwell plate reader. Equivalent calcium carbonate con
tent (%CaCO3) was analysed with the acid neutralisation method (ISRIC, 
2002). Assimilable phosphorus (Pav) was determined with the method 
of Olsen and Sommers (1982) and quantified by UV–visible spectro
photometry. Amorphous Fe and Mn oxide content (FeA and MnA) were 
obtained by extraction with oxalate acid, and free Fe and Mn oxides (FeF 
and MnF) were obtained by extraction with citrate-dithionite (ISRIC, 
2002), and quantified by means of AAS (Analytikjena NovAA 300); 
crystalline Fe and Mn oxides (FeX and MnX) were obtained by difference 
with the former. 

To identify the biological characteristics of the soils, in the month 
after sampling, enzyme activities were determined in <2 mm sieved soil 
samples which were refrigerated until the corresponding analyses were 
carried out. A total of nine enzyme activities involved in the main 
biogeochemical soil nutrient cycles were determined according to 
standard ISO 20130 (ISO, 2018): i) related with the C cycle: alpha- 
glucosidase (aglu) and beta-glucosidase (bglu); ii) related with the N 
cycle: arylamidase (aryln), N-acetyl-glucosaminidase (nag) and urease 
(ure); iii) related with the P cycle: phosphatase (phos), acid phosphatase 
(pac) and alkaline phosphatase (pak); and iv) related with the S cycle: 
arylsulphatase (aryls). Additionally, endocellular dehydrogenase 
enzyme activity (dh) was determined as an indicator of the activity of 
living microbial populations according to Schaefer (1963). The geo
metric mean of these enzyme activities, GMEAN, was used as a global 
indicator of enzyme activity due to its sensitivity and because it has less 
temporal variability than the enzyme activities determined individually 
(García-Ruiz et al., 2008; Paz-Ferreiro and Fu, 2016). 

2.3. Statistical analyses 

2.3.1. Determination of the soil quality index (SQI) 
The initial set of 20 sampling locations were randomly split into two 

different sets. One set, denoted the calibration set, was used to obtain the 
SQI with 70 % of the total samples (14 sampling locations with three soil 
uses, making a total of 42 soil samples); and another set, denoted the 
verification set, was used with the 30 % remaining sites (six sampling 
locations with three soil uses making a total of 18 soil samples) to test 
the SQI. The SQI were determined following three steps (Fig. 2): 1) the 

Fig. 2. Diagram of the steps followed to obtain the SQI in this work.  
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representative indicators in the minimum data set (MDS) were selected 
from the total set of soil parameters analysed; 2) the MDS indicators 
were transformed into scores; and 3) the indicators were integrated to 
form the soil quality index (SQI). 

2.3.1.1. Selection of indicators: Minimum dataset (MDS). Two different 
approaches were used on all 42 samples in the calibration set, regardless 
of use, to select the variables that form the MDS: i) principal component 
analysis (PCA), as this is the most widely used methodology (Askari and 
Holden, 2014), and ii) the more novel network analysis (NTA). 

The selection of the MDS with PCA was done according to Andrews 
et al. (2002) with the SPSS v.23 software, considering the principal 
components (PC) with an eigenvector λ > 1 and which explain at least 5 
% of the total accumulated variance. The matrix of components was 
obtained via Varimax rotation, which minimises the number of variables 
with higher loading values in each PC and makes it easier to interpret the 
results (Peris et al., 2008). The variable was selected with the highest 
rotated loading in absolute value in each PC identified, together with the 
variables that differed from that value by 10 % (Andrews et al., 2002). In 
order to reduce the redundancy of the variables in the MDS, when 
several variables in a PC fulfilled the previous conditions, the Pearson’s 
correlations (P < 0.05) between them were taken into account. In the 
case of correlations, the variables with the highest loading values were 
selected as indicators, and in the absence of correlations between the 
variables in the same PC, all the variables were selected as indicators. 

In network analysis, a network or graph is the graphic representation 
of the study variables represented as points called nodes, and of the 
relations existing between these variables represented by means of lines 
known as edges. These relations can be summarised in the form of a 
diagram in what is known as adjacency matrix. Pearson’s bivariate 
correlation matrix was used (P < 0.05) as an adjacency matrix in the 
Gephi 0.9.2 software to create the network of soils in this study. 

To maintain a parallelism with the methodology used to determine 
the MDS from PCA, the nodes in the NTA are divided into modules. 
These modules represent the structures of communities between the 
variables, a greater number of edges are found between nodes belonging 
to the same module than between nodes belonging to other modules 
(Newman, 2006). The separation into modules is generally done by 
optimising a function known as modularity, which represents the 
number of edges in a module minus the number of edges expected in an 
equivalent network with random edges. This maximisation of modu
larity produces a better separation of the nodes in the network into 
communities (Newman, 2006). Gephi 0.9.2 uses the Blondel algorithm 
to extract the communities of the nodes (Blondel et al., 2008); this al
gorithm is based on the optimisation of the difference in modularity and 
consists of two iterative steps. The first step considers each node i as a 
differentiated module, then considers all the neighbouring nodes j for 
each node i and assesses the gain in modularity that occurs when going 
from node i to the module of node j. Node i becomes part of the module 
for which the modularity gain is positive and maximum. This process is 
repeated sequentially for all the nodes until the distribution into mod
ules cannot be improved any further. The second phase of the algorithm 
generates a new network in which the nodes are the modules generated 
in the previous phase, and the weights of the edges are the number of 
edges in each module and of the edges that interconnect the different 
modules generated. Once this second phase has been completed, the 
algorithm is iterative, and is repeated until no more changes can be 
generated and the modularity is maximum. Blondel et al. (2008) do not 
include a modularity range beyond which the network has a modular 
structure; they only refer to the fact that this modularity is within the 
range of [-1,1]. According to Newman and Girvan (2004), a modularity 
value of zero would indicate that the separation into communities is 
random, whereas values close to one would show that the network has a 

strongly modular structure; in practice the typical modularity values are 
located between 0.3 and 0.7. In this study it was therefore considered 
that the network generated from the soil variables in the analysis had a 
modular structure if the modularity value was over 0.3, otherwise the 
network would have a single module. 

