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Abstract
Developing population models for assessing risks to terrestrial plant species listed as threatened or endangered under the

Endangered Species Act (ESA) is challenging given a paucity of data on their life histories. The purpose of this study was to
develop a novel approach for identifying relatively data‐rich nonlisted species that could serve as representatives for species
listed under the ESA in the development of population models to inform risk assessments. We used the USDA PLANTS
Database, which provides data on plants present in the US territories, to create a list of herbaceous plants. A total of 8742
species was obtained, of which 344 were listed under the ESA. Using the most up‐to‐date phylogeny for vascular plants in
combination with a database of matrix population models for plants (COMPADRE) and cluster analyses, we investigated how
listed species were distributed across the plant phylogeny, grouped listed and nonlisted species according to their
life history, and identified the traits distinguishing the clusters. We performed elasticity analyses to determine the relative
sensitivity of population growth rate to perturbations of species' survival, growth, and reproduction and compared these
across clusters and between listed and nonlisted species. We found that listed species were distributed widely across
the plant phylogeny as well as clusters, suggesting that listed species do not share a common evolution or life‐history
characteristics that would make them uniquely vulnerable. Lifespan and age at maturity were more important for dis-
tinguishing clusters than were reproductive traits. For clusters that were intermediate in their lifespan, listed and nonlisted
species responded similarly to perturbations of their life histories. However, for clusters at either extreme of lifespan, the
response to survival perturbations varied depending on conservation status. These results can be used to guide the choice of
representative species for population model development in the context of ecological risk assessment. Integr Environ Assess
Manag 2023;19:213–223. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley
Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
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INTRODUCTION
Plant biodiversity is characterized by a great deal of life‐

history variation. It is estimated that 15 447 vascular plant
species occur in continental Canada and the United States,
and 10 636 species are considered restricted to this geo-
graphical realm (Ulloa et al., 2017). The United States
Department of Agriculture (USDA) PLANTS Database, which
includes standardized information about the vascular plants,

mosses, liverworts, hornworts, and lichens of the US and its
territories, estimates that US flora, including Hawaii, Puerto
Rico, and the Virgin Islands, contains 8742 species of her-
baceous plants (USDA, NRCS, 2019). This plant richness
represents several growth forms and life histories across the
country. Out of that pool of species, 816 plant species
are classified as threatened or endangered according to the
US Endangered Species Act (ESA; https://ecos.fws.gov/
ecp0/reports/ad-hoc-species-report?kingdom=P&status=
E&status=T&status=EmE&status=EmT&status=EXPE&
status=EXPN&status=SAE&status=SAT&fcrithab=on&
fstatus=on&fspecrule=on&finvpop=on&fgroup=on&
ffamily=on&header=Listed+Plants, last accessed June 5,
2019) from here on referred to as “listed.” A vast majority of
terrestrial listed species are herbaceous and exhibit poten-
tial spatial overlap with some agricultural crops or grow near
agricultural lands. To comply with the ESA, pesticide
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registration in the United States under the Federal In-
secticide, Fungicide, and Rodenticide Act (FIFRA;
NRC, 2013) requires an evaluation of the potential risks
posed to these listed species and their critical habitats. To
facilitate this process, population models have been rec-
ommended as novel tools that integrate relevant pesticide
exposure and life history data into a quantitative risk eval-
uation process (NRC, 2013).
Currently, there is only a handful of listed plant species

population models, and these have mostly been applied to
assess the impacts of habitat loss (Floy & Ranker, 1998; Rae &
Ebert, 2002), and other natural stressors (e.g., fire and
flood hazard; Kaye et al., 2001; Regan et al., 2010; Smith
et al., 2005). Notably, a smaller set of models has been de-
veloped and applied to assess potential risks to plants from
pesticide exposures (e.g., Crone et al., 2009; Schmolke, Brain,
et al., 2017; Schmolke, Kapo, et al., 2017; Schmolke, Brain,
et al., 2018; Schmolke, Roy, et al., 2018; Reeg et al., 2017;
Reeg, Heine, Mihan, McGee, et al., 2018; Reeg, Heine,
Mihan, Preuss, et al., 2018), yet the development of pop-
ulation models for listed plant species is still lacking (Forbes
et al., 2016). The major limitation for model development is
the scarcity of essential information regarding the biology and
natural history of listed species, thus limiting the use of pop-
ulation models for listed species risk assessments as recom-
mended by the National Research Council (NRC, 2013).
Furthermore, legal restrictions prevent data collection and
experimentation on listed species (Forbes et al., 2015).
However, both threatened and nonthreatened plants are im-
pacted by the same factors (agriculture being one of the most
important; IUCN Red List 2016). A recent study has shown
that population growth rates of listed and nonlisted plants
exhibit similar responses to perturbations of their life‐history
traits (Rueda‐Cediel et al., 2019). This raises the possibility of
identifying representative species for the development of
population models based on data‐rich nonlisted species to
infer and assess risk to data‐poor listed species, like the
“Robin Hood” approach for fish stock assessment (Punt
et al., 2011). Given that it would not be feasible to develop
unique population models for every single species, being able
to identify a handful of representative species having sufficient
data for modeling and that could represent broader groups of
species is a practical way to proceed.
A better understanding of the similarities and differences

