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Abstract  27 

Wastewaters (WW) are important sources for the dissemination of antimicrobial resistance (AMR) into 28 

the environment. Hospital WW (HWW) contain higher loads of micro-pollutants and AMR markers than 29 

urban WW (UWW). Little is known about the long-term dynamics of H and U WW and the impact of their 30 

joined treatment on the general burden of AMR. Here, we characterized the resistome, microbiota and 31 

eco-exposome signature of 126 H and U WW samples treated separately for three years, and then mixed, 32 

over one year. Multi-variate analysis and machine learning, revealed a robust signature for each WW with 33 

no significant variation over time before mixing, and once mixed, both WW closely resembled U 34 

signatures. We demonstrated a significant impact of pharmaceuticals and surfactants on the resistome 35 

and microbiota of H and U WW. Our results present considerable targets for AMR related risk assessment 36 

of WW. 37 

 38 
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The worldwide spread of multidrug-resistant bacteria is an important public health issue with a high 41 

health and economic burden1–3. A global “One Health” approach is urgently needed to combat the 42 

dissemination of antibiotic resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) from 43 

humans and livestock to the environment and vice versa, as well as to identify key drivers contributing to 44 

the selection, dissemination and persistence of ARB and/or ARGs4,5. The natural environment and its 45 

biodiversity serve as a wide reservoir of genetic determinants implicated in resistance to antimicrobial 46 

compounds6,7. Human activity has a significant impact on the terrestrial and aquatic microbial ecosystems 47 

through chemical pollutants that are spread via urban, agricultural and industrial waste and which pose 48 

an important selective pressure for AMR8. For instance, urban and hospital wastewaters (UWW and 49 

HWW) contain a high diversity of ARGs and chemicals9–12. It is therefore generally accepted that the 50 

implementation of efficient wastewater treatment plants (WWTP) is essential in order to reduce the 51 

amounts of chemicals, ARGs and ARB that reach the environment4,9,13. The treated WW are re-introduced 52 

into the aquatic environment and the produced sludge often re-used in agricultural lands11,14. However, 53 

despite a global reduction of ARGs through treatment, effluents from urban, hospital and industrial 54 

wastewater still contain ARGs, antibiotics (ABs) and moderate levels of other pollutants affecting 55 

microorganisms (e.g. biocides, heavy metals)11,15,16. HWWs have been reported to contain particularly high 56 

amounts of ARGs, ABs and metabolites9,12,17, due to the high usage of ABs and biocides18,19 in these 57 

settings. It has been debated whether HWW contributes significantly to the load of ARGs in the UWW 58 

systems, and whether separate treatment for HWWs should be applied9,13,20. Recent work has shown that 59 

HWW has limited impact on the relative levels of ARGs and integrons in hospital receiving urban 60 

wastewater (WW)9,21. However, most studies usually analyzed a limited number of samples and yet, 61 

longitudinal studies that monitor WW dynamics are so far lacking, which limits the possibility of assessing 62 

the risk for AMR mediated through WW.   63 

We thus studied the dynamics of the resistome, microbiota and the environmental exposome (“eco-64 

exposome”) of 126 WW samples (UWW, HWW and mixed WW) in a French city during a period of 65 

approximately four years: 34 months with separate treatments for H and U WW and 11 months with H 66 

and U WW mixed. We studied H and U WW in the course of their passage through i) two independent 67 

wastewater treatment systems applying the conventional (activated sludge) treatment process and ii) 68 

then mixed 1:2 (HWW:UWW) into one system. We investigated the relationship of the respective 69 

resistome and microbiota with the measured eco-exposome (pharmaceuticals, mainly antibiotics; 70 

surfactants and heavy metals), and their discharge in the effluent receiving river. Multi-variate analysis 71 

and machine learning, reveal a robust signature of the resistome, microbiota and eco-exposome of HWW 72 
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compared to UWW with no significant variation over time. We also showed that, when mixed, both WW 73 

closely resemble urban signatures. Furthermore, we demonstrated that pharmaceuticals and surfactants 74 

had a large influence on the variability of the monitored resistome and microbiota of H and U WW.  75 
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Results:  85 

HWW and UWW have distinct resistome and microbiota signatures. We evaluated the resistome and 86 

microbiota of monthly WW (N=126) and river (N= 12) samples. For the resistome, we targeted 78 genes 87 

conferring resistance to antibiotics, quaternary ammonium compounds, or heavy metals, grouped into 16 88 

resistance gene classes. The genes targeted include ARGs that are most commonly detected in the gut 89 

microbiota of healthy individuals22,23, clinically relevant ARGs (including genes encoding extended 90 

spectrum β-lactamases (ESBLs), carbapenemases, and vancomycin resistance), heavy metal and 91 

quaternary ammonium compound resistance genes suggested to favor cross and co – selection for ARGs 92 

in the environment24,25. We also targeted genetic elements as important transposase gene families26 and 93 

class 1, 2 and 3 integron integrase genes, that are important vectors for ARGs in the clinics and often used 94 

as proxy for anthropogenic pollution27.  95 

H and U WW samples were treated separately through 2012 and 2014, and were mixed at a ratio 96 

of 1:2 (HWW:UWW) throughout the year 2015 (Figure 1). H and U WW samples had a distinct signature 97 

with respect to the proportional makeup of their resistome (Figure 2a) and microbiota (Figure 2b). 98 

Analyzing the data with a machine learning approach showed that the distinct H and U WW signatures 99 

resulted in a high prediction accuracy (full details in SI). When using the resistome as predictor (on the 100 

level of gene classes), 93.5% and 96.7% of untreated HWW and UWW samples respectively, could be 101 

correctly classified (Supplementary Figure 1a). We further analyzed the data on the individual gene level 102 

(81 different genes) to increase resolution of the machine learning approach. Using individual genes 103 

resulted in similarly high predictions (93.5% prediction for untreated HWW and 100% prediction for 104 

untreated UWW) (Supplementary Figure 1b). Similarly, when using the microbiota, 96.8% of untreated 105 

HWW and 89% of untreated UWW samples were correctly classified (Supplementary Figure 1c).  106 

For the treated H and U WW the machine learning prediction accuracy was lower compared to 107 

the untreated WW sources but still considerably high for all predictor levels and in particular for the 108 

microbiota (≥80%) (Supplementary Figure 2).                                                                                         109 