In order to select the indicators within each module, we considered 
the importance of the nodes in each module within the network as a 
whole. This was done by determining the eigenvector centrality of each 
node. This centrality is defined mathematically as the eigenvector of the 
adjacency matrix for the greatest eigenvalue in this matrix. This inter
pretation of the centrality index is since a node is important not only 
because of the number of edges it has, but also because of the importance 
of the nodes with which it is related (Girvan and Newman, 2002). In the 
case of NTA, the MDS indicators were selected in each module consid
ering the modules that had a maximum eigencentrality value of at least 
0.75. This limit was established to select the most representative vari
ables and avoid considering possible modules that have very little 
importance in the set. This condition is similar to the procedure followed 
with PCA, in which PCs that explain at least 5 % of the variance were 
selected. 

In each module that met the previous condition, all the variables 
with up to 10 % less than the maximum eigencentrality value of the 
module were selected, following the same procedure as in the PCA 
method, where the variables over a maximum of 10 % from the absolute 
maximum of the loadings of each PC were selected. If several variables 
met this condition, the variables with a higher eigencentrality value 
were selected as MDS indicators, as in the PCA. Also, as in the PCA, the 
Pearson’s correlations between the preselected variables in each module 
were taken into account. In the case of correlation between the pre
selected variables in a module, the variable with the highest eigenvector 
centrality was chosen as the indicator of its module. If there were two or 
more variables with the same eigencentrality, the indicators were the 
variables with the highest absolute weighted value; this is a centrality 
measure that considers both the number of relationships of a node and 
their weight. 

2.3.1.2. Transformation of the MDS indicators. Two different trans
formations – linear and non-linear – were carried out on each indicator 
to reduce the effect of scale between the different MDS indicators and to 
normalise all their values to the range [0,1]. 

The linear transformation (SL) (Andrews et al., 2002) of the MDS 
indicators considered whether a higher value of the indicator was 
beneficial for soil quality (“more is better”), in which case Equation (1) 
was used; and if a lower value of the indicator was beneficial for soil 
quality (“less is better”), Equation (2) was used. For indicators with an 
optimum range (“mid-point”), the transformation was built using 
Equations (1) and (2) as appropriate and equalising the values of the 
indicator in the optimum range to a value of 1. 

SL = x − xMin/xMax − xMin (1)  

SL = 1 − (x − xMin)/(xMax − xMin) (2) 

In both equations, x is the value of the indicator, xMax is the 
maximum value of the indicator in all the samples analysed, and xMin is 
the minimum value of the indicator in all the samples analysed. 

Sigmoidal curves were used in the non-linear transformation (SNL) 
(Bastida et al., 2006; Hussain et al., 1999) following Equation (3): 

SNL = a/(1 + (x/x0)
b
) (3)  

where a is the maximum value obtained by the sigmoidal curve (in this 
study a = 1), x is the value of the indicator, x0 is the mean value of this 
indicator in all the samples analysed, and b is a coefficient equal to − 2.5 
for the “more is better” indicators, and to 2.5 for the “less is better” 
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indicators. The indicators with optimum values (“mid-point”) were 
transformed using a piecewise function: a score value of 1 for all the 
indicator values (x) within the optimum range, and the score trans
formations “more is better” or “less is better” were used when the values 
of the indicator differed from the optimum. 

2.3.1.3. Integration of the MDS indicators into the SQI. The linear and 
non-linear scores of the indicators were integrated into a single index in 
two ways: additive and weighted (SQI-W), following Equations (4) and 
(5) respectively: 

SQI − A =
∑n

i=1
Si/n (4)  

SQI − W =
∑n

i=1
WiSi (5)  

where Si is the transformed linear (L) or non-linear (NL) score for each 
indicator, n is the number of MDS indicators, and Wi is the weight of 
each indicator. 

In the case of MDS selected by PCA, Wi is a value between 0 and 1 
that corresponds to the weight of each indicator calculated according to 
Equation (6). 

Wi =
%VarPCi

%VarTotal
/
∑n

i=1

%VarPCi

%VarTotal
(6)  

where %VarPCi is the percentage of variance explained by the PC for 
indicator i, %VarTotal is the percentage of variance explained by all the 
PCs in the MDS, and n is the maximum number of PCs selected. The sum 
term is needed when there are two or more indicators for the same PC. 

As in the case of the MDS obtained with PCA, the Wi in the MDS 
selected using NTA was calculated in two stages according to Equation 
(7): i) the ratio was obtained between the eigencentrality value of the 
module to which the indicator belongs and the sum of all the eigen
centrality values of all the network variables, and ii) the final weight Wi 
was calculated as the relation between the ratio calculated at (i) and the 
sum of all the ratios obtained for all the indicators. 

Wi(NTA) =
EC(Mi)

ECTotal
/
∑n

i=1

EC(Mi)

ECTotal
(7)  

where EC(Mi) is the sum of the eigencentrality value of all the variables 
in module Mi, ECTotal is the sum of the eigencentrality value of all the 
variables in the network, and n is the maximum number of M selected. 
The sum term is needed when there are two or more indicators for the 
same Mi. 