in responses of listed and nonlisted species to perturbations
(i.e., from pesticides and other human impacts) would
facilitate the identification of representative species for
modeling and inform both assessments of risks and choice
of effective management options. In this study, we used
ordination and phylogenetic analyses across terrestrial her-
baceous plants of different conservation statuses to char-
acterize their demography and vulnerability to stressors
that can potentially impact their survival, growth, or re-
production. The goal was to use these analyses to inform
the selection of data‐rich, nonlisted species that could po-
tentially be used as representative species for population
modeling in the context of pesticide risk assessment.

METHODS

General approach

We first distinguished US‐listed and nonlisted herbaceous
plants. We then determined for which of these species a
matrix population model was available, and we used it to
extract life‐history traits for each species. Using the ex-
tracted life‐history traits we developed a hierarchical cluster
to characterize similarities and differences within and across
clusters and identified possible representative species for
pesticide risk assessment. Since most of the published
population models for plants use a matrix model structure
(Crone et al., 2011)—and since there is a comprehensive
database of matrix population models for plants
(COMPADRE; Salguero‐Gómez et al., 2014)—we limited
our analysis to matrix population models. Currently, in
COMPADRE there are matrices for 36 US‐listed herbaceous
species and 58 nonlisted herbaceous species, which have
been modeled for conservation or theoretical purposes
(Salguero‐Gómez et al., 2014). We performed elasticity
analyses to estimate the effect of changes in various matrix
elements (e.g., related to survival, growth, or fertility) on the
asymptotic population growth rate (Caswell, 2001). In ad-
dition, we used the most up‐to‐date phylogeny for vascular
plants (Smith & Brown, 2018) in combination with the
COMPADRE database to determine how listed species,
for which matrix population models are available, are
distributed in the vascular plant phylogeny.

Matrix population models for US herbaceous plants
distributed phylogenetically

Data for herbaceous plants present in the United States,
including Alaska, Puerto Rico, Hawaii, and the Virgin Islands,
were downloaded from the USDA PLANTS Database
(https://plants.sc.egov.usda.gov/java/, last accessed Sep-
tember 11, 2019). Subspecies, varieties, hybrids, and in-
complete species were excluded from the data selection.
We limited our sample to herbaceous species because this
type of growth form tends to occur in proximity to agricul-
tural crops. Only species that reported growth form, par-
ticularly forbs and herbs as the most frequent option, were
selected. Species names were revised using the R package
Taxonstand to retrieve the accepted scientific names ac-
cording to The Plant List version 1.1 (http://www.theplantlist.
org/). A total of 8742 species was obtained, out of which 344
species were listed under the ESA. Of the total pool of
species, 86 were present in the COMPADRE database
v.6.20.6.0, and 31 species were both listed and present in
the COMPADRE database. We used the most up‐to‐date
plant phylogeny (hereafter SB‐tree; Smith & Brown, 2018) to
map the availability of matrix population models for herba-
ceous species in the United States. To do so, the SB‐tree
was trimmed to include only the species sampled from the
USDA PLANTS Database. Following Pinto‐Ledezma et al.
(2020), missing species in the SB‐tree were added using
taxonomic constraints in other words, missing species were
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added as terminal branches at the midpoint of their sister
lineages.