For the MWW overall classification success was lower (Supplementary Figure 1 and 2), given a 110 

much lower sample size and likely due to the mixing of the two wastewater sources hampering clear 111 

signatures.  112 

 113 

 114 
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 115 

Figure 1: Sampling site. Samples were collected in monthly intervals (untreated and treated samples) by flow 116 
proportional sampling, from March 2012 through November 2015. From March 2012 to December 2014, UWW and 117 
HWW were treated by separate wastewater treatment plants (WWTPs). During the period from January 2015 118 
through November 2015, UWW was mixed into the HWW (1:2 ratio HWW:UWW) and added to the separate HWW 119 
treatment line resulting in mixed WW (MWW). In addition, 12 water samples of the effluent receiving river up (river 120 
upstream) and downstream (river downstream sampling point 1 and 2) of the effluent release pipes were collected 121 
during the winter months of 2013 (January, February, November, and December). 122 
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 123 

Figure 2: Proportional abundance of the resistome and microbiota in untreated (R) and treated (T) HWW, UWW 124 
and MWW, as well as river samples up (Ri) and downstream (Ri1 and Ri2) of the urban waste water release pipe 125 
throughout the sampling period (2012-2015). a: proportional abundance of resistome (ARG classes, heavy metals 126 
integrons and mobile genetic elements) for all samples. b: proportional abundance of the microbiota (displaying the 127 
20 most abundant bacteria at the order level for all samples, where “others” represents the percentage of the 128 
remaining taxa).   129 
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Temporal dynamics of H and U WW: Redundancy analysis was performed in order to assess putative 130 

significant influences of time on the variability of resistome and microbiota compositions using sampling 131 

year or season as independent variables (Monte Carlo (MC) permutations (n=499)). Analysis was carried 132 

out for all different sample groups together (untreated U, H, M WW and treated U, H, M WW) to 133 

potentially identify general patterns influencing all groups at the same time. The same analysis was also 134 

performed per individual sample group (untreated and treated H, U and M WW alone, respectively). 135 

For untreated HWW and UWW, neither year (p=0.6 resistome and p=0.4 microbiota respectively) 136 

nor season (p=0.9 and p=0.3) had a significant impact on the resistome (resistance gene classes) and 137 

microbiota composition of the WW over the first 3 years before mixing (Supplementary Table 1a). 138 

However, by analyzing the sample groups separately, a yearly and seasonal impact on the level of 139 

individual resistance genes in HWW was demonstrated (p=0.004 year, p=0.032 season; Supplementary 140 

Table 1b). Redundancy analysis revealed the relationship between individual genes and gene classes with 141 

seasons, pointing towards a correlation of increased normalized abundance of individual genes and gene 142 

classes detected during summer season (Supplementary Figure 3a, Supplementary Figure 4). The fact that 143 

the hospital was only installed in February 201228 may explain why the year 2012 is particular for HWW 144 

resistome, with overall lower normalized abundance of the resistome and no obvious trend towards the 145 

summer season in 2012. After HWW and UWW mixing (in 2015), no significant variation for the resistome 146 

and microbiota composition throughout the seasons could be observed considering all sample groups 147 

(untreated MWW, HWW and UWW; p=0.6 resistome and p=0.07 microbiota respectively).  148 

For treated WW, the analysis exhibited more variation of the resistome and microbiota 149 

composition compared to the untreated sources over the years (2012-2014 for H and U WW; Figure 2, 150 

Supplementary Table 1c). Redundancy analysis revealed that in particular the microbiota of treated H and 151 

U WW effluents varied between the years (p=0.016 for all groups, p=0.021 for treated HWW and p=0.006 152 

for treated UWW, Supplementary Table 1d) while no significant seasonal impact could be observed. The 153 

resistome varied between the years for treated HWW on both the gene class and the individual gene 154 

levels (p=0.004 and p=0.012, Supplementary Table 1d), whereas for the treated UWW this variation was 155 

only significant on the individual gene level (p=0.028). For the treated mixed WW (MWW), significant 156 

seasonal variation was observed for the microbiota composition (p=0.02), while for the resistome no 157 

significant variation could be observed.   158 

The untreated HWW resistome is significantly diluted by UWW in mixed WW. The bacterial biomass 159 

(absolute copy numbers of 16S rRNA genes per liter of water) was comparable for the untreated WW 160 

sources (HWW, UWW and MWW) (Supplementary Figure 5). Exemplary, here ratios of HWW over UWW 161 
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and HWW over MWW were calculated based on the averaged cumulative abundance of the resistome in 162 

untreated HWW and UWW (Table 1). 163 

The untreated HWW contained significantly more gene classes compared to the untreated UWW, 164 

between 3 (transposase genes) and 161-fold (qnr genes encoding quinolone resistance) higher (p values 165 

≤ 0.004). When WW were mixed at the experimental ratio of 1:2 (HWW:UWW), the untreated MWW 166 

contained significantly less resistance gene classes compared to untreated HWW, between 3 and 22-fold 167 

lower (p values ≤ 0.03). Interestingly, there was no significant difference for the genes encoding resistance 168 

to macrolides for both HWW over UWW and HWW over MWW comparisons (Table 1, Figure 3a and 3b). 169 

The only resistance gene significantly lower in HWW compared to UWW or MWW (p<0.0001), was the 170 

streptogramin resistance gene vatB. The mecA gene encoding resistance to methicillin was undetectable 171 

in all UWW and in all but one MWW samples. 172 

Altogether, these data indicate a significant dilution impact of UWW on the normalized abundance of the 173 

targeted resistome of HWW when mixing at the experimental ratio of 1:2 (HWW:UWW).  174 

  175 
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Table 1: Average fold changes for gene classes cumulative abundance of untreated HWW over UWW (2012-2015; 176 
significant differences indicated by asterisk *; p values ≤ 0.004) and HWW over MWW (2015, significant differences 177 
indicated by asterisk *; p values ≤ 0.03) ± Standard Deviation. Significant differences were calculated by comparing 178 
the normalized cumulative abundance values of individual gene classes for all samples belonging to each sample 179 
group using the non-parametric Mann-Whitney test. Fold changes were calculated for individually paired samples 180 
for each gene class / sample group. NA indicates that gene classes were undetectable in either one or both of the 181 
sample groups.  182 

 183 

Resistome reduction through WW treatment. The bacterial biomass (copies of 16S rRNA / liter) for all 184 