2.3.1.4. SQI obtained and their comparison between the different uses. The 
result of this whole process was a total of eight SQI, differentiated based 
on the type of transformation and integration used for each of the two 
MDS identified (one by PCA and another by NTA) (Fig. 2). The meth
odology, PCA or NTA, that produced SQI with a better ability to 

Table 1 
Mean and standard deviation values of the soil physical, chemical and biological properties studied. Different letter following mean values indicate statistically 
significant differences (P < 0.05).  

Soil variables Units Rainfed Olive grove Forest   

Mean SD Mean SD Mean SD 

WHC % 28.8 b  4.2 30.6 b  6.21 46.5 a  19.8 
BD g/cm3 1.68 a  0.13 1.67 a  0.11 1.47 b  0.18 
Sand % 25.6 a  10.4 28.9 a  8.82 30.1 a  10.1 
CS % 13.8 a  9.97 15.0 a  7.77 15.9 a  9.8 
Silt % 47.4 a  9.83 43.2 a  11.3 43.7 a  11.1 
Clay % 27.0 a  6.82 27.9 a  8.74 26.2 a  6.97 
FS % 11.8 a  4.45 13.9 a  4.80 14.24 a  4.99 
pH – 8.08 a  0.23 8.26 a  0.27 7.9 b  0.32 
EC 10-3 dS/m 177.9 a  53.1 165.5 a  62.6 184.9 a  55.4 
%CaCO3 % 13.5 a  15.9 19.3 a  18.3 22.7 a  24.5 
TN % 0.18 b  0.04 0.17 b  0.06 0.39 a  0.17 
TOC % 1.09 b  0.40 0.96 b  0.61 3.52 a  1.65 
TOC/TN – 6.26 b  1.96 5.26 b  1.88 9.19 a  2.29 
Pav mg/kg 55.4 a  48.6 22.0 b  18.8 25.0 b  18.3 
MnA mg/kg 87.3 a  52.6 78.4 a  62.3 109.3 a  100.7 
MnF mg/kg 130.2 a  64.2 133.1 a  77.1 150.8 a  101.6 
MnX mg/kg 42.9 a  21.2 54.7 a  35.0 41.5 a  28.0 
FeA mg/kg 0.43 a  0.25 0.38 a  0.21 0.43 a  0.28 
FeF mg/kg 6.38 a  2.69 5.07 a  2.33 5.80 a  3.71 
FeX mg/kg 5.96 a  2.60 4.68 a  2.20 5.37 a  3.53 
Ninor mg/kg 28.6 a  39.1 28.6 a  41.8 24.8 a  10.2 
Ccw mg/kg 14.6 b  4.75 13.9 b  5.68 26.1 a  12.5 
Ncw mg/kg 6.14 b  8.74 3.88 b  4.43 10.4 a  10.1 
Chw mg/kg 62.5 b  21.4 51.5 b  18.2 106.6 a  33.9 
Nhw mg/kg 7.70 b  2.68 8.27 b  4.45 16.3 a  10.3 
aglu U/g 0.038 b  0.012 0.029 b  0.011 0.053 a  0.018 
aryln U/g 0.027 b  0.010 0.021 b  0.010 0.036 a  0.010 
aryls U/g 0.013 b  0.006 0.009 b  0.007 0.041 a  0.027 
bglu U/g 0.147 b  0.051 0.128 b  0.063 0.294 a  0.142 
nag U/g 0.013 b  0.009 0.007 b  0.004 0.029 a  0.022 
phos U/g 0.624 b  0.606 0.324 b  0.411 1.133 a  0.728 
pac U/g 0.113 b  0.057 0.094 b  0.100 0.527 a  0.404 
pak U/g 0.368 b  0.250 0.256 b  0.208 0.891 a  0.481 
ure U/g 0.010 a  0.005 0.009 a  0.005 0.012 a  0.005 
dh U/g 0.097 b  0.070 0.062 b  0.039 0.178 a  0.087 
GMEAN U/g 0.055 b  0.022 0.037 b  0.018 0.113 a  0.051  
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differentiate between soil uses was selected as the best methodology for 
assessing soil quality in this study. 

2.4. Statistical analysis 

Prior to the PCA analysis, all the variables were tested for normality 
and homogeneity of variance through the Kolmogorov-Smirnov test, 
Levene’s test and the visual evaluation of histograms. The one-way 
analysis of variance (ANOVA) was used to establish any significant 
difference between soil parameters due to the various soil uses, and to 
identify if any of the SQI distinguished between the soil uses in the study. 
Statistical analyses were done using SPSS v.23.0 software. 

3. Results 

3.1. Effect of soil use on soil properties 

From the analysis of the variance carried out on the soil variables 
(Table 1), it can be seen that the use affects a large part of them. Forest 
soils were characterised by higher rates of TOC and TN and greater 

concentrations of their soluble forms Ccw, Chw, Ncw and Nhw, implying 
that this use also has the greatest enzyme activity (with the exception of 
ure which did not vary between uses) and WHC, in addition to minor 
values of pH and BD. Rainfed soils had the highest concentrations of Pav, 
which was the only variable that showed significant differences between 
the agricultural uses. 

3.2. Selection of the minimum data set (MDS) and calculation of the 
weights (Wi) 

3.2.1. MDS generated from a principal component analysis, MDSPCA 
Eight PCs were obtained in the PCA with eigenvalues of over 1. 