Extraction of life‐history traits from transition matrices

Projection matrices for herbaceous plants were collected
from the COMPADRE database version 6.20.6.0. We
used data entries that fulfilled the following conditions:
(1) unmanipulated matrices or matrices that refer to natural
conditions; (2) matrices that were decomposed in their sur-
vival and sexual reproduction components according to
Caswell (2001) = +A T F , where A is the projection matrix
that can be decomposed in the transition matrix, T , which
includes survival, and the reproduction matrix, F , which in-
cludes sexual reproduction; (3) study duration of at least one
year; (4) matrices with an annual periodicity; (5) studies that
classified individuals based on their developmental stage or
size; (6) matrices made from either the arithmetic mean of
the element for several periods available, or pooled
individual‐level data across populations and/or periods or
from data for single study‐species‐treatment‐period combi-
nation; (7) matrix dimensions of at least 2 × 2 stages; (8)
survival issue <1.05; this refers to the tolerable level of error
for survival estimates (e.g., they should not add up to
>1.05); and (9) irreducible matrices (i.e., matrices in which all
stages are connected and contribute to any other stage).
These conditions were set following the definitions of the
COMPADRE User Guide (COMPADRE Plant Matrix Data-
base, 2019). A total of 77 species, including 22 listed spe-
cies, were obtained once all conditions were applied.
The projection matrices for each species were used to

calculate the population growth rate (λ) and six demo-
graphic traits (longevity, Lmax, survivorship curve type, H,
age at first reproduction, αL , mean life expectancy, Lmean,
degree of iteroparity, S, and net reproductive rate, Ro).
These traits were calculated using the Markov Chain
Decomposition method where the time spent in each stage
(N matrix) can be estimated from the T matrix, which also
allows calculation of the life‐table elements, survivorship ( )lx
and fertility ( )mx (Caswell, 2001). For this, we used the
R package Rage (Jones & Salguero‐Gómez, 2020) that ap-
plies Caswell's methods to calculate age‐specific traits from
stage‐specific models. Specifically, with the survivorship
schedule, Lmax, the age at which survivorship drops to a
critical point (0.01 default value) and Lmean were calculated.
Survivorship is the cumulative probability of surviving to a
given age. When plotted on a log scale, three types of
curves are observed; I (concave, with >H 1), II (a straight
line, with =H 1), and III (convex, with <H 1). This was
calculated with the following equation:

=
− ( )

Σ
H

l l
l

log x x

x
(1)

The net reproductive rate was calculated as the dominant ei-
genvalueR , which is the product of the matricesF andN. The
degree of iteroparity (S ), which describes the frequency of
sexual reproductive events, was calculated with the following

equation. According to Salguero‐Gómez et al. (2016), values
of ≈S 0 correspond to highly semelparous species, and high
values ( ≫S 0) imply a high degree of iteroparity.

= − ( )λ λ−S e l m e l mlogx x x x
log log (2)

Once the six traits were calculated and compiled, the data
were normalized by applying the following transformation:

=
− ( )

( ) − ( )
y

y min y

y min y
i i

i i
normalized (3)

where i represents a given trait, y represents the value of the
trait and min refers to the minimum value of the trait.

Cluster analysis for US herbaceous plants

A hierarchical cluster analysis was performed with the
trait data for 77 plant species from COMPADRE using
the Bray–Curtis association distance coefficient matrix and
the average linkage method (i.e., unweighted pair group
method with arithmetic mean [UPGMA]). The choice of the
cutting level in the dendrogram was determined by com-
paring cluster estimates generated from K‐means, which
minimizes the within‐cluster variance and maximizes the
between‐cluster variance (Everitt & Hothorn, 2011). The
cluster analysis and the estimation of the cutting level were
performed using the R packages vegan and cluster, re-
spectively. Once the desired number of clusters was de-
termined, a cutting point of 0.3 was established in the
hierarchical cluster. A permutational multivariate analysis of
variance (PERMANOVA) was conducted across the clusters
obtained from the hierarchical clustering to quantify stat-
istical differences between each cluster. To visualize which
traits dominated in each cluster, a principal components
analysis (PCA) was performed including the trait data for the
evaluated species.

Phylogenetic signal in demographic traits

We evaluated the phylogenetic signal in the six demo-
graphic traits using Pagel's λ (Pagel, 1999) under a Bayesian
framework. Under Pagel's λ, traits evolve following a Brow-
nian Motion (BM) model, that is, species trait values change
randomly over evolutionary time. Values of Pagel's λ range
from 0 (indicating phylogenetic independence or no phy-
logenetic signal) to 1, suggesting that traits evolved ac-
cording to a BM model (phylogenetic dependence or
phylogenetic signal). To estimate Pagel's λ, we ran Markov
Chain Monte Carlo (MCMC) chains for 1 million generations
and discarded 20% of the samples as burn‐ins in the
R package motmot (Thomas & Freckleton, 2012). Con-
vergence in the parameter estimate was assessed using
Effective Sample Size (ESS). An ESS higher than 200 in-
dicates that chains converged.