WW sources was decreased by 2-3 log after WW treatment (Supplementary Figure 5). To estimate the 185 

impact of WW treatment on the resistome, fold changes of untreated over treated H, U and M WW were 186 

calculated. The normalized cumulative abundance of all gene classes significantly decreased and was 187 

between 78 times (for genes conferring resistance to quinolones) and 5 times (for genes conferring 188 

resistance to QACs, sulphonamides and genes encoding transposase genes) lower in the treated HWW 189 

compared to untreated HWW (p<0.003) (Table 2; Figure 3a and 3b).When comparing untreated UWW to 190 

treated UWW, we showed a significant reduction (p<0.05) in the normalized cumulative abundance for 9 191 

resistance gene classes with fold changes between 43 (for the streptogramin resistance gene vatB) and 3 192 

(for genes encoding resistance to aminoglycosides) times (Table 2, Figure 3a and 3b). No significant 193 

reduction was observed after treatment of UWW for gene classes conferring resistance to bacitracin, 194 

beta-lactams, quinolones, heavy metals and quaternary ammonium compounds, and for genes encoding 195 

integron integrases. Surprisingly, sulphonamide resistance encoding genes were found to be significantly 196 

enriched after UWW treatment (p<0.05) (Table 2, Figure 3a and 3b). For MWW, a similar removal efficacy 197 

Gene classes conferring resistance to:  Fold change untreated Hospital WW/Urban 
WW 

Fold change untreated Hospital WW/Mixed 
WW 

chloramphenicol 84 (±93)* 13 (±11)* 
aminoglycosides 43 (±31)* 8 (±6)* 
bacitracin 8 (±13)* 7 (±4)* 
beta-lactams 26 (±22)* 9 (±6)* 
macrolides 1 (±1) 0.6 (±0.3) 
(multi-drug) Efflux 9 (± 11)* 4 (±4)* 
quinolones (qnr) 161 (±326)* 10 (±8)* 
heavy metals 7 (±9)* 4 (±3)* 
quaternary ammonium compounds QACs) 18 (±14)* 7 (±4)* 
vancomycin 12 (±35)* 18 (±20)* 
tetracycline 4 (±3)* 3 (±2)* 
polymixin 8 (±9)* 4 (±4)* 
sulphonamides 19 (±12)* 7 (±4)* 
methicillin NA (undetectable in UWW) NA (undetectable in all but one MWW 

sample) 
streptogramin 0.2 (±0.2)* 0.2 ((±0.2)* 
trimethoprim 8 (±6)* 5 (±3)* 
   
Gene classes grouped according to 
function: 

  

transposase genes (MGEs) 3 (±1)* 2 (±1) 
integron integrase genes 16 (±9)* 6 (±3)* 
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as for UWW could be observed (Table 2, Fig. 3b), with significant decrease for the normalized cumulative 198 

abundance of 10 genes classes and with fold changes between 41 (for the streptogramin resistance gene 199 

vatB) and 3 (for the genes encoding integron integrase genes) times. No significant decrease for gene 200 

classes conferring resistance to bacitracin, beta-lactams, tetracycline, heavy metals, QACs and 201 

sulphonamides could be detected.  202 

 203 

 Table 2: Average fold changes for gene classes of untreated WW over treated WW for H, U and M WW (p values ≤ 204 
0.03) ± Standard Deviation. *= significantly lower; + = significantly higher. Significant differences were calculated by 205 
comparing the normalized cumulative abundance values of individual gene classes for all samples belonging to each 206 
sample group using the non-parametric Mann-Whitney test. Fold changes were calculated for individually paired 207 
samples for each gene class / sample group. Average fold change ± Standard Deviation are depicted in the table for 208 
comparison. NA indicates that gene classes were undetectable in either one or both of the sample groups.  209 

 210 

Gene classes conferring 
resistance to:  

Fold change H untreated WW/H 
treated WW 

Fold change U untreated WW/U 
treated WW 

Fold change M untreated WW/ 
M treated WW 

chloramphenicol 34 (±47)* 5 (±12)* 16 (±27)* 
aminoglycosides 15 (±14)* 3 (±5) * 7 (±10)* 
bacitracin 12 (±30)* 1 (±2) 1 (±1) 
beta-lactams 30 (±42) * 4 (±14) 10 (±21) 
erythromycin (macrolides) 48 (±68)* 27 (±55)* 23 (+17)* 
(multi-drug) efflux 29 (±43)* 9 (±27)* 13 (±17)* 
quinolones 78 (±123)*  3 (±5) 19 (±29)* 
heavy metals 15 (±32) * 3 (±3) 2 (±2) 
quaternary ammonium 
compounds QACs) 

5 (±5) * 1 (±2) 2 (±2) 

vancomycin NA (undetectable in all but one 
sample for treated HWW) 

NA (undetectable in all but one 
sample for treated UWW) 

NA (undetectable in all samples 
for treated MWW) 

tetracycline 51 (±77)* 13 (±40)* 6 (±5) 
polymixin 29 (±52)* 5 (±12) * 7 (±7)* 
sulphonamides 5 (±6)* 1 (±1)+ 2 (±1) 
Streptogramin   17 (±43)* 43 (±77)* 41 (±20)* 
methicillin NA (undetectable in all treated 

HWW samples) 
NA (undetectable in all treated 
UWW samples)  

NA (undetectable in all but one 
untreated MWW sample) 

trimethoprim 66 (±101)* 9 (±28)* 6 (±7)* 
    
Gene classes grouped 
according to function: 

   

transposase genes (MGEs) 5 (±5)* 6 (±7)* 5 (±3)* 
integron integrase genes 7 (±6)* 1 (±1) 3 (±4)* 
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211 
Figure 3: Averaged normalized abundance of ARG classes, heavy metals, MGEs and integrons over all collected 212 
samples per sample type +- standard deviation. a: relative abundance of ARG classes, heavy metals, QACs, MGEs 213 
and integrase genes in untreated (n21) and treated HWW (n=19), untreated (n=21) and treated (n=20) UWW 214 
averaged over the numbers of samples collected for each water type in the given time interval (March 2012 – 215 
December 2014) +- standard deviation. b: averaged normalized abundance of ARG classes, heavy metals, QACs, 216 
MGEs and integrase genes in untreated (n=10) HWW, untreated (n=9) and treated (n=8) UWW and untreated (n=10) 217 
and treated (n=8) MWW (at the experimental ratio of 1/3 HWW to 2/2 UWW) WW samples averaged over the 218 
numbers of samples collected for each sample group in the given time interval (January 2015- November 2015) +- 219 
standard deviation.  220 
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No evident impact of treated hospital WW on the receiving river.  We also analyzed 12 river samples up 221 

and downstream the WWTP to evaluate putatively associated risks with the release of the treated WW 222 

into the effluent receiving river and downstream environment (Supplementary Figure 6). The resistome 223 

for the river samples collected for the sites up (Ri) and downstream (Ri1 and Ri2) of the effluent release 224 

pipe during winter season 2013 was not significantly different for either of the three sampling sites 225 