However, this number was reduced to the six first axes, as they explained 
at least 5 % of the variance (Table 2). The variables with the highest 
loading in the PC1 were total organic carbon (TOC), geometric mean of 
enzyme activities (GMEAN), arylsulfatase activity (aryls) and the TOC/ 
TN ratio (Table 2). The variable TOC had a higher loading score in this 
PC and was selected as an indicator of PC1 in the MDS, as all the other 
preselected variables were related with it (Table 3). The variables with 
the highest loading in PC2 were free Fe oxides (FeF) and crystalline Fe 
oxides (FeX) (Table 2). As these two variables showed intercorrelations 
(P < 0.05) (Table 3), the variable FeF was selected as an indicator for 
PC2 in the MDS due to its higher loading. In PC3 the variables crystalline 
Mn oxides (MnX) and fine sand (FS) showed the highest loadings on this 
axis (Table 2). MnX was selected as an indicator as it was correlated with 
the other preselected variable in PC3 (Table 3) and had the highest 
loading. For PC4 and PC5 the indicators were pH and electrical con
ductivity (EC) respectively. Finally, in PC6 coarse sand (CS) and sand 
had the highest loading, and CS was selected as indicator due to its 
correlation with sand and its higher loading in the PCA. In summary, the 
weights of the indicators derived from the MDSPCA calculated according 
to Equation (6) are shown in Table 3 and were subsequently used to 
calculate the SQI. 

3.2.2. MDS generated from network analysis, MDSNTA. 
Three modules – M1, M2 and M3 – were identified in the network 

analysis according to Pearson’s bivariate correlations, based on the al
gorithm in the Gephi 0.9.2 software (Fig. 3). 

In M1 (Table 4), the variables GMEAN, TOC, b-glucosidase (b-glu), 
arylsulphatase (aryls), acid phosphatase (pac) and N-acethyl-glucosa
minidase (nag) had the maximum eigencentrality value (1). Following 
the same procedure used to obtain the MDS from PCA, all the variables 
at a distance of 10 % from this maximum eigencentrality score were 
considered in M1, that is, those within the range [1, 0.9], in addition to 
the previous variables: total nitrogen (TN), hot-water extractable carbon 
(Chw), a-glucosidase (a-glu), alkaline phosphatase (pak), TOC/TN ratio 
and arylamidase (aryln) were selected. It was necessary to verify 
whether there were any correlations among these variables to reduce 
redundancies (Table 5). All these variables were intercorrelated, so the 
M1 indicator was selected taking into account the highest eigenvector 
centrality value (1); and from the variables that met this condition, the 
weighted degree was chosen to select the M1 indicator, being GMEAN 
the variable chosen due to its higher weighted degree. 

In M2, bulk density (BD) had the highest eigencentrality value 
(0.914027), with no other variables in the range [0.914027, 0.822624], 
so BD was selected as indicator. In M3, phosphatase activity (phos) had 
the highest eigencentrality value (0.913891). Only the eigenvector 
centrality of nitrogen soluble in cold water (Ncw) belongs to the pre
selection range for this module [0.913891, 0.8225]. As both variables 
wereintercorrelated (Table 5), phos was selected as the indicator for this 
module due to its higher eigenvector centrality. 

The weights of the indicators derived from the MDSNTA calculated 
according to Equation (7) are shown in Table 4 and were subsequently 
used to calculate the SQI. 

Table 2 
Loading coefficients of the variables analysed for the principal components (PC) 
that comply with the condition of λ > 1. In bold, for each PC, the variables that 
comply with the condition of belonging to the range of loadings between the 
absolute maximum value and 10 %. The variables in italic and the underlined 
loading values identify the indicators selected taking into account Pearson’s 
bivariate correlations (P < 0.05).  

Soil variables Principal component (PC)  

PC1 PC2 PC3 PC4 PC5 PC6 

WHC  0.50  − 0.69  0.01  − 0.20  0.22  − 0.01 
BD  − 0.29  0.70  − 0.33  − 0.40  − 0.16  − 0.04 
Sand  0.03  − 0.39  0.31  − 0.05  0.07  0.84 
CS  0.04  − 0.25  − 0.29  − 0.13  − 0.16  0.85 
Silt  0.07  0.28  − 0.50  − 0.06  − 0.26  − 0.70 
Clay  − 0.08  0.09  0.45  0.07  0.22  − 0.14 
FS  0.12  − 0.36  0.84  0.05  0.22  0.08 
pH  − 0.23  − 0.14  0.00  − 0.76  − 0.11  0.12 
EC  0.42  0.09  0.04  0.05  0.79  − 0.13 
%CaCO3  0.15  − 0.73  0.53  − 0.22  0.15  − 0.04 
TN  0.51  − 0.40  0.07  0.50  0.20  0.43 
TOC  0.91  − 0.11  0.07  0.10  0.09  0.15 
TOC/TN  0.84  0.19  0.10  − 0.08  − 0.02  − 0.03 
Pav  0.07  − 0.13  0.15  0.22  − 0.03  − 0.13 
MnA  − 0.08  0.79  − 0.23  − 0.09  0.28  − 0.36 
MnF  − 0.10  0.81  0.16  0.02  0.16  − 0.33 
MnX  0.06  0.13  0.90  − 0.02  − 0.19  0.16 
FeA  0.14  0.61  0.22  − 0.25  − 0.33  − 0.12 
FeF  − 0.07  0.93  0.03  − 0.02  − 0.09  − 0.19 
FeX  − 0.07  0.92  0.01  0.00  − 0.07  − 0.18 
Ninor  0.40  0.06  − 0.48  − 0.14  − 0.16  0.10 
Ccw  0.22  − 0.04  0.12  0.65  − 0.13  0.14 
Ncw  0.47  − 0.26  0.25  0.18  0.58  0.22 
Chw  0.61  − 0.33  − 0.28  0.36  0.30  0.15 
Nhw  0.01  0.01  0.07  0.01  0.05  0.00 
aglu  0.79  − 0.05  0.20  0.30  0.19  0.05 
aryln  0.55  0.05  0.05  0.38  0.24  − 0.01 
aryls  0.86  − 0.29  0.09  0.22  − 0.17  − 0.02 
bglu  0.77  − 0.11  0.30  0.26  0.08  − 0.05 
nag  0.48  − 0.12  − 0.06  0.64  − 0.07  − 0.14 
phos  0.61  − 0.25  0.15  0.25  0.51  − 0.13 
pac  0.63  − 0.09  − 0.34  0.09  0.42  0.10 
pak  0.80  − 0.30  − 0.05  0.11  0.35  0.09 
ure  0.03  0.17  − 0.19  0.41  − 0.65  − 0.21 
dh  0.72  0.02  − 0.24  − 0.10  − 0.04  − 0.03 
GMEAN  0.90  − 0.17  − 0.11  0.31  0.14  − 0.05 
Eigenvalue  11.79  5.90  3.95  2.77  2.21  2.00 
Variance (%)  32.76  16.40  10.96  7.68  6.15  5.57 
Cumulative variance 