Elasticity analysis across clusters

Elasticities were estimated as a proportional response
of the population growth rate to a proportional change in
each matrix element (Caswell, 2001). This analysis provides
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indications of the effect of a small change in each matrix
element on the population growth rate. Elasticities were
calculated using the R package Popbio (Stubben & Mil-
ligan, 2007) and Equation (4). Where eij denotes each elas-
ticity element corresponding to the transition matrix
element aij where the subindices ij refer to the matrix row
and column, λ is the population growth rate, and ∂ indicates
a partial derivative.

∂

∂λ

λ
=e

a

a
ij

ij

ij
(4)

We calculated elasticities for each species that was included
in the cluster analysis. Then we added up matrix elasticity
elements for the processes of survival, growth, and re-
production, and compared them using density plots, which
smooth the distribution of elasticity values across clusters.
Elasticity comparisons were limited to the species belonging
to Clusters 1–3, as the remaining clusters had too few
species for a robust comparison.

RESULTS

Existing population models for US herbaceous plants
distributed phylogenetically

Overall, the phylogeny of US herbaceous species in-
cluded 160 families; of those, 62 families contained listed
species, 30 families contained species from COMPADRE,
and 17 families contained species that were both present in
COMPADRE and listed (Figures 1, S1). Listed species were
widely and evenly distributed across the phylogeny. Listed
species were more numerous across the following families:
Compositae (3.26%), Brassicaceae (8.59%), Thelypter-
idaceae (6.56%), Malvaceae (8.96%), Dryopteridaceae
(7.32%), Crassulaceae (12.33%), Asparagaceae (4.17%), and
Apocynaceae (4.71%), compared to the rest of the clades
(Figure S1). The numbers within brackets next to each family
correspond to the percentage of listed species within that
family. In contrast, species included in COMPADRE were
less evenly distributed in the phylogeny; for instance, sev-
eral listed species belonging to the families Brassicaceae
and Limnanthaceae did not have a matrix model in COM-
PADRE (SI 1). In general, the number of species studied
within each family that have a population model currently
included in COMPADRE is low (i.e., ranging from 1 species
in 15 Families to 11 species in 1 Family).

Phylogenetic signal in demographic traits

We evaluated whether demographic traits present a
phylogenetic signal or evolved independently of the phy-
logeny. We found that for most traits the phylogenetic
signal had intermediate Pagel's λ values between about
0.2 and 0.3 (Table 1). Pagel's λ was lowest for Lα; the median
of the posterior distribution (η) was 0.17 (0.00:0.38, 95%
credible intervals [CI]) and highest forRo; η= 0.97 (0.71:0.99,
95% credible intervals [CI]).

Cluster analysis for herbaceous species

The hierarchical cluster analysis for the 77 species that
fulfilled the selection criteria generated 10 clusters that
represent 30 families. Among the clusters generated, sig-
nificant differences were observed between Clusters 1 and
2, 1 and 3, 2 and 3, and 2 and (Figures 2, S2). Of those
significantly different pairs, all clusters included listed spe-
cies except for Cluster 5, which did not include any listed
species. Most listed species were included in Cluster 2
(11 species), which was also the cluster with the largest
number of species (38 species total and 13 species each
from a different family; Figures 2, S3). Cluster 6, though not
significantly different from any other cluster (SI 2), included
two listed species (Gilia tenuiflora hoffmannii and Mala-
chothrix indecora; Figure 2).