(Supplementary Figure 6). There was no significant difference of the relative abundance for any of the 226 

detected gene classes in the river samples compared to treated UWW. On the contrary, the relative 227 

abundance of nine resistance gene classes including genes encoding MGEs and integron integrases was 228 

significantly lower (p<0.04) in river samples when compared to treated HWW (Supplementary Figure 6).   229 

Human gut bacteria are enriched in HWW. The human gut microbiota is an important reservoir of ARGs29–230 
31  and bacteria of the human gut are likely to be shed into the environment via wastewaters that contain 231 

at least partially human feces. We calculated the relative abundance of anaerobic human gut bacteria, as 232 

well as Enterobacteriales in the respective WW. Enterobacteriales were specifically detected as many of 233 

these Gram-negative bacteria are also pathogens. The orders Clostridiales, Bifidobacteriales and 234 

Bacteroidales which represent the most important and abundant anaerobic human gut bacteria32,33, were 235 

grouped together and are referred to as anaerobic human gut bacteria. Untreated HWW contained 236 

significantly higher levels of anaerobic human gut bacteria (38% ± 11 standard deviation) and 237 

Enterobacteriales (2% ± 1.5) compared to all other samples (Figures 4a and 4b). Interestingly, these orders 238 

are comparable in their relative abundance for untreated UWW and MWW, indicating a significant 239 

dilution effect of UWW in HWW (Figure 4b), as observed for the resistome. The treatment allowed a 240 

significant (p<0.05) decrease of the relative abundance of these orders for HWW and UWW (Figure 4a 241 

and 4b) whereas the reduction for MWW was only marginally significant (p=0.05) (Figure 4b).  242 

 243 
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 244 

 245 

Figure 4: a: Relative abundance of anaerobic human gut bacteria (Clostridiales, Bifidobacteriales and 246 
Bacteroidales) and Enterobactertiales in untreated (n=21) and treated HWW (n=19), UWW (n=21) and (n=20) 247 
averaged over the numbers of samples collected for each sample group between March 2012 and December 2014 248 
+- standard deviation. b: relative abundance of anaerobic human gut bacteria and Enterobactertiales in untreated 249 
(n=10) HWW, untreated (n=9) and treated (n=8) UWW and untreated (n=10) and treated (n=8) MWW samples (at 250 
the experimental ratio of 1:2 HWW:UWW) averaged over the numbers of samples collected for each sample group 251 
between January 2015 and November 2015 +- standard deviation.  252 

 253 

The eco-exposome plays an important role in shaping the resistome and microbiota in hospital and 254 

urban WW. In order to estimate chemical and heavy metal pollution (the eco-exposome) in the WW, 255 

selected pharmaceutical compounds (including antibiotics), surfactants and heavy metals were quantified 256 

in untreated WW (Supplementary Table 2).  257 

The relationship between the resistome/microbiota and the eco-exposome was visualized by 258 

means of PCA biplots. Here, HWW and UWW form two distinct clusters, while the MWW clusters closely 259 

to the UWW for both resistome and microbiota (Figure 5a and 5b). Pharmaceuticals, non-ionic and 260 
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cationic surfactants are the most important contributors to the respective HWW resistome and 261 

microbiota (length of arrows), while anionic surfactants and some metals play a more dominant role in 262 

driving the resistome and microbiota of the UWW (Fig. 5a and 5b). Moreover, the putative impact of the 263 

measured chemicals (eco-exposome) on the microbiota and resistome was statistically assessed by RDA. 264 

The results of the Monte-Carlo permutations indicated that the eco-exposome significantly influences the 265 

resistome and microbiota (p-values 0.002).  266 

Finally, a variation partitioning analysis was performed to study which group of the measured 267 

chemicals (heavy-metals, pharmaceuticals, surfactants) might have a larger contribution on the resistome 268 

and microbiota variation, and to explore whether the interaction between these compounds has a 269 

stronger influence than the individually grouped compounds (Figure 5c and 5d). Pharmaceuticals (the 270 

antibiotics ciprofloxacin, sulfamethoxazole and vancomycin, and the neurological drug carbamazepine) 271 

explain the largest proportion of the variance for the resistome, while the surfactants have the largest 272 

impact on the variation for the microbiota. Finally, we show that the interaction between pharmaceuticals 273 

and surfactants contributes more to the variability in the resistome than the individual compounds alone, 274 

while such interactions are less clear in the microbiota dataset (Fig. 5c and 5d).  We also collected data 275 

on the consumption of three antibiotics, ciprofloxacin, sulfamethoxazole and vancomycin, by the hospital 276 

pharmacy over the period of 2012 to 2014, that were summarized here as gram per season 277 

(Supplementary Table 3 and Supplementary Figure 3c). The studied hospital site has just been opened in 278 

the winter month February 2012 which is probably why antibiotic consumption by the hospital pharmacy 279 

was low during winter 2012. No obvious correlation between summer peaks for the measured antibiotics 280 

in WW and their respective consumption by the hospital pharmacy was shown. (Supplementary Tables 3 281 

and 4, and Supplementary Figure 3b and 3c). The observed peaks and variation during summer season for 282 

individual resistance genes and gene classes in HWW (Supplementary Figures 3a and 4) may be due to dry 283 

season during summer that could result in decreased flow rate of HWW, and also account for the 284 

measured peaks for the antibiotics in HWW during summer (Supplementary Figure 3b).  285 

 286 
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 287 

 288 

Figure 5: Principal component analysis showing the relationship between the eco-exposome (heavy 289 
metals, pharmaceuticals and surfactants) and the resistome (a) and microbiota (b) of untreated HWW, 290 
UWW and MWW samples; and Venn diagrams showing the results of the variation partitioning analysis 291 
with the different measured chemical classes and the resistome (c) and microbiota (d). In the PCA 292 
analysis, dots refer to urban (yellow), hospital (red) and mixed (blue) untreated WW samples.  293 