(%)  
32.76  49.16  60.12  67.8  73.95  79.52  
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3.3. Calculation of the SQI 

3.3.1. SQIPCA 
To calculate the scores (Si) of the MDS indicators selected by PCA, 

the indicators TOC, FeF, MnX and EC were considered for the soils in this 
study as the “more is better” type, due to their positive role in the correct 
functioning of the soils (Brady and Weil, 2014). In contrast, the indicator 
pH and CS were considered to be “less is better”, as pH has a negative 
influence on the availability of the main micronutrients in the pH values 
where these soils are located (range of 7.3–8.3) (Kabata-Pendias and 
Pendias, 2001), and coarse particle size negatively influences soil 
nutrient retention capacity (Brady and Weil, 2014). 

The additive SQI (SQI-A) based on the MDS determined by PCA was 
finally expressed as follows: 

SQI − APCA = (STOC + SFeF + SMnX + SpH + SEC + SCS)/6 (8)  

where S denotes the linear or non-linear score of the indicator shown. 
The SQI-ALPCA and SQI-ANLPCA were obtained for each soil by 

substituting the linear and non-linear scores in Equation (8). 
The SQI integrated by weights (SQI-W) from the MDS determined by 

PCA with the weights corresponding to each indicator (Table 6) was: 

SQI − WPCA =0.412STOC + 0.206SFeF + 0.138SMnX + 0.097SpH + 0.077SEC
+ 0.07SCS

(9) 

Once again, S denotes the linear or non-linear score of the indicator 
shown. The SQI-WLPCA and SQI-WNLPCA were obtained for each soil by 
substituting the corresponding scores in Equation (9). 

3.3.2. SQINTA 
The score of the MDS indicators GMEAN and phos generated from 

the network analysis was calculated according to “more is better” 
transformations, because they positively influenced soil quality (Ade
tunji et al., 2017; Paz-Ferreiro and Fu, 2016). In contrast, the “less is 
better” consideration was used for the indicator BD due to its negative 
relationship with soil organic matter (Li et al., 2019), and its increased 

Table 3 
Pearson’s bivariate correlations (*P < 0.05, **P < 0.01) and number of samples between the variables in bold in Table 2.  

Soil variables PC1 PC2 PC3 PC4 PC5 PC6  

TOC aryls GMEAN TOC/TN FeF FeX MnX FS pH EC Sand 

PC1 aryls 0.895**            
40           

GMEAN 0.920** 0.908**           
42 40          

TOC/TN 0.794** 0.601** 0.682**          
42 40 42         

PC2 FeF 0.054 0.187 0.175 0.078         
41 39 41 41        

FeX 0.032 0.183 0.159 0.057 0.997**        
41 39 41 41 41       

PC3 MnX 0.260 0.176 0.194 0.243 0.260 0.237       
38 36 38 38 38 38      

FS 0.234 0.128 0.157 0.093 − 0.110 − 0.087 0.480**      
42 40 42 42 41 41 38     

PC4 pH ¡0.486** ¡0.520** ¡0.570** − 0.289 − 0.199 − 0.187 − 0.128 0.107     
40 39 40 40 39 39 36 40    

PC5 EC 0.225 0.028 0.214 0.291 − 0.016 − 0.010 − 0.127 0.204 − 0.110    
41 39 41 41 40 40 37 41 39   

PC6 Sand − 0.121 − 0.221 − 0.218 − 0.040 ¡0.599** ¡0.590** 0.055 0.261 0.160 0.081   
39 37 39 39 38 38 35 39 37 38  

CS − 0.173 − 0.175 − 0.289 − 0.117 ¡0.591** ¡0.584** − 0.231 − 0.141 0.295 − 0.113 0.752**  
40 38 40 40 39 39 36 40 39 39 38  

Fig. 3. Graph of the network resulting from considering Pearson’s bivariate correlations (P < 0.05), Fruchterman Reingold layout. The modules identified by the 
Gephi software, M1, M2 and M3, are shown in different colours, green lines represent positive correlations and red lines represent negative correlations. 
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due to the use of agricultural machinery (Brady and Weil, 2014). 
The additive SQI (SQI-A) based on the MDS determined by network 

analysis finally presented the expression: 

SQI − ANTA = (SGMEAN + SBD + Sphos)/3 (10)  

where S denotes the linear or non-linear score of the indicator shown. 
The SQI-ALNTA and SQI-ANLNTA were obtained for each soil by 
substituting the corresponding scores in Equation (10). 