The PCA showed that the first three principal components
explained 81.1% of the total variance in our dataset (PC1=
47.8%, PC2= 21%, PC3= 12.3%; SI 4). The four significantly
different clusters, that is, Clusters 1–3, and 5, observed in
the cluster analysis, as well as Cluster 6, were aligned over
the first component (Figures 3, S2). The loadings of this
component were highest for αL , Lmax, and Lmean, indicating
that the clusters falling along PC1 are ordinated according
to the values of αL ,Lmax, and Lmean (specifically, Cluster 5>
Cluster 1>Cluster 2>Cluster 3) (SI 4). This arrangement of
traits describes the continuum of the pace of life, where at
one extreme are long‐lived species that reproduce late in
life (Clusters 5 and 1), followed by species with intermediate
traits (Cluster 2), and at the other extreme short‐lived spe-
cies that reproduce early in life (Cluster 3). Clusters 1–3 and
5 did not vary across PC2. This component exhibited
high loadings for Ro and S , which were negatively corre-
lated. In general, the species in these clusters exhibit similar
values for Ro (Ro < 20) and S ( =S 1.5, 0.9, 0.3, 1.7), whereas,
Clusters 7–10, although not significantly different in the
PERMANOVA (SI 2), were widely distributed across the
second component. S was highest in Cluster 7>Cluster 9>
Cluster 6>Cluster 10>Cluster 8 (S range= [−2,11.5]) and
Ro was highest in Cluster 10>Cluster 8>Cluster 9>Cluster
6>Cluster 7 ( = [ ])R range 1839o . The third component was
driven by the survivorship in which only Clusters 2 and 3 and
some species of Cluster 1 differed.

Elasticity analysis across clusters

In general, elasticity values for the three processes ana-
lyzed were similar between listed and nonlisted species only
in Cluster 2, where species exhibited low variability in each
of the elasticity metrics (Figure 4). In this cluster, survival
(Figure 4A,D) and growth (Figure 4B,E) elasticity values were
~0.4 (SI 5) and fertility elasticity values (Figure 4C,F) were
~0.2 for plants of different conservation statuses (SI 5).
Marked differences in elasticities between listed and non-
listed species were observed in Cluster 3. For example, in
Cluster 3 survival elasticity was overall lower in nonlisted
species than in listed species (~0.1 vs. ~0.7; Figure 4A,D;
the same pattern was observed when the median values

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam
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were calculated SI 5) with Aeschynomene virginica ex-
hibiting the largest survival elasticity (0.8), followed by Hel-
enium virginicum (0.6), and Phacelia insularis (0.5) (SI 6G,I).
Growth and fertility elasticities were higher in nonlisted
species than in listed species for Cluster 3 (Figures 4B,C,E,
F, S5). Among the listed species, growth elasticity was
highest in Lupinus tidestromii and fertility elasticity was
highest in Phacelia insularis and Polygonella basiramia
(SI ,6e, h, i). These marked differences contributed to the

high variability in the elasticity values in Cluster 3. In Cluster
1, survival elasticity was higher overall and more variable in
nonlisted species than in listed species (~0.6 vs. 0.3), but the
general pattern was similar for plants of different con-
servation statuses where survival and growth elasticity were
higher than fertility elasticity (Figures 4A, S5).
Survival elasticities for nonlisted species differed among

the three clusters. In Cluster 1, most species exhibited high
elasticity values, species in Cluster 2 exhibited intermediate

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.DOI: 10.1002/ieam.4615

FIGURE 1 Phylogeny of listed species. Smith and Brown (2018) phylogeny was trimmed to include listed species and species present in COMPADRE. Red
indicates the presence in the list of species listed under the Endangered Species Act (ESA). Green indicates the presence in the COMPADRE database
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values, and species in Cluster 3 exhibited the lowest values
of survival elasticity (Figures 4A, S5). Survival elasticities for
listed species across clusters were similar between Clusters
1 and 2 (SI 5; two peaks emerged, at ~0.3 and ~0.75;
Figure 4D). Listed species from Cluster 3 spanned a wide
range of elasticity values (0.1, 0.81) but most species ex-
hibited elasticity values around 0.75 (Figure 4D).
Growth elasticities for nonlisted species were highest in

Cluster 3 (~0.5), followed by Cluster 2 (~0.4) and Cluster 1
(~0.2) (Figures 4B, S5). In listed species, the pattern was

different, where Cluster 2 had the highest elasticity
(~0.4), followed by Cluster 1 (~0.3) and Cluster 3 (~0.2)
(Figures 4E, S5).

Fertility elasticities in nonlisted species were highest in
Cluster 3 (~0.4), followed by Cluster 2 (~0.2) and Cluster 1
(~0.1) (Figures 4C, S5). In listed species, fertility elasticities
were low in the three clusters (~0.2). Clusters 2 and 1 were
similar and slightly higher than elasticities in Cluster 3
(Figures 4C, S5).