  294 
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Discussion  295 

In the context of globally increasing AMR, wastewaters (WW) have been identified as sources for the 296 

spread of AMR determinants (ARB, ARGs, MGEs) and chemical pollutants (often pharmaceutical residues) 297 

that may favor AMR selection during wastewater treatment and in the receiving environment. In this 298 

study we thoroughly monitored the resistome and microbiota dynamics of untreated and treated 299 

(applying conventional secondary WWT) hospital and urban WW over four years throughout the seasons 300 

in France. We identified distinct and robust resistome and microbiota signatures, in particular for 301 

untreated HWW and UWW, indicating that HWW and UWW form distinct and stable ecological niches 302 

over time. Performing machine learning (ML), taking the full data set into account, as well as separate 303 

data-sets from the different WW sources before and after treatment, classified each of the sources with 304 

high accuracy and revealed top predictive genes, gene classes and taxa for the respective WW sources 305 

before and after WW treatment (Supplementary Figure 8). Interestingly, when collapsing data-sets 306 

obtained from untreated and treated samples of the respective WW sources, ML was able to predict HWW 307 

and UWW in general with more than 93% certainty on all predictor levels (individual genes, gene classes, 308 

taxa) (Supplementary Figure 9). These top 10 predictors for HWW and UWW (Supplementary Figure 8 and 309 

9) provide considerable marker gene classes, individual genes and taxa for the respective WW sources 310 

that indicate underlying important differences in risk to the environment and that present targets for the 311 

monitoring and management of HWW and UWW. A recent study assessed the removal efficacy of 62 312 

Dutch wastewater treatment plants (WWTPs), applying conventional secondary WW treatment, on a 313 

selected panel of six ARGs and the gene encoding the class 1 integrase gene15. These genes (emrB, sul1 314 

and sul2 (in our study synonym with sulA), qnrS, tetM, blaCTX-M and intI), proposed as general WW 315 

markers for risk assessment5, were also monitored by our resistome approach and were similarly classified 316 

as high predictors for the respective WW sources (Supplementary Figure 7, 8 and 9). All seven genes were 317 

detected in both WW sources, however in different normalized abundances (e.g. ermB was more 318 

abundant in UWW compared to HWW, whereas the genes sul1, sul2, qnrS, blaCTX-M and intI1 were more 319 

abundant in HWW; interestingly the normalized abundance of tetM was comparable in both sources). We 320 

were also able to identify additional genes that could be implemented for the classification of HWW vs 321 

UWW based on their normalized abundance. For example, the streptogramin resistance gene vatB, and 322 

the transposase gene ISS1N were significantly more abundant in UWW compared to HWW, and seem to 323 

be specifically indicative for UWW.  324 

The HWW resistome was found to be significantly enriched with resistance gene classes and genes 325 

encoding integron integrase genes compared to UWW except for the streptogramin resistance gene vatB. 326 
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For the gene class conferring resistance to macrolides, we did not observe a significant difference between 327 

HWW and UWW; however, there is a trend for the ermB gene to be higher in UWW than in HWW (Figure 328 

3a and 3b; Table 1). Thus, macrolide resistance genes also contribute to the specific resistome signature 329 

for UWW. Considering the fact that macrolide and streptogramin antibiotics are more frequently 330 

prescribed in the community compared to the hospital environment in France, could explain the high 331 

abundance of these gene classes in UWW18. In the hospital environment, antibiotics such as quinolones, 332 

beta-lactams, aminoglycosides and vancomycin are frequently used, which also could explain the 333 

relatively high abundance of gene classes conferring resistance to those antibiotics in HWW compared to 334 

UWW18. Furthermore, we measured in high concentrations the antibiotics ciprofloxacin, 335 

sulfamethoxazole and vancomycin in HWW, which points towards a relationship of the measured 336 

antibiotics and the detected resistome in HWW (Figure 5a and c). Interestingly, the qnr genes encoding 337 

quinolone resistance in HWW were the ones with the highest fold increase (161-fold) between HWW and 338 

UWW. As these genes are located on plasmids, their higher abundance in HWW indirectly reflects the 339 

likely abundance of bacteria harboring genetic elements involved in resistance dissemination as plasmids 340 

in HWW. Indeed, qnr genes have been described mainly in Enterobacteriales34,35 and we found that the 341 

quantity of Enterobacteriales is higher in HWW than in UWW (Figure 4).   342 

The human gut microbiota is an important reservoir for ARGs30,31 and recently evidence-based data 343 

showed that the occurrence and abundance of (human) fecal pollution is a likely explanation for the 344 

detection of high amounts of ARGs in anthropogenically impacted environments36,37. The significant 345 

dilution of human gut bacteria in MWW observed here, is hence likely to explain the significant reduction 346 

of the abundance of gene classes after mixing HWW with UWW. 347 

A significant dilution of HWW-associated genes in UWW was described previously, but under 348 

circumstances that reflected a much lower rate of contribution of HWW to UWW (between 0.8 and 2.2%) 349 

at the respective study sites9,15,21 compared to our study site (here HWW ~33.4%). This shows that UWW 350 

can modify and dilute the abundance of resistance genes, MGEs and integrons in untreated HWW, 351 

significantly, even with an increased proportional contribution of HWW to UWW. The increase of the 352 

effluent flow rate entering in the WWTP treating the MWW due to the injected UWW may contribute 353 

largely to the observed significant dilution impact of the UWW on the HWW.    354 

Previous studies conducted on the same experimental site for shorter time periods (up to 2 years) 355 

coherently provided a detailed catalogue of pharmacological parameters, such as specific surfactants, that 356 

could further aid to discriminate UWW from HWW28,38–40. They also concluded that there is no greater 357 

advantage associated with separate treatment of HWW from UWW with respect to their pharmaceutical 358 
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discharges and ecotoxicological impacts28. However, the fact that the normalized abundance of six gene 359 

classes did not significantly decrease in UWW after UWW treatment (bacitracin, beta-lactams, quinolones, 360 

heavy metals and quaternary ammonium compounds, and for genes encoding integron integrases) and 361 

that one gene class (sulphonamides) even significantly increased in normalized abundance (Table 2, Fig 362 