The SQI integrated by weights (SQI-W) from the MDS determined by 
network analysis with the weights corresponding to each indicator 
(Table 6) was: 

SQI − WNTA = 0.745SGMEAN + 0.133Sphos + 0.122SBD (11) 

Once again, S denotes the linear or non-linear score of the indicator 
shown. The SQI-WLNTA and SQI-WNLNTA were obtained for each soil by 
substituting the corresponding scores in Equation (11). 

3.4. Comparison of the SQI calculated by PCA and NTA 

3.4.1. SQI applied to the soils in the calibration set 
The SQI calculated from the PCA and using the additive integration 

SQI-ALPCA and SQI-ANLPCA showed significant differences between the 
forest and olive grove use (P < 0.05) (Fig. 4), without clearly differen
tiating the uses studied. In the case of integration by weights, the indices 
SQI-WLPCA and SQI-WNLPCA differentiated forest and cultivation uses (P 
< 0.05). 

The soil quality indices calculated from the MDS generated by 
network analysis (NTA) with the linear transformations (SQI-ANLNTA 
and SQI-WLNTA), and the soil quality index obtained by non-linear 
transformations and integrated by weights (SQI-WNLNTA), showed sig
nificant differences between the three uses (P < 0.05), with higher SQI 
values in the forest use, followed by the rainfed and finally the olive 
grove use (Fig. 4). In contrast, the linear index integrated by addition 
(SQI-ALNTA) only had differences between agricultural and forest uses, 
with the latter showing the highest SQI scores (Fig. 4). Therefore, 75 % 
of the SQI obtained by NTA were capable of differentiating between the 
three soil uses studied, whereas no SQI-PCA showed these differences. 

3.4.2. SQI applied to the soils in the validation set 
In the case of SQIPCA, only the SQI-WNLPCA showed differences be

tween soil uses, and was sensitive to the differences between forest and 
agricultural uses (P < 0.05), while the other PCA-related SQI were not 
sensitive to use (P < 0.05) (Fig. 5). Among the SQINTA, SQI-ALNTA, SQI- 
WLNTA and SQI-WNLNTA were sensitive to the differences between forest 
and agricultural uses (P < 0.05) (Fig. 5). Therefore, 75 % of SQI-NTA 
could differentiate between agricultural (rainfed and olive grove) and 
forest uses, whereas this percentage fell to 25 % for SQI-PCA. 

4. Discussion 

The aim of this study was to verify the possibility of using network 
analysis to select the indicators that form soil quality indexes. To 
determine the suitability of this type of analysis for this task, the clas
sification of variables, indicators and SQI obtained by NTA were 
compared with those obtained by PCA, as this is the most widely used 
methodology in the determination of SQI. 

The PCA identified six indicators, in order of higher to less impor
tance considering the percentage of explained variance: TOC, FeF, MnX, 
pH, EC and CS. Total organic carbon has a capital role in soil quality due 
to its influence in a broad biological, physical and chemical soil prop
erties (Hamidi Nehrani et al., 2020), being one of the most used in
dicators (Bünemann et al., 2018; Zornoza et al., 2015). The free Fe 
oxides were inversely correlated with %CaCO3 (0.559; P < 0.01), this 
indicator would represent variations in the decarbonation-rubefaction 
processes between the studied soils, soils subject to a higher decarbon
ation would show higher concentrations of Fe oxides and vice versa 
(Loeppert, 1986). The rubefaction process would also be responsible for 
the positive relationship between the clay content and the FeF (0.419; P 
< 0.01) and MnX (0.323; P < 0.05), since these oxides can precipitate 
forming coatings on the clays (Sipos et al., 2019). The importance of 
MnX as indicators of soil quality would be due to the greater chemical 
reactivity and the greater nutrient retention capacity that they have with 
respect to Fe oxides (Chao and Theobald, 1976), in addition, Mn oxides 
influence stabilization-destabilization processes of soil organic matter 
(Li et al., 2021) being a critical component in the decomposition of plant 
remains, especially those rich in lignin (Keiluweit et al., 2015; Li et al., 

Table 4 
Soil variables belonging to the modules identified with the Gephi software and their respective eigencentrality values. The variables with eigencentrality in the range 
between the maximum eigencentrality value minus 10% are shown in bold, and from among these variables the variables selected finally for the MDSNTA are in italics.  

Modules 

M1 M2 

Soil variables Eigencentrality Weighted degree Soil variables Eigencentrality Weighted degree 

GMEAN 1  12.54 BD 0.9140 − 9.00 
TOC 1  12.32 ure 0.5526 3.63 
bglu 1  11.53 MnA 0.2217 1.82 
aryls 1  11.15 FeF 0.2161 1.93 
pac 1  10.60 FeA 0.2101 1.16 
nag 1  9.65 MnF 0.1785 1.97 
TN 0.9853  10.20 FeX 0.1697 1.55 
Chw 0.9809  10.51 Silt 0.1518 − 1.20 
aglu 0.9707  10.82 Clay 0.0446 0.28 
pak 0.9707  10.52 MnX 0.0438 1.68 
TOC/TN 0.9662  9.62    
aryln 0.9537  8.24    
WHC 0.8959  5.60 M3 

Ccw 0.8483  7.75 Soil variables Eigencentrality Weighted degree 

dh 0.8477  9.07 phos 0.9139 8.57 
Nhw 0.7833  7.28 Ncw 0.8451 6.42 
Ninor 0.7557  6.65 pH 0.6682 − 5.74 
%CaCO3 0.3087  − 1.83 AF 0.2743 1.46 
Sand 0.1208  − 2.71 EC 0.1961 1.74 
AG 0.1157  − 3.33 Pav 0.0451 0.42  
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Table 5 
Pearson’s bivariate correlations (*P < 0.05, **P < 0.01) between the variables in bold in Table 4.  