DISCUSSION
Our analysis showed that even with few matrix population

models available for listed plant species, comparisons of
life‐history traits and elasticities can identify patterns that
may help to understand why some species are more sus-
ceptible to perturbations (e.g., from herbicide exposure)
than others. Such analyses may inform the future selection
of representative species for population modeling in the
context of pesticide risk assessment. Among our limited
sample of species, some clear differences were observed in
their age at first reproduction and longevity (Cluster 1 or
“long‐lived”>Cluster 2 or “intermediate”>Cluster 3 or
“short‐lived”) but not in their reproductive output. We found
that most of the traits showed a moderate phylogenetic
signal, indicating that close relatives are somewhat more
similar in trait values than distant relatives. The exception to
this was for Ro, which had a very high phylogenetic
signal, indicating that closely related species are much more
similar for this trait than more distantly related species

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam

TABLE 1 Phylogenetic signal in demographic traits of vascular
plants in the United States

Trait λ Lower 95% HPD Upper 95% HPD ESS

Ro 0.97 0.71 0.99 56 281

Lmax 0.22 0.01 0.44 213 040

H 0.23 0.00 0.51 242 091

Lmean 0.29 0.05 0.52 244 834

L⍺ 0.17 0.00 0.39 173 487

S 0.26 0.00 0.57 294 477

Note: Phylogenetic signal was estimated using Pagel's λ under a Bayesian
framework. Reported λ values represent the median values obtained from the
posterior distribution.
Abbreviations: ESS, effective sample size; HPD, highest posterior density
interval.

FIGURE 2 Hierarchical cluster. Hierarchical cluster based on six life‐cycle traits using the Bray–Curtis association distance coefficient and the average linkage
method. Traits were normalized with Equation 3. The cutting point for the cluster development was 0.3. Color numbers represent the cluster identity; in total 10
clusters were formed. Red asterisk highlights the listed species. Seventy‐seven plant species in total and 22 listed species are shown
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(Molina‐Venegas & Rodriguez, 2017). The reasons for this
are not entirely clear, and though beyond the scope of the
present study, this result deserves further exploration. The
fact that we observed relatively low variability in Ro among
clusters may have influenced this result. Additionally, we did
not include a trait related to seed dispersal as this trait is not
included in the COMPADRE database. Since widespread
seed dispersal would likely reduce extinction risk, adding
this trait to future analyses could improve species vulner-
ability assessments.
Our elasticity analysis showed that fertility elasticities were

generally lower than survival or growth elasticities, which is
consistent with other studies (Pfister, 1998; Rueda‐Cediel
et al., 2019). Nonlisted and listed species in Cluster 2, which
occupy an intermediate position in the continuum of the
pace of life, exhibit greater similarity compared to species in
Clusters 1 (long‐lived species) and 3 (short‐lived species).
For this specific life‐history category, population models of
nonlisted species may be representative of listed species
and help to inform risk assessments and prioritize the
management of listed species. A good starting point to
identify representatives for listed species lacking detailed
demographic data could be to characterize ranges for the
traits that defined Cluster 2, for example, longevity and age
at first reproduction.
The substantial variability in the elasticity values ob-

served in Clusters 1 and 3 make it more challenging to
identify suitably representative species on this basis. One
approach could be to select species from the higher end

of the elasticity distributions. For example, among the
long‐lived species (Cluster 1), Minuartia obtusiloba and
Paronychia pulvinata exhibit the highest values of survival
elasticity. These species may provide a sensitive repre-
sentative for the species in this cluster when trying to
evaluate the potential effects of herbicides that target
plant survival.
The clusters are based on the demographic traits we

calculated. As explained above, the plant species in Clusters
1–3 differed in their longevity. For nonlisted species
(Figure 4A–C), differences among clusters in survival elas-
ticities are consistent with the literature with elasticity pos-
itively correlated with lifespan. Likewise, fertility elasticities
were greater in short‐lived than long‐lived species, but in all
clusters lower than survival elasticities. Again, this is con-
sistent with the literature. However, the listed species show
very different patterns (Figure 4D–F). Whether this is due to
the small sample size or some other feature of the listed
species is not clear at this time

Demographic data gaps across US plants: A phylogenetic
perspective

The homogeneous distribution of listed species across
the trimmed phylogeny reflects the multiple threats that
affect plant biodiversity (e.g., habitat fragmentation, cli-
mate change, and fire), which are not specific to any
taxonomic grouping. The less homogeneous distribution
of plant species with population models currently in
COMPADRE may reflect limited knowledge of plant life