3a and Fig 3b) suggests that secondary WW treatment in general may not be sufficient in preventing the 363 

dissemination of AMR in the downstream environment. The removal efficacy of secondary WW treatment 364 

in terms of absolute abundance of ARGs and ARBs is significant by reducing the overall release of ARGs 365 

and ARB into the downstream environment in general by more than 95%15. However, unchanged, or even 366 

increased relative (in terms of copies per liter ARGs / copies per liter bacterial 16S rRNA) or normalized 367 

abundance (in terms of Ct value ARGs/ Ct value 16S rRNA as in this study) of ARGs and gene classes is 368 

indicative for selective processes during secondary WW treatment favoring the spread of AMR into the 369 

environment15,41–43. The resistome monitored here, exhibits a high mobilization potential due to the high 370 

proportion of MGEs, integrons and plasmid borne ARGs detected in all WW samples, as well as in the 371 

receiving river waters (Figure 1, MGEs and integrons account for up to 60% of the resistome of treated 372 

effluents and river waters). The MGEs, more specifically transposase genes targeted here, represent genes 373 

that are associated with the dissemination of ARGs by means of conjugative integrative elements or 374 

plasmids, across environmental bacteria and human pathogens26,41. There is evidence that advanced WWT 375 

such as disinfection by UV radiation or ozone treatment, or physical treatment by ultrafiltration of WW 376 

are more efficient in reducing ARB and ARGs compared to conventionally applied secondary WW 377 

treatment. However, despite reducing ARB and ARG loads significantly compared to secondary treatment 378 

often ARBs and ARGs are not completely eliminated by advanced WWT either44.  379 

The exposome, a term originally coined in the context of human health epidemiology and referring to “the 380 

totality of human environmental exposures”45, here specifically refers to the chemical compounds 381 

quantified in our longitudinal study that represent partially the environmental or “eco-exposome”46 of 382 

the WW microbiota. Anthropogenic pollution through micro pollutants present in WW (particularly 383 

surfactants, antibiotics and heavy metals) has shown to have a negative impact on the environment and 384 

significantly shape the terrestrial and aquatic microbial ecosystems8,47–50. For example, high 385 

concentrations of antibiotics and cationic surfactants found in HWW17,51,52, and pharmaceutical 386 

production sites53,54 have been correlated with a higher abundance of ARBS, ARGs, as well as higher 387 

abundance of MGEs and integrons17,21,55, whereas anionic surfactants that are generally abundant in urban 388 

WW effluents (untreated and treated UWWs; “grey waters”) are associated with toxicity to aquatic and 389 

terrestrial environments56–58. Here, multivariate analysis (Figure 5) revealed a significant impact of the 390 
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eco-exposome on the resistome and microbiota signatures of all investigated WW sources. We observed 391 

that cationic surfactants and antibiotics are specifically linked to HWW (Figure 5), which reflects the 392 

frequent use of antibiotics and active-surface agents as quaternary ammonium compounds in hospitals. 393 

Interestingly, we also found that qac genes that encode resistance to quaternary ammonium compounds 394 

are significantly higher in HWW than in UWW. The urban WW eco-exposome on the other hand was found 395 

to be enriched with anionic surfactants (Supplementary Table 2) which in turn were found to be 396 

specifically linked to the UWW and MWW resistome and microbiota (Figure 5). This suggests that anionic 397 

surfactants detected in UWWs do have an important impact on the resistome and microbiota of UWWs, 398 

in addition to other pharmaceuticals and antibiotics. Specific measures to reduce the emission of 399 

surfactants into the environment by selective removal and improved WW treatment are currently 400 

discussed48 and warrant further attention.  In addition, further research needs to be done to illuminate 401 

the detailed mechanism of the synergetic effects of all compounds that make up the WW eco-exposome 402 

on shaping the resistome and microbiota of WW effluents and the downstream environment.  403 

Overall, our findings demonstrate robust and distinct signatures for H and UWW over time, present 404 

important marker genes, gene classes and bacterial taxa that can be implemented for H and U WW 405 

monitoring. We also demonstrate that, on the scale of a small sized urbanized area, WW mixing of U and 406 

HWW bares no greater risk than separate treatment and that the eco-exposome (pharmaceuticals, heavy 407 

metals and surfactants measured here) plays a significant role in shaping WW resistome and microbiota.   408 

   The global public health threat due to the rise of AMR was greatly accelerated by 409 

human activity and is considered to be a direct consequence of extensive use of antibiotics in clinical, 410 

veterinary and urban settings. Human mediated chemical pollution released into the environment also 411 

significantly accounts for the loss of biodiversity, which in turn has eco-evolutionary impacts that may 412 

compromise the sustainability of human society59. These facts urgently call for global integrative measures 413 

and actions to lower the amount of ARGs, ARBs, MGEs and chemical micro-pollutants such as surfactants 414 

and pharmaceutical residues entering our environment through WW effluents. This gives further 415 

emphasis to the requirement of implementing and optimizing sanitation systems and operational WWTPs 416 

on a global level, particular in countries/continents with poor water sanitation infrastructure and 417 

correlated high occurrence of multi-resistant bacteria60.  In addition, lowering the widespread use and 418 

applications of antibiotics and surfactants in clinical, veterinary, domestic and industrial settings through 419 

environmental policy making, could present an opportunity to lower the risk associated with WW 420 

effluents. Furthermore, and as highlighted in recent studies36,61,62, the elimination of pollution by means 421 

of human feces, and bacterial taxa associated, through advanced or selective WW treatment, may further 422 
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aid in limiting the release of ARGs associated with human gut bacteria and pathogens. Finally, the data 423 

generated by this study are of important interest to policy makers concerning the risks associated with H 424 

and U WW, their putative implication into the dissemination of AMR, and provide further evidence 425 

towards the necessity of environmental pollution management in the battle of AMR and other important 426 

global health factors such as the preservation of biodiversity and the prevention of climate change50 427 

(France national report: hyperlink:https://www.tresor.economie.gouv.fr/Articles/a9782706-87a4-4cdc-428 

9a4c-86a72736315d/files/525144cc-24fb-4c93-aa5b-c67aefd3b40a). 429 

  430 

  431 
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Methods 432 

Sampling and study design 433 

126 Urban and hospital wastewater (UWW and HWW) samples were collected in Scientrier (Bellecombe 434 

WWTP), Haute-Savoie, France28 as part of the multi-disciplinary project SIPIBEL. The study site was 435 

implemented as an observatory for untreated and treated hospital and UWW and to evaluate their impact 436 