Soil variables M1 M2 M3  

GMEAN TOC bglu aryls pac nag TN Chw aglu pak TOC/TN aryln BD phos 

M1 TOC 0.920**              
42              

bglu 0.908** 0.891**             
40 40             

aryls 0.908** 0.895** 0.861**            
40 40 39            

pac 0.887** 0.838** 0.781** 0.821**           
42 42 40 40           

nag 0.841** 0.768** 0.740** 0.791** 0.653**          
40 40 39 40 40          

TN 0.816** 0.860** 0.651** 0.788** 0.677** 0.667**         
38 38 36 37 38 37         

Chw 0.739** 0.730** 0.755** 0.635** 0.633** 0.551** 0.605**        
42 42 40 40 42 40 38        

aglu 0.852** 0.821** 0.796** 0.801** 0.685** 0.721** 0.723** 0.726**       
42 42 40 40 42 40 38 42       

pak 0.853** 0.818** 0.732** 0.659** 0.756** 0.579** 0.658** 0.694** 0.804**      
42 42 40 40 42 40 38 42 42      

TOC/TN 0.682** 0.794** 0.664** 0.601** 0.534** 0.503** 0.506** 0.531** 0.695** 0.693**     
42 42 40 40 42 40 38 42 42 42     

aryln 0.646** 0.559** 0.688** 0.600** 0.482** 0.483** 0.516** 0.710** 0.708** 0.481** 0.408**    
39 39 38 38 39 38 36 39 39 39 39    

M2 BD ¡0.544** ¡0.513** ¡0.530** ¡0.537** ¡0.478** ¡0.338* ¡0.650** ¡0.513** ¡0.582** ¡0.575** ¡0.315* ¡0.495**   
41 41 39 40 41 40 38 41 41 41 41 39   

M3 phos 0.661** 0.497** 0.557** 0.382* 0.380* 0.465** 0.488** 0.500** 0.651** 0.670** 0.377* 0.649** ¡0.531**  
36 36 36 36 36 36 35 36 36 36 36 35 36  

Ncw 0.439** 0.491** 0.448** 0.400* 0.388* 0.319* 0.398* 0.473** 0.579** 0.592** 0.315* 0.453** ¡0.485** 0.697** 
42 42 40 40 42 40 38 42 42 42 42 39 41 36  
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2021). Soil pH is one of the most widely used indicators in soil quality 
studies (Andrés-Abellán et al., 2019; Bünemann et al., 2018; Gómez 
et al., 2009; Paz-Kagan et al., 2016; Rahmanipour et al., 2014). The 
natural soils in this study showed more acidic pH values than the agri
cultural soils (P < 0.05), possibly due to their greater vegetation cover 
and/or the mixture of superficial horizons with deeper ones in the soils 
dedicated to cultivation due to agricultural practices (Rahmanipour 
et al., 2014). In the study soils, EC would represent soluble forms of 
nutrients as reflected by its positive correlations with Ncw (0.429; P <
0.01) and Chw (0.321; P < 0.05). The influence of electrical conduc
tivity on soil quality has been referred to by other authors (Jahany and 
Rezapour, 2020; Paz-Kagan et al., 2016; Rezapour et al., 2015), identi
fying a decrease in soil quality with lower electrical conductivity values. 
Zhang and Hou (2012) and Rezapour (2014) relate the presence of 
coarse sand with lower quality soils by affecting the ability of soils to 
retain nutrients and accelerating erosion processes. In this study, the 
percentages of coarse sand were negatively correlated with the per
centages of clays (− 0.550; P < 0.01) and silts (− 0.351; P < 0.05), with 
the concentrations of oxides: MnA (− 0.573; P < 0.01), MnF (− 0.609; P 
< 0.01), FeA (− 0.362; P < 0.05); FeF (− 0.591; P < 0.01), FeX (− 0.584; 
P < 0.01); and with urease enzymatic activity (− 0.481; P < 0.01), so this 
indicator would provide the SQI with information about soil texture. 

The NTA identified three indicators, GMEAN, BD and phos, and 
reduced the number of indicators compared to those selected by PCA by 
50 %. GMEAN is an index capable of condensing the information on 
enzyme activities into a single value (García-Ruiz et al., 2008; Paz- 
Ferreiro et al., 2012; Wang et al., 2012). This capacity for condensa
tion was seen in this study in the positive and significant correlations (p 
< 0.001) between GMEAN and all the enzyme activities determined. BD 
is a key variable in soil functioning (Gajda et al., 2016) that is widely 
used as a soil quality indicator (Bünemann et al., 2018), and is related 
with other physical, chemical and biological variables (Al-Shammary 
et al., 2018). It is particularly worth noting the relation it tends to 
present with organic matter (Heuscher et al., 2005; Topa et al., 2021). 
Indeed, in the soils in this study, BD was negatively correlated with TOC 
(-0.513; P < 0.001), TN (-0.650; P < 0.001), Cws (-0.502; P < 0.001), 
Nws (-0.485; P < 0.01), Chw (0.513; P < 0.001) and Nhw (-0.337; P <
0.05). These relations explain the greater BD of agricultural soils 
compared to forest soils, as they are affected by losses in organic matter 
content due to oxidation caused by ploughing and due to processes of 
compaction by agricultural machinery (Havaee et al., 2014; Khormali 
et al., 2009). Enzyme activities can act as soil quality indicators, and can 
be affected either by pollutants or other anthropic factors (Rao et al., 
2014); they also fulfil most of the criteria required in a good indicator, as 
they are representative of a soil function, operative, integrative, easy to 
measure and sensitive to soil handling and structure (Adetunji et al., 
2017). Among all enzyme activities, phosphatase activity has been 
identified as one of the most sensitive to soil use and to the soil organic 
matter content. It is characteristic of this activity to be suppressed by the 
use of inorganic P fertilizers (Caravaca et al., 2002; Janes-Bassett et al., 
2022; Zhang et al., 2018; Zornoza et al., 2007), therefore, it is an 
especially useful parameter for differentiating between land uses. 
Phosphatase activity has been established as indicator of soil quality in 