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.DOI: 10.1002/ieam.4615

FIGURE 3 Principal component analysis biplot. Ordination of the species used in the hierarchical cluster (listed and nonlisted). Traits were normalized with
Equation (3). Different colors and shapes represent the cluster identity. Net reproductive rate (Ro), longevity (Lmax ), survivorship curve type (H ), mean life
expectancy (Lmean), age at first reproduction ( αL ), and degree of iteroparity ( )S
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history or specific research interest in plant demography
of certain families or species. Identification of these
data gaps may help guide researchers, managers, and
decision‐makers to select representative species or
families to study.
In terms of families, our data sample represents ~38% of

the plant families for angiosperms and gymnosperms
worldwide, and out of that, our sample of listed species
represents ~15% of families of plant species worldwide.
Although this is a relatively small percentage globally, the

United States has a proportionally high percentage of
species of conservation concern (Liu et al., 2019).

Cluster analysis for herbaceous species

The even distribution of listed species in the hierarchical
cluster suggests that there are no particular combinations of
life‐history traits that make it more likely that a species will
be listed. The similarity in life‐history traits between listed
and nonlisted species from different listing protocols has
been demonstrated (Rueda‐Cediel et al., 2019) and is

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam

(A) (B) (C)

(D) (E) (F)

FIGURE 4 Density plot of elasticities across clusters. Smoothed histograms of each grouped elasticity across Clusters 1–3 for both listed (dashed lines) and
nonlisted species (solid lines). The top row illustrates nonlisted species, and the bottom row shows listed species. Cluster 1 is pink, Cluster 2 is green, and
Cluster 3 is blue. Elasticity values are on the x‐axis. (A) Survival elasticity for nonlisted species. (B) Growth elasticity for nonlisted species. (C) Fertility elasticity for
nonlisted species. (D) Survival elasticity for listed species. (E) Growth elasticity for listed species. (F) Fertility elasticity for listed species. Peaks of the plots
indicate the value that has the highest frequency in the data set
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perhaps not surprising given the ambiguity of the listing
criteria in the ESA. Listing categories are typically not de-
termined by relevant life‐history traits; rather they are based
on the number of observed populations and visible declines
(Boyd et al., 2016; Evans et al., 2016; Thompson
et al., 2018). In our analysis, species belonging to sig-
nificantly different clusters—also most of the listed species
in the analysis—differed primarily in average longevity,
maximum longevity, and age at first reproduction. These
traits determine the fast–slow continuum, which is one of the
two main axes describing plant life histories (Salguero‐
Gómez et al., 2016). The second axis identified in our
analysis was the reproductive strategy axis (Salguero‐Gómez
et al., 2016), but the significantly different clusters did not
vary along this axis. In other words, there was zero to low
variability in net reproductive output or frequency of re-
productive events across the listed and nonlisted species in
these Clusters (1–3). This lack of variability in the second axis
across species may be due to various factors. For instance,
the degree of iteroparity was fairly similar across all the
species analyzed, and the majority of species, belonging to
a single cluster (i.e., Cluster 2), were characterized by a low
net reproductive rate. However, the fact that some species
can be differentiated from others by their life‐history traits
raises the possibility to develop trait‐based models to study
the potential effects of chemicals and other stressors on
plant population dynamics as has been done for graminoids
(Quétier et al., 2007), tropical trees (Visser et al., 2016), and
aquatic macroinvertebrates (Rico & Van Den Brink, 2015;
Van den Berg et al., 2019), where groups of species sharing
particular sets of traits also share responses to specific
stressors, including pesticides.

Elasticity analysis across clusters

The elasticity analysis showed that species in Cluster 2
respond similarly to perturbations of their survival, growth,
and fertility. This indicates that the population growth rate is
affected in a similar way by small changes in any of the three
processes. Species in this cluster are characterized by in-
termediate trait values of longevity and age at first re-
production, indicating that they do not fall in any of the
extremes of the pace of the life continuum. Species like
Actaea cordifolia, Minuartia obtusiloba, Paronychia pulvi-
nate, and Calochortus tiburonensis, among others, that re-
produce late in life and have a long‐life span, tend to favor
growth at the expense of reproductive output (Vico
et al., 2016). At the other extreme of the continuum, species
like Collinsia verna, Aeschynomene virginica, and Phacelia
insularis, among others, that have short life spans and re-
produce early, allocate more energy toward reproduction
(Wenk & Falster, 2015). Species in these two extremes
would be expected to exhibit a marked difference between
the elasticity of survival and growth and the elasticity of
fertility as can be seen in Clusters 1 and 3.
The differences observed in Clusters 1 and 3 between