(during separate and subsequently mixed treatment) on the environment (e.g. the effluent receiving 437 

river). The CHAL (Centre Hospitalier Alpes Léman) hospital opened in February 2012 and includes 450 beds 438 

(140 m3/d), whereas the Bellecombe WWTP was collecting UWW of approximately 21.000 inhabitants 439 

(5200 m3/d). For more details of the SIPIBEL project, study set up, WWT and sample collection refer to 440 

Chonova et al. 2018 and Wiest et al.28,38, and to Figure 1. The samples included in our study were collected 441 

in monthly intervals (untreated and treated samples) by flow proportional sampling, from March 2012 442 

through November 201528. From March 2012 to December 2014, UWW and HWW were treated 443 

separately applying the same conventional (activated sludge) WWT28,38. Then, in the period from January 444 

2015 through November 2015, UWW was mixed into the HWW (1:2 ratio HWW:UWW, the ratio was fixed 445 

by a local operating constraint) and added to the separate HWW treatment line resulting in a controlled 446 

mixed WW (MWW)28. In addition, 12 water samples of the effluent receiving river up (river upstream) and 447 

downstream (river downstream sampling point 1 and 2) of the effluent release pipes have been collected 448 

during the winter months of 2013 (January, February, November, and December). Activated sludge 449 

samples have also been collected from both sludge basins throughout the sampling campaign. Due to 450 

different resident times and flow sizes of each wastewater treatment basin, sludge dynamics for resistome 451 

and microbiota were not directly comparable hence results will not be further discussed in this study. 16S 452 

rRNA sequence data from all samples, including sludge samples, are publicly available.  453 

DNA isolation/ sample preparation  454 

Water samples were filtered for microorganisms, using a filtration ramp (Sartorius, 455 

Göttingen, Germany), on sterile 47 mm diameter filter with pore size of 0.45 µm (Sartorius, 456 

Göttingen, Germany). Microorganisms were recovered from filters and subject to DNA isolation for 457 

downstream analysis, using the Power water DNA extraction kit (MoBio Laboratories Inc., Carlsbad, CA, 458 

USA). For sludge samples, 2 ml of sludge were pelleted, and DNA was extracted by following the protocol 459 

of the Fast DNA Spin kit for feces (MP Biomedicals, Illkirch, France). DNA concentration was determined 460 

by Qubit Fluoremetric Quantitation (Thermo fisher scientific, Waltham, MA USA) assays according the 461 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/697433doi: bioRxiv preprint first posted online Jul. 9, 2019; 

http://dx.doi.org/10.1101/697433
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

manufacturer’s instructions. All DNA samples were diluted or concentrated to a final concentration of 10 462 

ng/µl for downstream qPCR and 16S rRNA analysis.  463 

High-throughput qPCR 464 

Nanolitre-scale quantitative PCRs to quantify levels of genes that confer resistance to antimicrobials and 465 

heavy metals were performed as described previously9,29, with some modifications in the collection of 466 

primers. The primer sequences and their targets are provided in the supplementary data (Supplementary 467 

Table 5). The primer set used in the qPCR assays covered 78 genes conferring resistance to antibiotics, 468 

quaternary ammonium compounds or heavy metals. This set includes genes encoding efflux pumps 469 

(referred to as ‘efflux’, Supplementary Table 6) leading to multi-resistance at once to different antibiotic 470 

families. We also added primers for genes encoding mobile genetic elements, namely nine transposase 471 

genes26,41, and the class 1, 2 and 3 integron integrase genes63. We also included primers targeting 16SrRNA 472 

encoding DNA. Primer design and validation prior and after Biomark analysis has been done as described 473 

earlier29. Real-Time PCR analysis was performed using the 96.96 BioMark™ Dynamic Array for Real-Time 474 

PCR (Fluidigm Corporation, San Francisco, CA, U.S.A), according to the manufacturer’s instructions, with 475 

the exception that the annealing temperature in the PCR was lowered to 56°C. DNA was first subjected to 476 

14 cycles of Specific Target Amplification using a 50 nM mixture of all primer sets, excluding the 16S rRNA 477 

primer sets, in combination with the PreAmp Master Mix (100-5581, Fluidigm ), followed by a 5-fold 478 

dilution prior to loading samples onto the Biomark array for qPCR. Thermal cycling and real-time imaging 479 

was performed at the Plateforme Génomique GeT – INRA Transfert (https://get.genotoul.fr/en/), and Ct 480 

values were extracted using the BioMark Real-Time PCR analysis software.  481 

Calculation of normalized abundance and cumulative abundance 482 

Normalized abundance of individual resistance genes was calculated relative to the abundance of the 16S 483 

rRNA gene (CTARG – CT16S rRNA) resulting in a log2-transformed estimate of gene abundance. 484 

Cumulative abundance was calculated for resistance gene classes based on the sum of the normalized 485 

abundance of individual ARGs. The differences in cumulative abundance over the indicated time periods 486 

(2012-2014; 2015 for mixed WW) are shown as an averaged fold-change ± standard deviation. The non-487 

parametric Mann-Whitney test was used to test for significance; p values were corrected for multiple 488 

testing by the Benjamin-Hochberg procedure (Benjamini & Hochberg, 1995) with a false discovery rate of 489 

0.05. Averaged normalized abundance data for allocated gene classes is provided in Supplementary Table 490 

7.  491 
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qPCR to determine absolute copy numbers of 16S rRNA genes 492 

The qPCRs for the determination of 16S rRNA gene copy number as a proxy for the bacterial biomass was 493 

performed as described previously by Stalder et. al.21. 494 

16S rRNA gene sequencing and sequence data pre-processing  495 

Extracted DNA samples for 16S rRNA sequencing were prepared following a dual barcoded two-step PCR 496 

procedure for amplicon sequencing for Illumina. Primers of the first PCR step included universal CS1 and 497 

CS2 tags targeting the V4 region of the hypervariable region of the 16S rRNA gene using the 16SrRNA 498 

primer sequences of the earth microbiota project (http://press.igsb.anl.gov/earthmicrobiota/protocols-499 

and-standards/16s/). During the second step of the PCR barcoded adapters suitable for multiplex illumina 500 

sequencing were added.  Following pooling of the barcoded samples, the amplicon pool was cleaned to 501 

remove short undesirable fragments using Magbio HighPrep PCR beads (MagBio AC-60050), QC’ed on a 502 