several studies (Puglisi et al., 2006; Zornoza et al., 2008, Zornoza et al., 
2007), being a variable usually selected to create the SQI (Andrés- 
Abellán et al., 2019; Zhou et al., 2020). This study highlights the ca
pacity of enzyme activities, except for urease activity, as indicators of 
use, as they were higher in the forest use and lower in agricultural soils 
due to their lower levels of organic matter. Phosphatase activity showed 
the highest activity in this study, and the widest variation between the 
three uses studied; it was also the enzyme activity that revealed the 
greatest difference between rainfed and olive grove uses, probably due 
to the different management in these soils in terms of the use of fertil
izers. In view of this, the indicators selected by NTA in this study were 
representative of soil processes involved in soil quality, specifically 
related with the organic matter dynamic within the different soil uses 
studied. 

As shown in the results, the ordination of the variables into modules 
in the NTA was similar to that obtained in the PCA, and indicated that 
the most important variables in these soils are organic matter and 
enzyme activity, followed by inorganic colloids in the soil. This relation 
between NTA and PCA is not a result of chance, as both analyses are 
based on the use of the same correlation matrix. Therefore, the NTA and 
the algorithm used to determine the modules in this study have 
demonstrated their capacity to identify edaphological characteristics of 
the variables. 

Four SQI were calculated based on the indicators selected by NTA 
and used both for soils in the calibration set and for soils in the vali
dation set; their capacity to differentiate uses was then compared with 
that of the SQI obtained by PCA (Figs. 4 and 5). The greatest capacity 
was observed in the SQINTA, which were the only SQI capable of 
differentiating between the three uses for the calibration set; they also 
had a greater capacity than the SQIPCA for differentiating between 
agricultural (rainfed and olive grove) and forest uses for the verification 
set, possibly because the indicators selected by NTA better reflected the 
differences between uses. All the indicators selected by NTA showed 
significant differences between agricultural and forest uses, whereas of 
the indicators selected by PCA (TOC, FeF, MnX, pH, EC and CS), only 
33.3 % (TOC and pH) revealed differences between these uses. Values of 
SQINTA and SQIPCA obtained in this study indicated that forest soils have 
higher SQI values than permanent croplands which agrees with the re
sults of other authors (Marzaioli et al., 2010; Rezapour, 2014). 

Based on these considerations, in this study NTA was used to 
generate a series of SQI that represent the quality of the soils studied, 
with a lower number of indicators than the SQIPCA and a better differ
entiation capacity than the SQIPCA when applied to both the soils in the 
calibration set and the soils in the verification set. To judge from the 
results obtained, we believe that network analysis may be useful for both 
the study of soil quality and in other areas of soil science and offers an 
analytical tool that should be explored in future research. 

5. Conclusions 

In this study, assuming that different land uses generate soils with 
different qualities, the ability to select soil quality indicators through 
network analysis (NTA) that form a minimum data set (MDS) with which 

Table 6 
Summary of the indicators selected for the MDS with PCA and the weights used to calculate the SQI-WPCA and summary of the indicators selected for the MDS with 
NTA, and the weights used to calculate the SQI-WNTA.  

Indicators PC related PC variance (%) Weight (Wi) Indicators Module related Module eigencentrality Weight (Wi) 

TOC 1  32.76  0.412 GMEAN 1  16.5  0.745 
FeF 2  16.4  0.206 BD 2  2.70  0.122 
MnX 3  10.96  0.138 phos 3  2.94  0.133 
pH 4  7.68  0.097     
EC 5  6.15  0.077     
CS 6  5.57  0.070      
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Fig. 4. Soil quality index (SQI) scores for rainfed, olive grove and forest soil uses applied to calibration set and calculated from the minimum data set (MDS) selected 
by principal component analysis (PCA) and network analysis (NTA), with linear (L) or non-linear scores (NL) and with additive integration (A) or integration by 
weights (W). Letters indicate significant differences (P < 0.05) between uses by one-way ANOVA. 

J.P. Martín-Sanz et al.                                                                                                                                                                                                                         



Ecological Indicators 143 (2022) 109374

12

Fig. 5. Soil quality index (SQI) scores for rainfed, olive grove and forest uses applied to verification set and calculated from the minimum data set (MDS) selected by 
principal component analysis (PCA) and network analysis (NTA), with linear (L) or non-linear scores (NL) and with additive integration (A) or integration by weights 
(W). Letters indicate significant differences (P < 0.05) between uses by one-way ANOVA. 
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to calculate soil quality indices (SQI) capable of differentiating soil 
quality has been evaluated. To achieve this, carbonated soils with three 
different land uses (rainfed, olive grove and forest) were analysed and 
the results obtained by NTA were compared with those obtained by 
principal component analysis (PCA), which is the method commonly 
used to calculate the SQI. 

NTA has allowed obtaining a MDS with fewer indicators than the one 
obtained by PCA. The indicators selected by NTA better reflected the 
differences between land uses. This caused the SQI obtained by NTA to 
be more useful than those obtained by PCA by better differentiating 
between the land uses studied in the carbonated soils studied. The study 
showed differences in the quality of agricultural soils (rainfed and olive 
groves) compared to the surrounding natural soils. We believe that the 
NTA may be useful in future soil quality studies and in other types of 
edaphological studies. 
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