species of different conservation statuses may be due to
variability in the reproductive potential of the species and

age at first reproduction. For example, most of the listed
species in Cluster 1 take longer (>4 years) to reach re-
productive age than the nonlisted species (<4 years), re-
sulting in higher growth elasticity. Therefore, these species
would be more vulnerable to changes in growth and re-
production compared to nonlisted species that reproduce
earlier and have a slightly higher net reproductive rate.
However, it is important to remember that there may be
intraspecific variability in traits among different populations
of the same species (e.g., due to environmental and habitat
influences). Whereas using differences in life‐history traits
among species or species groups to assess relative
vulnerability are likely to be broadly robust, a high level of
precision should not be assumed.
Characterizing the life‐history variation of listed species,

with the aid of phylogeny and comparative analyses that
bring together listed and nonlisted species, provides a
useful tool to prioritize species in terms of their likely vul-
nerability to demographic perturbations thus informing the
risk assessment and management process for a wider range
of species. Our analysis showed that US plant life histories
can be arranged across the continuum of the pace of life,
and that listed and nonlisted species with intermediate life
histories tend to share vulnerabilities to perturbations to
core life‐history processes. This suggests that we should be
able to identify representative species from this group to be
used in population models applied in a risk assessment
context. For species at either end of the pace of life con-
tinuum, in which there seem to be some differences in their
sensitivity to perturbations between listed and nonlisted
species, selection of representatives is more challenging. In
such cases, a conservative approach would be to select
high‐elasticity species as the more vulnerable representa-
tives for further model development. Alternatively, species
at either end of the elasticity range could be modeled to
capture the inherent uncertainties associated with the elas-
ticity variability.
Our analysis used matrix population models to categorize

listed and nonlisted species according to their life‐history
traits and inform the selection of representative species for
population modeling in the context of pesticide risk as-
sessments. Even though matrix population models for these
species already exist, these do not incorporate the relevant
processes and detail required for application to pesticide
risk assessment (Galic et al., 2010; Schmolke et al., 2010).
Population models for species identified as representative
for specific clusters could further be developed that contain
the relevant information and are tailored for pesticide risk
assessments. The choice of model structure and the in-
clusion of relevant processes and features will depend on
the questions the ERA is designed to address (Accolla
et al., 2021, Raimondo et al., 2018).

CONCLUSION
Population models represent powerful tools for listed

species assessments because they can integrate pesticide
exposure as well as species sensitivity data and life‐history

Integr Environ Assess Manag 2023:213–223 © 2022 The Authors.DOI: 10.1002/ieam.4615
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traits to produce quantitative projections of population
trends. Developing population models for all listed species
of terrestrial plants would not only be impractical due to the
sheer number of species listed as threatened or endangered
but impossible due to the scarcity of relevant data for the
majority of listed plant species. Basing the selection of
representative species in lieu of data on systematic life‐
history analyses helps to ensure that population models
representing listed species are both representative and
protective.
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SUPPORTING INFORMATION
SI 1. Families represented in the sample of listed species

and species present in COMPADRE. Red indicates the
presence in the list of species listed under the ESA. Green
indicates the presence in the COMPADRE database.
SI 2. Permutational multivariate analysis of variance (PER-

MANOVA). Permutational multivariate analysis of variance
(PERMANOVA) results are based on Bray–Curtis dissim-
ilarities of data normalized with equation 3.
SI 3. Families represented in the hierarchical cluster. The

red color indicates the species' presence in the list of spe-
cies listed under the ESA. The green color indicates the
species' presence in the COMPADRE database.
SI 4. Principal component analysis results.

Net reproductive rate (R_o), longevity (L_max), survivorship
curve type (H), mean life expectancy (L_mean), age at first
reproduction (L_α), and degree of iteroparity (S).
SI 5. Table with median elasticity values and ranges across

Clusters 1, 2, and 3. Median elasticity values for each of the
three processes were evaluated across clusters, which were
significantly different in the PERMANOVA and across con-
servation listings. Ranges are reported in square brackets.
The numbers of species for each cluster and listed category
are reported in parentheses. No, refers to species that are

not listed, and yes refers to species that are listed in
the ESA.

SI 6. Scatter plot of elasticity values. Each row panel
represents a cluster. The top panel is Cluster 1, the middle
panel is Cluster 2, and the bottom panel is Cluster 3. Listed
species (pink) nonlisted species (green).
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