High Sensitivity NGS Fragment Analyzer, and then qPCR quantified using the Kapa kit for ABI optical-503 

cyclers. The pool was then normalized to 10nM, denatured using 0.1N NaOH followed by a 2min 504 

incubation @96C followed by 5min in an ice-water bath just prior to sequencing as per the Illumina 505 

protocol for a 2x301 MiSeq run (Illumina, Inc., San Diego, CA). DNA sequence reads from the Illumina 506 

MiSeq were demultiplexed and classified in the following manner: The Python application dbcAmplicons 507 

(https://github.com/msettles/dbcAmplicons) was used to identify and assign reads to the appropriate 508 

sample by both expected barcode and primer sequences. Barcodes were allowed to have at most 1 509 

mismatch (hamming distance) and primers were allowed to have at most 4 mismatches (Levenshtein 510 

distance) as long as the final 4 bases of the primer matched the target sequence perfectly. Reads were 511 

then trimmed of their primer sequence and merged into a single amplicon sequence using the application 512 

FLASH64. Finally, the RDP Bayesian classifier was used to assign sequences to phylotypes65. Reads were 513 

assigned to the first RDP taxonomic level with a bootstrap score >=50. 514 

16S rRNA data analysis 515 

Illumina MiSeq forward and reverse were processed using the MASQUE pipeline 516 

(https://github.com/aghozlane/masque). Briefly, raw reads are filtered and combined followed by 517 

dereplication. Chimera removal and clustering are followed by taxonomic annotation of the resulting 518 

OTUs by comparison to the SILVA database. A BIOM file is generated that combines both OTU taxonomic 519 

assignment and the number of matching reads for each sample. Relative abundance levels form bacterial 520 

taxa (Order level) were obtained and analyzed. The obtained relative abundance OTU tables (Order level) 521 
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were analyzed with Microsoft excel (Supplementary Table 8), multi-variate analysis package (see below) 522 

and by means of a machine learning approach employing a random forest algorithm (see below).  523 

Chemical analysis 524 

All chemical data measured here and used for analysis where extracted from the SIPIBEL database. Solid-525 

phase extraction (SPE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 526 

were used to measure the antibiotics ciprofloxacin, sulfamethoxazole and vancomycin and the 527 

pharmaceutical carbamazepine as detailed elsewhere26. Heavy metals (Zn, Cu, Ni, Pb, Cr, Gd, Hg, As and Cd) 528 

were measured with inductively coupled plasma combined with atomic emission spectroscopy (ICP-AES). 529 

Concentration of surfactants (anionic, cationic and non-ionic surfactants) were measured following 530 

standard methods approved by the French organization of standardization AFNOR as described by Wiest 531 

et. al.38.  532 

Multivariate analyses  533 

Multivariate statistical techniques were used to test the influence of waste water treatment or sampling 534 

time (independent variables) on the microbiota and the resistome (dependent variables) of the different 535 

sample groups (urban, hospital, mixed), including all individual genes and genes allocated into gene 536 

classes in two independent datasets. Statistically significant influence of the treatment or the sampling 537 

time on the microbiota and the resistome were assessed by Redundancy Analysis (RDA) with 499 Monte 538 

Carlo permutations. For testing the influence of sampling time, we used sampling year or season as 539 

independent variables, and all different sample groups together (i.e., to potentially identify general 540 

patterns influencing all groups at the same time), and individually, as dependent variables. Such analysis 541 

revealed the percentage of variance that is explained by sampling time or WW treatment in each case, 542 

and whether the influence of the independent variables is statistically significant or not. The relationship 543 

between the resistome and the microbiota and the measured chemicals in the different raw water 544 

samples (eco-exposome) was visualized by means of Principal Component Analysis (PCA) biplots. 545 

Moreover, the influence of the measured chemicals (eco-exposome) on the microbiota and resistome was 546 

statistically assessed by RDA. A variation partitioning analysis was performed to assess which group of 547 

chemicals (Metals, Pharmaceuticals, Surfactants) explains the largest share of the variation of the 548 

microbiota and resistome datasets, and to explore whether the interactive effects of the groups of 549 

chemicals would have a larger influence on those datasets than the individual groups themselves. All 550 

multivariate analyses were performed with the Canoco v5.0 software66, using a significance level of 0.05. 551 
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Random Forest Approach 552 

A Random Forest Algorithm (RFA) was used in order to predict a response variable (water sources) of each 553 

sample independently, using measurements on individual gene, gene class and microbiota level (predictor 554 

variables). To run the RFA the R-package randomForest was used: Breiman and Cutler's Random Forests 555 

for Classification and Regression, a software package for the R-statistical environment67. In summary, the 556 

RFA follows the pseudo-steps: (I) the response variable and predictor variables are chosen by the user; (II) 557 

a predefined number of independent bootstrap samples are drawn from the dataset with replacement, 558 

and a classification tree is fit to each sample containing roughly 2/3 of the data, for which predictor 559 

variable selection on each node split in the tree is conducted using only a small random subset of predictor 560 

variables; (III) the complete set of trees, one for each bootstrap sample, composes the random forest (RF), 561 

from which the status (classification) of the response variable is predicted as an average (majority vote) 562 

of the predictions of all trees. Compared to single classification trees, RFA increases prediction accuracy, 563 

since the ensemble of slight different classification results adjusts for the instability of the individual trees 564 

and avoids data overfitting68. The Mean Decrease Accuracy (MDA), or Breiman-Cutler importance, was 565 

employed as a measure of predictor variable importance, for which classification accuracy after data 566 

permutation of a predictor variable is subtracted from the accuracy without permutation, and averaged 567 

over all trees in the RF to give an importance value [2]. It should be noted that since all predictor variables 568 

were of numeric nature, using RFA is equivalent to regression over classification trees. For the results 569 

presented here and in supplementary text, only the 2.5% of top RFA scores were considered (as presented 570 

by the resulting MDA distribution of all predictor variables) , thus selecting the subset of predictor 571 

variables which appear statistically more informative than expected in the background of all predictor 572 

variables (i.e. we assume that 95% of the RFA scores fall between the 2.5th and 97.5th percentiles, as 573 

done elsewhere69). 574 

  575 
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Data availability: 16S rRNA sequence data are available at the European Nucleotide Archive (ENA) under 576 
the accession number PRJEB29948. All other important raw data needed to reconstruct the findings of 577 
our study are made available in the supplementary material.  578 
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